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Abstract
Purpose In this paper, we present a novel approach to the automatic evaluation of open surgery skills using depth cameras.
This work is intended to show that depth cameras achieve similar results to RGB cameras, which is the common method
in the automatic evaluation of open surgery skills. Moreover, depth cameras offer advantages such as robustness to lighting
variations, camera positioning, simplified data compression, and enhanced privacy, making them a promising alternative to
RGB cameras.
Methods Experts and novice surgeons completed two simulators of open suturing. We focused on hand and tool detection
and action segmentation in suturing procedures. YOLOv8 was used for tool detection in RGB and depth videos. Furthermore,
UVAST and MSTCN++ were used for action segmentation. Our study includes the collection and annotation of a dataset
recorded with Azure Kinect.
Results We demonstrated that using depth cameras in object detection and action segmentation achieves comparable results
to RGB cameras. Furthermore, we analyzed 3D hand path length, revealing significant differences between experts and novice
surgeons, emphasizing the potential of depth cameras in capturing surgical skills. We also investigated the influence of camera
angles on measurement accuracy, highlighting the advantages of 3D cameras in providing a more accurate representation of
hand movements.
Conclusion Our research contributes to advancing the field of surgical skill assessment by leveraging depth cameras for
more reliable and privacy evaluations. The findings suggest that depth cameras can be valuable in assessing surgical skills
and provide a foundation for future research in this area.

Keywords Surgical training · Computer vision · Depth camera · Object detection · Open surgery

Introduction

The complexity and high-stakes nature of open surgery
necessitate the development of reliable and robust systems
for evaluating surgical skills [1]. The evaluation of surgical
skills has been an active area of research, withmethodologies
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ranging from subjective assessments by expert surgeons to
objective metrics using sensors and data analytics.

Studies have shown the capability ofmotion sensors to dis-
tinguish between expert and novice surgeons. For instance,
novices tend to move their hands with less efficiency, result-
ing in longer path lengths [2]. Additionally, they exhibit
slowermovements [3] and employ amore expansiveworking
volume [4]. Unfortunately, hand sensors come with draw-
backs such as high costs and discomfort. Furthermore, their
integration into the operating room environment poses sig-
nificant challenges.

The combination of RGB cameras and computer vision
provides a new approach for assessing surgical skills. Gold-
braikh et al. [5] utilized a standard webcam in combination
with object detection to track hand movements, showing
significant differences between students and experts. Addi-
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tionally, multiple studies have highlighted the evaluation of
surgical skills through the use of RGB cameras. [6] investi-
gated the monitoring of tool usage in surgical videos, while
[7] analyzed surgical proficiency using computer vision
techniques in laparoscopic surgeries. This technique paves
the way for the creation of simple and accessible training
systems, providing learners with the opportunity to prac-
tice independently and receive objective feedback. However,
motion captured by an RGB camera is the 2D in-plane of the
camera rather than the actual 3D distance. Themeasurements
can vary significantly if the camera’s angle in relationship
to the suture area changes. This study aims to investigate
the potential of depth cameras to address this limitation,
proposing a method that not only resolves this issue but also
preserves the simplicity and accessibility of the training sys-
tems.

The use of RGB cameras is not limited to object detection
andmotion analysis, In recent years deep learning techniques
have been used for general tasks such as tool detection in
laparoscopic surgeries [8] or surgical gesture recognition [9].
Additionally, other studies have harnessed computer vision to
formulate task-specific performance metrics [10, 11]. There-
fore, RGB cameras may have a broad impact on the quality,
efficiency, and safety of surgical procedures.

Nevertheless, using RGB cameras, especially in a clinical
scenario, poses several challenges. First, privacy concerns
emerge due to factors like capturing facial details and text.
Second, lighting in the operating room is very challenging
[12], as there is a wide variation in the amount of light in dif-
ferent areas [13, 14]. Depth cameras have been suggested as
an alternative to RGB cameras to overcome these issues [15,
16]. They require no contact with the operating environment
while still being capable of accurately tracking real-life hand
motion data. They may be used to measure pose estimation
and gait analysis [17] as well as patient activity recognition
[18].

This study introduces an approach that employs depth
cameras to automatically evaluate open surgery skills, specif-
ically focusing on hand and tool detection and action
segmentation in suturing procedures. We show that depth
cameras can achieve comparable results to RGB cameras in
a more robust way and provide an alternative approach for
assessing surgical skills. The paper’s main contributions are:
(1) demonstrating that depth cameras are as effective as RGB
cameras for object detection and action segmentation; (2)
analyzing how the angle between the camera and suture area
can affect the accuracy of their results, thus demonstrating
the advantage of depth data; (3) introducing a novel metric
that relies solely on depth cameras.

Fig. 1 Suture pad

Methods

The dataset

The study included 28 participants: 22 first-year surgical res-
idents (8 male and 14 female) and 6 attending surgeons (3
male and 3 female) at a Midwestern academic hospital. The
residents participated in this study as part of an annual sur-
gical intern simulation series in which all first-year surgical
residents complete a selection of basic surgical skills. Each
participant was informed of the research prior to the session,
and their decision to participate had no influence on the sim-
ulation series. One week before the simulation series, each
intern received a video showing a faculty member accurately
performing each skill. There was no limit on the amount
of video views. During the simulation series, each intern is
paired with a faculty member in a room within the hospi-
tal simulation center. The intern is then given standardized
written instructions with scoring metrics and asked to com-
plete each skill using a simulator. After task completion, the
faculty member provides feedback to the resident.

The participants were engaged in conducting various sur-
gical tasks utilizing two simulators: a “Suture pad” and a
“Fascia Closure”. The execution of these tasks was docu-
mented through an Azure Kinect, which features a 4K RGB
camera, a Depth Camera, and an IR Camera.

The first simulator, the “Suture Pad” simulator Fig. 1, was
made of silicone. It was constructed to resemble human tis-
sue and allows trainees to practice basic suturing techniques,
such as creating knots and closing incisions. This simulator
is similar to the simulator presented in [19]. In this study,
participants executed four tasks using this simulator: simple
suture, horizontal mattress suture, vertical mattress suture,
and running suture. The goal was to train and assess medical
professionals in the technique of suturingwounds. The initial
task averaged 54s, the second task 84s, the third 81s, and
the final task approximately 206s.

The second simulator, the “Fascia Closure” simulator Fig.
2, simulated the process of suturing and closing the con-
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Fig. 2 Fascia closure

nective tissue layer called fascia during surgical procedures.
This simulator design is taken from Mayo Clinic’s Surgical
Olympics where it has been used since 2006 [20]. It pro-
vides a simulation of the fascia layer, enabling trainees to
practice the skills required for successful closure. This sim-
ulator focuses on running suture in a distinct type of tissue.
This simulator took an average of 379s.

We focusedon several computer vision tasks: object detec-
tion of the hands and tools as well as temporal segmentation
of the surgical gestures. For object detection, about 900
frames from simulator 1 and an additional 900 frames from
simulator 2 were annotated. These frames were drawn from
14 participants, who were chosen randomly, at a rate of
one frame every 5 s. The number of participants was lim-
ited to 14 due to constraints on labeling resources. In each
frame, all present tools, hands, and the simulator itself were
marked with bounding boxes. The tools identified include
Needle Driver, Tissue Forceps, Dressing Forceps, and Scis-
sors. Additionally, the entire video set was annotated for
temporal segmentation. The catalog of gestures consists of
“Holding needle with a tool”, “Needle passing”, “Pull the
suture”, “Instrumental tie”, “Lay the knot”, “Cut the suture”,
“No Gesture”, and “Hand tie”.

We converted the depth matrix from each frame of the
depth camera videos into grayscale video to better visualize
and analyze the spatial information. In this format, objects
nearest to the camera are represented in white, while those
at a greater distance appear black, thereby simplifying the
representation of depth information. The annotations applied
to the RGB videos were also used for these depth videos.

Hardware and software

We conducted all our experiments, including training, test-
ing, and evaluations, using a hardware setup consisting of
two NVIDIA RTX A6000 GPUs and a single Intel Core i9-
10940X CPU equipped with 28 logical cores. For running
these experiments, we employed the PyTorch library, and for
experiment tracking, we utilized WANDB [21].

Object detection

For the purpose of object detection, encompassing tools,
hands, and the simulator, the YOLOv8 architecture [22] was
employed. This architecture was trained using the Ultralyt-
ics framework. Notably, four distinct models were trained for
each simulator scenario: one for RGB data encompassing all
tools, another for depth data encompassing all tools, a third
for RGBdata focusing solely on hands, and a fourth for depth
data dedicated to hands. In the hand-focused models, we had
two classes: “Right Hand” and “Left Hand”, While, for the
models aimed at detecting all tools, we used: “Right Hand”,
“Left Hand”, “Needle Driver”, “Tissue Forceps”, “Dressing
Forceps”, “Scissors”, and “Simulator”.

During the training process, several data augmentation
techniques were applied to enhance the model’s robustness,
including rotations, and brightness adjustments.

Modifications were made to the prediction head of the
model to accommodate the aforementioned classes. The eval-
uation of the model’s performance was carried out using
the mean average precision (mAP) based on intersection
over union (IoU). Finally, the trained model was applied to
extract per-frame bounding boxes, employing a confidence
threshold ranging from 0.5 to 0.95, with increments of 0.05,
with AdamW optimizer. Every epoch took an estimated one
minute to complete, and the model was trained for a total of
300 epochs. The memory footprint was about 19GB.

Action segmentation

In our action segmentation experiments, we employed two
architectures:UVAST[23] andMSTCN++ [24]. These archi-
tectures were selected because they complement each other
effectively. MS-TCN++ is a lighter and less complex model,
suitable for online, real-time inference. Conversely, UVAST,
being a more feature-rich and complex model, offers greater
accuracy but requires longer inference times. Both mod-
els were implemented using their original frameworks as
described in the cited papers and trained using an Adam opti-
mizer. Both architectures leveraged RGB and optical flow
features, extracted using the I3D model [25] trained on the
Kinetics 400 dataset [26]. Specifically for depth videos, we
initially converted them to greyscale and then adapted them
to RGB format by triplicating each frame for compatibility
with the I3D model. In terms of training, MSTCN++ was
trained over 100 epochs, with each epoch averaging around
5s, while UVAST was trained 600 epochs, each averaging
about one minute. The memory footprint was about 5GB
when extracting features and 3GB for model training and
prediction.

The UVAST architecture incorporated the Viterbi algo-
rithm [27] during the inference stage. For experiments on
simulator 2, due to limited resources and the longer video

123



International Journal of Computer Assisted Radiology and Surgery

Table 1 Suture pad and fascia
closure simulators—all tools
and hands

Class Suture Pad Simulator Fascia Closure Simulator

Occurrence APRGB
50−95 APDepth

50−95 Occurrence APRGB
50−95 APDepth

50−95

Left Hand 316 0.967 0.964 352 0.935 0.937

Right Hand 306 0.953 0.942 332 0.944 0.973

Needle Driver 295 0.931 0.922 313 0.915 0.882

Tissue Forceps 299 0.648 0.634 246 0.349 0.290

Dressing Forceps 273 0.792 0.819 297 0.646 0.506

Scissors 298 0.932 0.927 287 0.816 0.814

Simulator 309 0.999 0.999 353 0.989 0.981

Average – 0.890 0.888 – 0.830 0.801

Table 2 Suture pad and fascia
closure simulators—only hands

Class Suture Pad Simulator Fascia Closure Simulator

Occurrence APRGB
50−95 APDepth

50−95 Occurrence APRGB
50−95 APDepth

50−95

Left Hand 316 0.980 0.965 352 0.955 0.964

Right Hand 306 0.972 0.961 332 0.933 0.968

Average – 0.976 0.963 – 0.945 0.966

durations, we limited the hypothesis space to 10,000 during
inference.

In the Suture Pad simulator, the first three tasks of the
suturing are closely related as they all present the execu-
tion of what we term a “stationary knot”—a simple suture,
a horizontal mattress suture, and a vertical mattress suture.
Consequently, the model was trained on a unified dataset
that included these tasks, with each task separated into a dis-
tinct video. These videoswere then divided into four separate
train-test splits, ensuring that all videos from a single partic-
ipant fell within the same split. The results for this model
will be labeled as “Simple Suture”. For the fourth task, in the
Suture Pad simulator, the results will be categorized under
“Running Suture”, while results from the FasciaClosure sim-
ulator will be designated as “Fascia”.

We used distinct action segmentation labels for each sim-
ulator. For the suture pad simulator, labels included G0 for
holding the needle with a tool, G1 for needle passing, G2 for
pulling the suture, G3 for instrumental tie, G4 for laying the
knot, G5 for cutting the suture, and G6 for no action. The
fascia closure simulator employed similar labels, with the
addition of G7 for hand tie.

As previously established in the literature [23, 24], three
evaluation metrics were employed. Frame-wise accuracy,
segmental edit distance, and F1@k for k ∈ {10, 25, 50}.
Frame-wise Accuracy assesses the ratio of correctly classi-
fied frames to total frames. Segmental Edit Distance, adapted
from the Levenshtein distance, compares activity segments
and is normalized by the greater length between ground truth
and prediction. F1@k calculates the Intersection over Union

(IoU) for each segment, categorizing them as true or false
positives based on a threshold k.

3D hand path length

According to [28], the 3D hand path length metric is used
to evaluate surgical skills by measuring the efficiency of a
surgeon’s movements. Shorter, more direct paths typically
indicate higher skill and experience because they reflect a
surgeon’s ability to performmovements more efficiently and
precisely, making this metric a valuable tool for assessing
and improving surgical proficiency.

To quantify the path length traversed by the hands in
a three-dimensional space, we employed the object detec-
tion algorithm Sect. “Object detection" to identify the hands.
Subsequently, we extracted the coordinates of the bound-
ing box’s center. Utilizing the depth camera provided by the
Azure Kinect, we transformed the depth information into
a point cloud using the Open3D (O3D) library. The coor-
dinates of the bounding box were then used to extract the
[x,y,z] coordinates from the point cloud, representing each
hand’s spatial location. By aggregating these spatial coor-
dinates across frames, we calculated the total path length
using Euclidean distance metrics. For the statistical analysis,
we adopted the Wilcoxon rank-sum test to compare the total
path lengths between the two groups (experts and residents).
The significance level was set at p < 0.05.

In our previous work [11], we explored temporal data
obtained through action segmentation tools and examined
its correlation with skill. In the current work, we extend our
investigation into spatial data. Specifically, we introduce a
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novel metric to quantify the average distance a surgeon’s
hands move during each unique gesture. This approach will
facilitate the provision of more focused practice recommen-
dations, honing in on gestures that require further refinement.

2D different angles

In order to investigate the influence of RGB camera angles
on measurement accuracy, our approach involved analyzing
the movement of hands from different angles, emphasizing
how each angle uniquely captures aspects of the movement
in 3D space. This approach underscores our aim to demon-
strate the superiority of depth cameras, which provide 3D
imagery, over RGB cameras that offer only 2D perspectives.
To accomplish this, we determined the geometric center of
each hand for every frame. We then computed the [x, y, z]
coordinates representing the hand’s spatial position within
the simulator’s point cloud, a methodology previously estab-
lished in Sect. “3D hand path length". These 3D coordinates
were then projected onto three orthogonal 2D planes: XY,
YZ, and XZ. This projection onto 2D planes serves to mimic
the limited perspective of RGB cameras. By comparing these
projections, we aim to highlight the constraints of 2D imag-
ing in capturing the full complexity of hand movements in
3D space.

Subsequent to the projection, we quantified the distances
covered by the hand within these 2D planes as if they were
captured by a 2D camera. This comparison is critical for
demonstrating that depth cameras, with their 3D imaging
capabilities, provide amore comprehensive and accurate rep-
resentation of hand movements in 3D space than 2D RGB
cameras.

Results

Object detection

This section presents the results of the YOLOv8 algorithm
applied to object detection. Tables 1 and 2 provide a detailed
overview of the algorithm’s performance, specifically in
terms of average precision (AP) for each class. The eval-
uation was conducted on two distinct models: one trained on
RGB video data and the other on depth video data. These
models were rigorously tested on a separate test set compris-
ing 313 frames for the first simulator and 354 frames for the
second from different participants, ensuring that the model’s
performance was evaluated on previously unseen data.

In the first simulator, the suture pad simulator, for the
model trained on RGB video data using all the tools and
the hands, we obtained mAP50−95(RGB) of 0.890. Simi-
larly, for the same model trained on depth video data, the
corresponding mAP50−95(Depth) was found to be 0.888.
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Fig. 3 Task-based box-plot of hand path length for residents and experts

For the models trained only on the hands, we obtained
mAP50−95(RGB)of 0.976 andmAP50−95(Depth)of 0.963.
These results highlight the consistency in themodels’ perfor-
mance despite being trained on distinct data types, empha-
sizing the similar value that the depth camera gives us.

The second simulator, the fascia closure simulator, the
model trained on RGB video data, exhibited performance
with a mAP50−95(RGB) of 0.830. The model trained on
depth video data for all the tools and the hands achieved a
mAP50−95(Depth) of 0.801. For the models trained only
on the hands, we obtained mAP50−95(RGB) of 0.945 and
mAP50−95(Depth) of 0.966.

Action segmentation

In the case of the Suture Pad simulator, models trained using
depth features outperformedothers across all evaluationmea-
sures, with the sole exception being UVAST’s marginally
higher edit score in the simple suture task. Using depth fea-
tures, UVAST attained an accuracy of 78.22% for the Simple
Suture and 70.97% for the Running Suture. At the same time,
MS-TCN++ achieved accuracies of 76.75% and 66.98% for
the same tasks, outperforming their respective RGB-based
versions.

In the case of the Fascia Closure simulator, models trained
using RGB showcase higher results across evaluation met-
rics, MS-TCN++ achieving an accuracy of 75.24%, and
UVAST achieving an accuracy of 71.69%. Nonetheless, as

indicated in Table 3, these results remain comparable to those
achieved using depth features.

3D hand path length

As we expected, and shown for the 2D case in [5], the box
plots in Fig. 3 reveal a consistent pattern across all tasks.
Experts consistently navigated a shorter hand path compared
to residents. In the suture pad simulator, for Task 1—sub-
figure Fig. 3a, the p-value of theWilcoxon rank-sum test was
0.003, for Task 2—sub-figure Fig. 3b it was 0.038, for Task
3—sub-figure Fig. 3c the p-value was 0.021, for Task 4—
sub-figure Fig. 3d the p-value was 0.021, and for the fascia
closure simulator two—sub-figure Fig. 3e the p-value was
0.038. All the p-values are p < 0.05.

These results indicate that the differences in hand path
length between experts and residents are statistically signif-
icant, similar to [29], underscoring the value of expertise in
surgical efficiency that can be captured using a depth camera.
Additionally, it is noteworthy that despite the small sample
size in our datasets, we were able to achieve statistically sig-
nificant p-values. This fact further reinforces the validity of
our results, highlighting the robustness of our findings even
with limited data.

Figure4 serves as an initial exploration based on data
collected from the Simple Suture simulator and gives us a
more nuanced look at the hands’ path length, showing which
gestures require the most movement. Our results show a sta-
tistically significant difference in the distance passed when
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Fig. 4 Gesture distance for
experts and residents in the
simple suture task

passing the needle (p = 0.001), tying a knot (p < 0.001),
laying a knot (p = 0.008), and holding the needle (p =
0.021). No significant difference was found when pulling
the suture (p = 0.707), cutting the suture (p = 0.056),
and for the distance moved when no action is performed
(p = 0.283). This offers an initial validation for our pro-
posed gesture distance metric.

2D different angles

Our data in Table 4 quantitatively confirmed these visual dis-
tortions, revealing a correlation between camera angle and
measurement error. We found that certain angles dispropor-
tionately amplified orminimized specific types ofmovement,
thereby providing an inaccurate representation of the true
hand path. It becomes clear from these results that because
the hand’s path distance in RGB video is always calculated
along a 2D plane, results are inherently subject to variance
due to camera angles. This issue can lead to a loss of up to
a third of the actual, real-world data, as demonstrated in the
XY case under Table 4. This presents an inherent problem
when using 2D cameras for applications that demand high
accuracy and reliability.

In contrast, 3D cameras offer a solution to this issue
by capturing the real-world position of the hands in a
three-dimensional space, thereby eliminating the distortions
introduced by varying camera angles. This allows for a more
authentic and nuanced understanding of hand movements, as
it captures the complete spatial relationships between differ-
ent points in the hand’s path.

Discussion and conclusion

Object detection and action segmentation are fundamen-
tal tasks in the surgical data science domain. Traditionally
these tasks are performed using RGB cameras. However,

RGBcameras have several limitations including sensitivity to
OR lighting, positional variations and privacy. These limita-
tions may be overcome, by using depth cameras. This study
aimed to determine if depth cameras, which may address
these issues, are suitable for these tasks. RGB cameras
pose considerable privacy concerns. They capture images
that can include faces and confidential text, potentially
exposing sensitive information. This becomes particularly
problematic in environments where privacy is crucial, such
as in healthcare settings. Using depth cameras these issues
are overcome. They provide a three-dimensional map of
the scene, emphasizing spatial relationships and movement
without compromising sensitive visual details, hence over-
coming these privacy issues. Motion economy is known
indicator of expertise. Previous research has differentiated
between experts and novices by detecting the surgeon’s hand
movements [5]. However, RGB cameras only capture a 2-
dimensional representation of the actual hand motion path,
which can be affected by the camera’s position relative to
the simulator. Depth cameras overcome this limitation by
provided the true 3-dimensional motion. Specifically, we cal-
culated the motion values as if an RGB camera provided
sagittal, coronal, or transverse views of the simulation (corre-
sponding to the YZ, XZ, and XY planes). Our results showed
that while the 2-dimensional path lengths of experts and
novices are significantly different in each view, the values
overlap when compared across different views. For instance,
if a study uses a sagittal view to establish baseline perfor-
mance for experts and novices, a training program using this
baseline must ensure identical camera positioning. Depth
cameras eliminate this requirement by providing absolute
motion data.

It is essential to acknowledge the limitations of our study.
The data set size is crucial when using deep learning tools
and statistical tests. More accurate results could have been
achieved with the availability of a more extensive dataset.
Due to the highmemorydemands of theViterbi algorithm,we
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52 had to use a simplified version. This is a balanced approach

and a common solution in applications involving the Viterbi
algorithm. While the full algorithm might provide slightly
more precision in certain cases, the simplified version aligned
well with our research requirements. Also, while a larger
dataset could potentially offer finer details, rigorous methods
were employed to ensure the validity of our study given the
available data.

In conclusion, our research contributes to the field of sur-
gical skill assessment. By championing the adoption of depth
cameras, we provide a more accurate, privacy-conscious,
and robust approach to evaluating surgical proficiency. The
advantages of depth cameras, combined with our empirical
findings, underscore their potential to alter how surgical skills
are assessed and trained, offering a solid foundation for future
advancements in this domain.
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