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Abstract
Purpose: Automated prostate disease classification on multi-parametric MRI has recently shown promising results with the
use of convolutional neural networks (CNNs). The vision transformer (ViT) is a convolutional free architecture which only
exploits the self-attention mechanism and has surpassed CNNs in some natural imaging classification tasks. However, these
models are not very robust to textural shifts in the input space. In MRI, we often have to deal with textural shift arising from
varying acquisition protocols. Here, we focus on the ability of models to generalise well to new magnet strengths for MRI.
Method: Wepropose a new framework to improve the robustness of vision transformer-basedmodels for disease classification
by constructing discrete representations of the data using vector quantisation.We sample a subset of the discrete representations
to form the input into a transformer-based model. We use cross-attention in our transformer model to combine the discrete
representations of T2-weighted and apparent diffusion coefficient (ADC) images.
Results: We analyse the robustness of our model by training on a 1.5 T scanner and test on a 3 T scanner and vice versa. Our
approach achieves SOTA performance for classification of lesions on prostate MRI and outperforms various other CNN and
transformer-based models in terms of robustness to domain shift and perturbations in the input space.
Conclusion: We develop a method to improve the robustness of transformer-based disease classification of prostate lesions
on MRI using discrete representations of the T2-weighted and ADC images.

Keywords Biomedical imaging · Robustness · Computer-aided diagnosis · Machine learning · Neural networks

Introduction

Prostate disease classification on multi-parametric MRI
(mpMRI) is performed by radiologists using a standardised
reporting lexicon called PI-RADS. However, it is still some-
what subjective and results in a false-positive rate of 30–40
per cent leading to a large number of unnecessary biop-
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sies [1]. Therefore, automated prostate disease classification
would be of great benefit to reduce the number of unneces-
sary biopsies. Automated disease classification on prostate
MRI has shifted from hand-crafted radiomics features to
CNNs for automated classification. Recently, transformer
networks have revolutionised natural language processing
(NLP) using self-attention to better model long-range depen-
dencies in the input data to extract more global information
[2]. Transformer networks have now been extended to image
classification tasks in what is called the vision transformer
[3]. However, its performance is hugely dependent on pre-
training on large datasets. Furthermore, both CNNs and
transformers are susceptible to adversarial attacks and real-
world corruptions, raising concerns about their reliability in
critical applications like healthcare.

Our focus in this work is on single-domain generalisabil-
ity (SDG), addressing challenges posed by variations inMRI
acquisition and magnet strengths across different sites. As
MRI scanners evolve, it is crucial for deep learning mod-
els to generalise across new scanners without retraining. We
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propose an architectural design based on discrete representa-
tion learning, inspired by human reasoning with categorical
representations [4]. Categorical representations, like stating
whether a lesion is dark or bright, allow robust classifica-
tion by ignoring noise or textural shifts. In the context of
prostate MRI, our approach aims to enhance disease classi-
fication robustness under acquisition shifts from 1.5 T to 3 T
scanners and vice versa.

Related works

Itwas shown thatmodel accuracy is notmaintained under dif-
ferent types of noise and distortions, suggesting poor model
robustness [5]. To enhance model robustness, common tech-
niques include data augmentation, adversarial training, and
architecture design.

In data augmentation, we enhance model robustness by
synthesising new training data from the existing training
set to encourage model invariance to various perturba-
tions. It was shown that model accuracy is not maintained
under different types of noise and distortions [5]. There-
fore, augmenting training data with specific corruptions
helps preserve accuracy for those corruptions, but not for
unseen ones [5]. In medical imaging, BigAug is an aggres-
sive augmentation scheme which generates training data
with a series of augmentation techniques which significantly
improve segmentation performance in the SDG setting [6].
It was highlighted by [5] that neural networks overly rely
on texture information. This is in contrast with humans who
prefer shape for classification. Therefore, style transfer was
used by [5] to augment ImageNet with textured variants.
They achieved improved accuracy on unseen common per-
turbations in ImageNet-C and provided evidence that this
increases the shape bias of CNNs. Similarly, RandConv [7]
proposes using randomised convolutions in the initial lay-
ers of CNNs to extract shape-biased features. Recently, there
have been augmentation strategies which force neural net-
works to learn even more generalisable features such as
CutOut [8] andMixUp [9]. In CutOut [8], random patches of
an image are cropped out which encourages more global fea-
ture learning for classification. MixUp [9] linearly combines
randomly sampled training images and labels which leads to
more stable predictions on data sampled outside the training
distribution such as those degraded by artefacts.

SMOTE, which stands for Synthetic Minority Over-
sampling Technique, is a method used to balance class
distribution within a dataset through oversampling [10]. This
technique involves identifying minority examples in close
proximity within the feature space. Subsequently, it estab-

lishes a line between these examples in the feature space
and generates new samples at points along that line. Since
the advent of SMOTE, there have been a significant num-
ber of extensions of SMOTE [11]. For example, the initial
enhancements to SMOTE aimed to address its known limita-
tions of generating overlapping and noisy examples. Thiswas
achievedby adding anoisefiltering step immediately after the
SMOTE process. Two common techniques for this purpose
are SMOTE-TomekLinks and SMOTE+ENN, as proposed
by [12]. Filtering out artificial examples is a crucial operation
that contributes to the effectiveness of SMOTE, particularly
when dealing with real-world data. SMOTE has also a suc-
cessful impact in medical imaging such as in the accurate
prediction of COVID-19 on chest x-rays [13] and improving
the AUC score for glioblastoma patient survival prediction
[14].

Adversarial training schemes akin to data augmentation
methods also manipulate the input data but with a specific
objective. In methods such as [15], a min-max problem is
constructed in which the inner maximisation seeks effec-
tive perturbations from a distribution such as Gaussian noise,
while the outerminimisation updates themodel parameters to
minimise expected error. In an extension of this method, [16]
learns the noise distribution fromwhich to sample the pertur-
bations.There have sincebeenmore sophisticated adversarial
training schemes developed. For example, M-ADA [17]
introduces adversarial data augmentation through a meta-
learning approach, utilising a Wasserstein auto-encoder to
create new domains. In medical imaging, AdvBias [18]
develops an adversarial training scheme specific toMRI data.
Here, they employ adversarial data augmentation in the input
space to learn the generation of bias field deformations.

In concurrent research, [19] adopts an architectural design
approach identical to us to address the issue of the vision
transformer not generalising well to out-of-distribution, real-
world data. Theyproposed a simple yet effectivemodification
to the vision transformer’s input layer by incorporating dis-
crete tokens generated by a vector-quantised encoder. They
demonstrate that this approach makes the vision transformer
less sensitive to perturbations in the input space and also
showed up to a 12% robustness improvement in terms of the
relative corruption error across seven ImageNet benchmarks
for four architecture variants.

Method

Our method is divided into two stages. The first stage aims to
learn a discrete representation of both the T2-weighted and
ADC images. The second stage then utilises the T2-weighted
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Fig. 1 First stage of training.
We learn discrete
representations in the form of a
codebook for T2-weighted and
ADC images
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and ADC low-dimensional discrete representations as input
into a transformer- based architecture to predict the disease
class of the prostate lesion.

Stage 1

The first stage of our method is learning discrete represen-
tations for both the T2-weighted and ADC images as shown
in Fig. 1.

We use the VQ-VAE [20]. In this, the discrete latent
space is a categorical distribution defined as a codebook,
D ∈ R

K×d where K is the number of elements in the
codebook and d is the dimensionality of each vector in the
codebook. We denote the j th element in D as l j .

TheVQ-VAEfirstly consists of an encoderφe whichmaps
the inputs space, x to the continuous latent vectors, e which
are then discretised using vector quantisation to form discrete
variables, ẑ as visualised in Fig. 1. The decoder, φd , maps the
discrete latent vectors to the output space, y. The quantisation
of the continuous space is performed by firstly dividing e into
m vectors. We spatially divide e the continuous latent space
of size, c × x × y × z into vectors, ei of size c × 1 × 1 × 1
where c is the number of channels. We then replace ∀ei ∈ e
with the nearest element in lk ∈ D sampled by euclidean
distance to form the discrete latent variables, ẑ, where k =
argmin j‖ei − l j‖2.

q(ẑi = l j | x)
=

{
1 for lk ∈ D, k = argmin j ‖ei − l j‖2
0 otherwise

}
(1)

We cannot backpropogate through this sampling operation
to update the codebook and therefore approximate the gra-
dients for D using straight-through gradient approximation.
This is achieved by copying the gradients from the decoder
input, z, to the encoder output, e. In order to learn the code-
book, we move lk closer to ei by euclidean distance. This
is captured in the second term of the loss function shown in
Eq. (2) where a stop gradient (sg) is applied to ei which sets
the gradient attached to ei to 0 and constrains ei to a non-
updated constant. The volume of the continuous embedding

space can grow arbitrarily large during training, and there-
fore, a commitment loss is applied shown in the third term
in Eq. (2). The first terms in Eq. (2) are the reconstruction
loss term computed using the mean square error. We use a β

value of 0.25 as suggested in [20]. The codebook elements
are initialised uniformly from −1/K to 1/K .

L = log p(x |ẑ) +
i=m∑
i=0

‖sg(ei ) − lk‖2

+
i=m∑
i=0

β‖ei − sg(lk)‖2 (2)

Multi-headed self-attention (MHSA)

We first describe the MHSA mechanism required to under-
stand stage 2 of our method. The first stage of the MHSA
is to convert each input vector into a d-dimensional query
(q), key (k) and value (v) vector with a linear layer, which
are then concatenated, respectively, over all input vectors to
form the Q, K and V matrices. The general equation for
self-attention is shown in Eq. (3). Attentions scores between
different input vectors are calculated with the dot product
between Q and V to construct the attention matrix, A, which
is normalised before multiplying with the value matrix V to
form the output.

Output = softmax

(
Q.KT

√
d

)
× V (3)

Inmulti-headed self-attention, oneboosts the performance
of single-head self-attention by applying multiple attention
heads with different learnt Q, K and V matrices for each
head.

Stage 2

In the second stage of training visualised in Fig. 2, we
freeze the T2 encoder, ADC encoder, T2 pre-quantisation
block, ADC pre-quantisation block, T2 dictionary and ADC
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Fig. 2 Second stage of training. We train a cross-attention architecture
with inputs sampled for the T2 and ADC dictionary

dictionary weights. The T2 and ADC images are passed
through their respective encoders before sampling their
respective dictionary to form the discrete latent variables,
ẑT 2 ∈ R

256×16×16×12 and ẑ ADC ∈ R
256×16×16×12 as shown

in Fig. 2. ẑT 2 and ẑ ADC then, respectively, pass through
three pre-activation residual convolutional blocks with no
weight sharing (Fig. 2). Next, the output of the pre-activation
convolutional blocks is divided intom tokens similar to quan-
tisation where m = x × y × z to produce z̃T 2 and z̃ ADC . A
T2 and ADC class token is concatenated to z̃T 2 and z̃ ADC ,
respectively, which are then consumed by the T2 and ADC
transformer, respectively. Positional encodings (PE) as per-
formed by [3] are applied to each of tokens. The transformer
layer is the same transformer architecture as the vision trans-
former [3]. However, hereafter each transformer layer we
apply a cross-attention layer for the transfer of semantic infor-
mation between the T2 and ADC transformers.

The cross-attentionmechanism [21]we use after the trans-
former blocks formulti-scale fusion is demonstrated inFig. 2.
Here we propose to first take the output class token from the
T2 transformer which we expect to contain all the salient
information representative of the T2 image and concatenate
with the tokens outputted from the ADC transformer exclud-
ing the ADC class token. We apply a linear projection of the
T2 class token to form a single query. The keys and values
are formed by linear projections of the ADC tokens before
passing the query, keys and values throughmulti-headed self-
attention. The process is repeated for the transfer of salient

information contained in the ADC class token to the T2
tokens.

Alternate layers of transformer and cross-attention lay-
ers are repeated 8 times which allows to distill increasingly
abstract knowledge between the tokens of the T2 and ADC
transformer. Finally, the class tokens from the T2 and
ADC transformers are concatenated before passing through
a multi-layer perceptron (MLP) for class prediction high-
lighted in Fig. 2.

Weonly optimise theweights in the pre-activation residual
convolutional blocks, transformer layers and cross-attention
layers while the rest of the network is frozen in stage 2 of our
framework.Weuse the cross-entropy loss functionwith equal
weighting for each class to optimise the trainable weights in
stage 2 of our model.

Dataset preparation

Pre-processing and augmentation

AllMRI images and their corresponding segmentationswere,
respectively, re-sampled with cubic B-spline interpolation
and nearest-neighbour, respectively, to a resolution of 0.5
mm ×0.5 mm ×1.5 mm to match the anisotropic resolution
of the images.

A patch of size of 128 × 128 × 8 centred on the lesion is
cropped.Wenormalise all images by re-scaling the intensities
between 0 and 1.

We carry out various spatial transformations to augment
the training dataset. This includes vertical or horizontal flip-
ping followed by random rotations between −90 and 90
degrees.

Dataset

We create two different source domains with an internal
dataset created in-house and an external dataset. The external
dataset is made up of T2-weighted axial, diffusion weighted
imaging (b-800), ADC maps and K-trans image from the
ProstateX challenge which were acquired on a 3 Tesla scan-
ner from a single sites [22]. This dataset consists of 330
pre-selected lesions with Gleason score labels. The dataset
is highly imbalanced with only 23 per cent of lesions classed
as clinically significant (Gleason grade group (GGG) 2 and
above).

The internal dataset consists of T2-weighted axial and
ADC maps which were acquired on either a 1.5 or 3 Tesla
scanners. This dataset is made up of patients all of whom
have received radical prostatectomy. We use the histology as
ground truth. This dataset consists of 154 lesions from 100
patients. In this dataset, 120 lesion are acquired on a 3 T scan-
ner and 34 lesions are acquired on a 1.5 T scanner. We divide
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Table 1 1.5 T and 3 T splits
showing the number of scans
from the internal and external
dataset for each risk group

Internal data
1.5 T 3 T
Low risk Medium risk High risk Low risk Medium risk High risk

40 40 40 0 14 20

External data

1.5 T 3 T

Low risk Medium risk High risk Low risk Medium risk High risk

0 0 0 40 26 20

Table 2 T2- and diffusion-weighted image acquisition parameters for the 1.5 T and 3 T datasets

1.5 T
T2 ADC
Slice thickness Axial resolution Sequence Slice thickness Axial resolution Sequence

3–4mm 0.325–0.625 mm Turbo SE 3.6–4mm 2–2.5 mm Single-shot EP

3 T

T2 ADC

Slice thickness Axial resolution Sequence Slice thickness Axial resolution Sequence

3–3.6 mm 0.325–0.5 mm Turbo SE 3.6–4mm 2–2.5 mm Single-shot EP

ADC maps in both datasets are calculated with b-values; 50, 400 and 800

our internal and external dataset into three risk groups based
on theGleason score: low risk—GGG1,medium risk—GGG
2-3, and high risk—GGG 4-5.

We use our internal and external dataset to extract 40
lesions for each risk group which were acquired on a 1.5
T and 3 T scanner. In the table below, we show 40 lesions
acquired from a 1.5 T for each risk group all of which are
from the internal dataset. The 3 T dataset shown in Table
1 is acquired from a mixture of our internal and external
dataset due to 23% of lesions being clinically significant in
the external dataset.

We also show the acquisition parameters for the 1.5 T and
3 T dataset in Table 2. Note also the mild distribution shift
in the axial resolution and slice thickness in the T2-weighted
images from the 1.5 T to 3 T scanner.

Experimental setup

Model

We use an hybrid 2D/3D VQ-VAE in order to handle the
anisotropic nature of prostate MRI images. In every layer
of the encoder and decoder, we use pre-activation convolu-
tional blocks consisting of leaky ReLU activation and group
normalisation (2 groups). Our VQ-VAE consists of 5 levels
with the architecture shown in Table 3. Ablation experi-
ments revealed that a minimum of 128 codebook vectors are
required to minimise reconstruction error below 0.001 with a

mean square error loss. We therefore only use 128 codebook
vectors in the codebook dictionary for all experiments

The transformer is the same architecture as the vision
transformer [3] consisting of 8 layers and 8 heads in MHSA.
The MLP in our transformers model has an input of 1× 256
with an expansion ratio of 2. We also use 8 heads in cross-
attention.

Single-domain generalisation experiment

In this set of experiments, we compare our method to the 3D
ResNet-50, vision transformer and hybrid vision transformer
aided with domain generalisation methods under an acqui-
sition shift. We choose methods which focus on aggressive
data augmentation, adversarial learning and self-supervised
learning to build more robust representations. Specifically,
the SDG methods used are BigAug [6], ProstAdv [23] and
Jigen [24]. ProstAdv is an adversarial technique which uses
the decoupling direction and norm (DDN)method [25].DDN
produces gradient-oriented adversarial examples that pro-
voke mis-classification with minimal L2 norm variations by
decoupling the direction and adding adversarial perturba-
tion to the image. The self-supervised method Jigen [24] is
applied to the training set and used to initialise the weights
of the classification model. The hybrid vision transformer
consists of a modified ResNet-26 followed by a vision trans-
former made up of 12 layers and 8 heads.
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Table 3 VQ-VAE architecture

Encoder Decoder
Layer Convolutions Downsample Output (c × x × y × z) Convolutions Upsample Output (c × x × y × z)

Conv Block 1

[
3 × 3 × 1, 32
3 × 3 × 1, 32

]
×2 2D Max-Pooling 32 × 64 × 64 × 12

[
3 × 3 × 3, 32
3 × 3 × 3, 256

]
×2 Bi-linear 256 × 32 × 32 × 12

Conv Block 2

[
3 × 3 × 1, 64
3 × 3 × 1, 64

]
×2 2D Max-Pooling 64 × 32 × 32 × 12

[
3 × 3 × 1, 128
3 × 3 × 1, 128

]
×2 Bi-linear 64 × 64 × 64 × 12

Conv Block 3

[
3 × 3 × 1, 128
3 × 3 × 1, 128

]
×2 2D Max-Pooling 128 × 16 × 16 × 12

[
3 × 3 × 1, 64
3 × 3 × 1, 64

]
×2 Bi-linear 32 × 256 × 256 × 12

Conv Block 4

[
3 × 3 × 3, 256
3 × 3 × 3, 256

]
×2 None 128 × 16 × 16 × 12

[
3 × 3 × 1, 32
3 × 3 × 1, 1

]
×2 None 1 × 256 × 256 × 12

Perturbation experiments

In the perturbation experiments, we want to remove acqui-
sition shift from training to test in order to assess for only
the perturbation effect on classification performance. There-
fore, training and testing are all performed on a 3 T scanner.
Here, we divided 3 T dataset defined in Tables 1 and 2 such
that there are 30 lesions in each risk group in the training set
and 10 lesions in each risk group in the test set. We com-
pare our method to the ResNet-50, vision transformer and
hybrid vision transformer under various types of perturba-
tions applied to the test set.

We adjust noise levels between 1 and 30 % (1, 5, 10, 15,
20, 25, 30 %) for Gaussian, Poisson and Salt and Pepper
(S&P) noise. Gaussian blur is incorporated with a Gaussian
kernel which has a window size of 7×7 and variance ranging
from 0.1 to 2.0 (0.1, 1.0, 2.0). Randommotion blur is applied
by using the TorchIO deep learning library [26].

Training and evaluation

The weights of the ResNet-50 are initialised with Kaiming
initialisation and trained for 100 epochs using Adam opti-
misation (weight decay = 0.01) with a base learning rate
of 0.001 [27]. We train the vision transformer and hybrid
transformer model from scratch using AdamW optimisation
(weight decay = 0.05) with a cosine annealing learning rate
scheduler (learning rate = 0.001) for 200 epochs with 10
warm-up epochs.

The convolutional weights in the VQ-VAE are initialised
with Kaiming initialisation. The VQ-VAE is trained for 200
epochs using Adam optimisation (weight decay = 0.01)
with a base learning rate of 0.0005 [27]. The transformer-
based model in stage 2 is trained using AdamW optimisation
(weight decay = 0.05) with a cosine annealing learning rate
scheduler (learning rate = 0.0001) for 200 epochs with 20
warm-up epochs.We initialiseweights in stage 2 of themodel
with truncated normal initialisation.

Results are evaluated with the accuracy, specificity, preci-
sion, recall and AUC. We calculate the specificity, precision,
recall and AUC for each class in this 3 class classification
problem as a binary classification problem such that we cal-
culate the scores for the group of interest against the other
two groups combined. We finally calculate the relative cor-
ruption error in the perturbation experiments which is the
average change in the AUC performance across all perturba-
tions of our model relative to the models we compare to.

Results

Single-domain generalisation

In this set of experiments, we compare ourmethod to BigAug
[6], AdvProst [23] and Jigen [24] used to improve the domain
generalisability of 3 different deep learning models under an
acquisition shift.

The results in Table 4 demonstrate that under an acqui-
sition shift our approach outperforms all 3 of the different
domain generalisation methods (augmentation, adversarial
and self-supervised methods) applied to a convolutional
architecture (ResNet-50), a hybrid convolutional/transformer
model (Hybrid 3D vision transformer) and a transformer
only model (3D vision transformer) for all evaluation met-
rics. For example, the AUC score for our method is 0.739
compared to the AUC score of 0.731 obtained by an aggres-
sive augmentation-basedmethod applied to our hybridmodel
which was the second-best method. Among the domain gen-
eralisationmethodswe compared to, the augmentation-based
method (BigAug) obtained the highest AUC score followed
by the adversarial method (AdvProst) and then the self-
supervised technique (Jigen). Furthermore, among different
architectures we compared to, the hybrid architectures over-
all outperform the ResNet-50 and vision transformer under
different SDG methods. For example, under the aggressive
augmentation scheme of BigAug, the hybrid vision trans-
former outperforms the ResNet-50 and vision transformer
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Table 4 Comparison of 3 different model architectures with 3 different SDGmethods with our discrete representation approach (Ours).We evaluate
performance with 5 evaluation metrics ± standard deviation

Discrete representations
Accuracy Specificity Precision Recall AUC

Ours 0.731 ± 0.028 0.720 ± 0.028 0.727 ± 0.046 0.736 ± 0.049 0.739 ± 0.041

BigAug [6]

ResNet-50 0.720 ± 0.073 0.701 ± 0.078 0.719 ± 0.055 0.724 ± 0.047 0.724 ± 0.053

Hybrid vision transformer 0.726 ± 0.059 0.726 ± 0.033 0.720 ± 0.059 0.730 ± 0.047 0.731 ± 0.060

3D Vision transformer 0.646 ± 0.083 0.663 ± 0.092 0.622 ± 0.082 0.648 ± 0.090 0.641 ± 0.087

ProstAdv [23]

ResNet-50 0.717 ± 0.066 0.708 ± 0.069 0.721 ± 0.068 0.729 ± 0.070 0.730 ± 0.057

Hybrid vision transformer 0.722 ± 0.049 0.711 ± 0.045 0.726 ± 0.061 0.729 ± 0.047 0.729 ± 0.062

Vision transformer 0.620 ± 0.064 0.631 ± 0.087 0.618 ± 0.077 0.633 ± 0.083 0.625 ± 0.082

Jigen [24]

ResNet-50 0.690 ± 0.052 0.678 ± 0.073 0.691 ± 0.088 0.696 ± 0.070 0.699 ± 0.062

Hybrid vision transformer 0.701 ± 0.079 0.683 ± 0.099 0.702 ± 0.089 0.695 ± 0.082 0.704 ± 0.079

Vision transformer 0.600 ± 0.103 0.595 ± 0.117 0.606 ± 0.092 0.610 ± 0.096 0.608 ± 0.094

Bold indicates the highest score for metric measured
We show the results averaged for the 1.5 T to 3 T and 3 T to 1.5 T domain shift experiments. The metrics were averaged across the three classes

Fig. 3 Bar chart comparing AUC performance of 3 domain generali-
sation applied 3 different models compared to our model without any
domain generalisation method applied

by 0.007 and 0.09 AUC points, respectively.We further sum-
marise themeanAUC scores and standard deviation obtained
by different methods in a bar chart shown in Fig. 3.

Perturbation experiments

The results in Table 5 demonstrate that by using our
method, the AUC score diminishes far less under various tex-
tural and spatial perturbations compared to the other models.
This is true for all risk groups as highlighted in bold in Table
5. For example, the AUC score for our approach only dimin-
ishes by only 1.2 points on average across all risk groups
under Gaussian noise averaged across all noise. This is com-
pared to theAUCdecreasing by 5.0, 4.8 and 4.5 points for the
ResNet-50, hybrid vision transformer and vision transformer,
respectively, under Gaussian noise. This shows how discrete
representations as input into a transformer architecture can
significantly improve the robustness to textural perturbations.
In this example, it appears that the attention-based methods
in the form of the vision transformer and hybrid method
are more robust to noise compared to the convolutional-
only architecture. In regard to the spatial perturbations, our
approach only diminishes by 3.8 points on average across
all risk groups under motion artefact compared to by 5.2,
7.7 and 6.0 points for the ResNet-50, hybrid vision trans-
former and vision transformer, respectively. Here, we notice
the opposite trend compared to the noise-based perturba-
tions where the convolutional architectures outperform the
vision transformer and hybridmethod under spatial perturba-
tions. The improved robustness under spatial perturbations of
CNNs compared to the transformer-based architecture might
well arise from the loss of positional information which
is key to the transformer architecture. It has been shown
thatMHSA demonstrates exceptional robustness specifically
against high-frequency noise [28, 29] compared to convo-
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Table 5 Mean AUC ± standard deviation for each risk group comparing 4 models types to our model under various perturbations in the input
space. The baseline refers to no perturbations applied

Baseline Gauss Poisson S&P Blur Motion
Low-risk group

ResNet-50 0.718 ± 0.074 0.665 ± 0.101 0.689 ± 0.092 0.680 ± 0.076 0.698 ± 0.086 0.664 ± 0.113

Hybrid vision transformer 0.750 ± 0.046 0.708 ± 0.090 0.708 ± 0.083 0.698 ± 0.090 0.714 ± 0.084 0.685 ± 0.097

Vision transformer 0.666 ± 0.086 0.616 ± 0.068 0.632 ± 0.064 0.616 ± 0.090 0.630 ± 0.074 0.624 ± 0.074

Ours 0.777 ± 0.068 0.764 ± 0.061 0.758 ± 0.083 0.754 ± 0.052 0.770 ± 0.071 0.740 ± 0.084

Medium risk group

ResNet-50 0.732 ± 0.084 0.680 ± 0.114 0.694 ± 0.113 0.696 ± 0.083 0.699 ± 0.090 0.681 ± 0.113

Hybrid vision transformer 0.773 ± 0.054 0.724 ± 0.090 0.706 ± 0.114 0.710 ± 0.084 0.727 ± 0.098 0.695 ± 0.104

Vision transformer 0.670 ± 0.083 0.620 ± 0.075 0.636 ± 0.054 0.621 ± 0.078 0.641 ± 0.065 0.609 ± 0.079

Ours 0.781 ± 0.075 0.770 ± 0.061 0.761 ± 0.084 0.759 ± 0.054 0.768 ± 0.074 0.742 ± 0.085

High risk group

ResNet-50 0.740 ± 0.090 0.694 ± 0.118 0.704 ± 0.114 0.708 ± 0.080 0.710 ± 0.093 0.688 ± 0.124

Hybrid vision transformer 0.781 ± 0.068 0.729 ± 0.094 0.721 ± 0.118 0.728 ± 0.093 0.741 ± 0.134 0.694 ± 0.116

Vision transformer 0.671 ± 0.093 0.636 ± 0.071 0.633 ± 0.051 0.628 ± 0.081 0.646 ± 0.064 0.609 ± 0.083

Ours 0.785 ± 0.071 0.770 ± 0.069 0.762 ± 0.081 0.759 ± 0.054 0.775 ± 0.077 0.747 ± 0.084

Bold indicates the highest AUC score under each perturbation
The results shown are averaged across all perturbation parameters, i.e. overall noise levels for Gaussian, Poisson and Salt and Pepper (S&P) noise

Table 6 Relative corruption
error (%) based on AUC of our
model relative to the 3 other
models

Low risk Medium risk High risk

ResNet-50 51.0 50.0 57.1

Hybrid vision transformer 41.8 34.6 38.3

Vision transformer 46.7 47.1 55.1

lutions which might explain the hybrid network and vision
transformer outperforming the ResNet-50 under noise-based
perturbations. This is because MHSA and convolutions dis-
play contrasting characteristics. MHSA aggregates feature
maps by ensembling, whereas convolutions differentiate
them [29]. Furthermore, a Fourier analysis of the feature
maps reveals that MHSA suppresses high-frequency signals,
while convolutions amplify high-frequency elements [29].
This means that the MHSA function acts as low-pass filter,
while convolutions serve as high-pass filters. Additionally,
this makes convolutions susceptible to high-frequency noise,
while MHSA remains unaffected [29].

Finally, in Table 6, we show that the relative corruption
error in terms of the AUC of our model relative to the 3
other models in Table 5 is significantly less than 1 for all 3
risks groups. This shows our model demonstrates superior
robustness performance averaged across all types of input
perturbations compared to the 3 model architectures in Table
6. For example, we show the relative corruption error of the
ResNet-50 relative to our method is 51.0, 50.0 and 57.1 for
the low-,medium- andhigh-risk groups, respectively.Among
different architectures, it appears the ResNet-50 is the most
robust compared to the vision transformer and hybrid archi-
tecture. This shows that the convolutional-based architecture
is more robust than the attention-based methods when aver-

aged across all different perturbations. The overall improved
performance of the Resnet-50 arises from its superior robust-
ness to spatial perturbations.

Conclusion

In conclusion, we show thatwe can improve the robustness of
the vision transformer under an acquisition shift from 1.5 T
to 3 T and vice versa using a discrete input obtained from the
vector-quantised high abstraction CNN features in the latent
space of a CNN auto-encoder. We apply our method in the
task of prostate disease classification and outperform various
CNN-, transformer- and hybrid- based models achieving an
AUC score of 0.739. We also show that our approach outper-
forms augmentation-based, adversarial and self-supervised
methods in termsof all the evaluationmetrics used.Wefinally
show how our method is robust under various spatial and
texture-based perturbations achieving a relative corruption
error in terms of the AUC significantly less than 1 compared
to various deep learning architectures.
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