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Abstract
Purpose Ultrasound (US) imaging, while advantageous for its radiation-free nature, is challenging to interpret due to only
partially visible organs and a lack of complete 3D information.While performingUS-based diagnosis or investigation,medical
professionals therefore create a mental map of the 3D anatomy. In this work, we aim to replicate this process and enhance the
visual representation of anatomical structures.
Methods We introduce a point cloud-based probabilistic deep learning (DL) method to complete occluded anatomical
structures through 3D shape completion and choose US-based spine examinations as our application. To enable training,
we generate synthetic 3D representations of partially occluded spinal views by mimicking US physics and accounting for
inherent artifacts.
Results The proposed model performs consistently on synthetic and patient data, with mean and median differences of
2.02 and 0.03 in Chamfer Distance (CD), respectively. Our ablation study demonstrates the importance of US physics-based
data generation, reflected in the large mean and median difference of 11.8 CD and 9.55 CD, respectively. Additionally, we
demonstrate that anatomical landmarks, such as the spinous process (with reconstruction CD of 4.73) and the facet joints
(mean distance to ground truth (GT) of 4.96 mm), are preserved in the 3D completion.
Conclusion Our work establishes the feasibility of 3D shape completion for lumbar vertebrae, ensuring the preservation of
level-wise characteristics and successful generalization from synthetic to real data. The incorporation ofUSphysics contributes
to more accurate patient data completions. Notably, our method preserves essential anatomical landmarks and reconstructs
crucial injections sites at their correct locations.
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Introduction

US imaging provides a noninvasive, radiation-free, and low-
costway to observe internal structures andorgans in real time.
While valuable, this modality has its own limitations such as
reduced field of view, user dependence, and the presence of
artifacts.

Due to the underlying physical properties of US imaging,
highly reflective structures such as bones introduce shadows
occluding tissue below them. In contrast, imaging techniques
like CT and MRI provide comprehensive representations of
anatomical structures without angle dependence and signif-
icantly fewer occlusion artifacts. Consequently, interpreting
US images can be notably more challenging [1].

When using US in a conventional fashion to extract
anatomical information needed for diagnosis or intervention,
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medical professionalsmust rely on their expertise tomentally
reconstruct the 3D shape of the organ or structure from par-
tial US views. This not only adds to the time and effort of the
diagnostic process but also presents a learning challenge for
young professionals. Our objective is to assist in this process
by enhancing theultrasoundviewwith the complete 3Dshape
and facilitating a rapid and more intuitive understanding of
the anatomy.We employ 3D shape completion techniques [2]
to deduce the complete contour of organs based on the par-
tially visible anatomy in an US sweep, ensuring that salient
structural details are preserved. In this manner, not only do
we assist professionals, but we also translate this intricate
cognitive task into a format machines can process.

Various deep learning (DL) techniques have been pro-
posed for 3D shape completion. These methods use a
combination of local and global features with diverse rep-
resentations. The early methods, like Point Completion
Network (PCN) [3] and TopNet [4], employ folding oper-
ations, offering a rough reconstruction of the shape modeled
as a point cloud (PC). Later, DeepSDF [5] proposed to lever-
age continuous signed distance fields to learn about shape
categories and improve quality. PoinTr [6] then introduced a
technique to predict only the missing region and concatenate
the inputs and outputs of the model to produce the final com-
pletion. In one of the newer methods, Variational Relational
CompletionNetwork (VRCNet) [7], a probabilistic approach
is adopted. Here, a shape prior distribution is learned across
various object classes. Following this learning, the shape
completion is derived using Maximum a Posteriori (MAP)
estimation, where the input partial PC serves as the observed
data.

This state-of-the-art shows that training DL methods for
shape completion requires substantial datasets to achieve
optimal results. In the computer vision realm, where all
the cited work originates, CAD models of objects are often
employed to produce realistic occlusions, thereby creating
extensive training datasets. Extending this paradigm to the
medical domain, our objective is to generate CAD-inspired
representations of partial views in US by simulating physics-
based occlusions. Generating synthetic data in this manner
holds particular promise in medical areas where US is lim-
ited in clinical settings, where patient data is scarce or hard
to get.

One such area is the examination and intervention on the
spine, which is extensively explored in research but has yet to
be fully established in clinical practice using US [8] despite
its high potential to reduce radiation exposure to patients and
medical personnel. The challenge with spine US scans lies in
their limited visibility; only the posterior surface of the spine
can be imaged. These scans are primarily affected by acoustic
shadowing, preventing the US beam from reaching deeper
vertebral structures below the spine surface. This limitation

complicates the operator’s comprehension of the entire spine
anatomy.

Shape completion of the partially visible vertebra can help
in overcoming this limitation. Inspired by VRCNet, we pro-
pose to use a point cloud-based probabilistic method that
takes advantage of preexisting 3D imaging, such as computer
tomography (CT), which offers comprehensive 3D shape
details, to understand shape priors. The proposed method
learns fine 3D PC geometries of vertebrae and predicts con-
sistent and detailed PCs for the occluded regions.

For the training of our model, we introduce a unique, fully
automated pipeline for generating synthetic data. We gener-
ate physics-based synthetic data that mimics US character-
istics, bridging and facilitating the application of multiple
shape completion techniques in medical contexts, otherwise
unfeasible due to lack of access to paired US/CT data. When
integrated with the proposed 3D PC reconstruction network,
our pipeline enables the completion of vertebrae shapes from
3D US data. Through shape completion we introduce a new
perspective to tackle US data interpretability, and to the best
of our knowledge propose a first work in the direction of
3D anatomical shape completion from ultrasound scans. In
summary, the contributions are threefold:

1. We develop a synthetic data generation pipeline that pro-
duces realistic, US-consistent partial views of lumbar
vertebrae.

2. We introduce a 3D shape completion pipeline for lumbar
vertebrae.

3. We evaluate our method’s shape completion capabilities
on synthetic and CT-US patient data, and report standard
computer vision metrics as well as anatomy-based ones.

Materials andmethods

Synthetic data generation

In a common computer vision pipeline, training data for
shape completion is created by generating realistic occlu-
sions of objects using CAD models, e.g., by ray-casting
from different camera positions around the object. Much like
this approach, our synthetic data generation pipeline utilizes
high-resolution abdominal CT scans with vertebral masks to
generate partial PCs resembling vertebrae visibility in US.

Three main milestones need to be achieved to generate a
large amount of realistic, US-consistent partial views of the
vertebrae only using an abdominal CT scan. First, we need
to account for the multitude of possible patient positioning
during the US acquisition. Second, we need to generate par-
tial views of the spine that adhere to spine US acquisition
techniques and their field of view and faithfully replicate
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the effects of US-characteristic artifacts such as acoustic
shadowing or scattering. Lastly, our method must account
for potential inaccuracies stemming from the error-prone,
challenging task of vertebrae classification and annotation in
US. Figure1 displays the complete data generation pipeline
described in detail in the following. For an algorithmic
overview, please refer to the online supplementary material.

Accounting for multiple spine curvatures

Patient positions during ultrasound screening vary depend-
ing on the target anatomy and spine region. While sitting is
typical for visualizing the interlaminar space, the prone posi-
tion aids lumbar facet joint access. To encompass this range
of spine curvatures, we enhance the spine meshes fromCT to
produce varied realistic curvatures for training. This provides
the network with diverse vertebrae poses during training,
increasing the robustness of the shape completion model.
When adjusting the spine’s curvature, it is vital to consider
the spine’s physical constraints. A step-by-step algorithm of
how we achieve multiple spine curvatures through realistic
spine model deformations can be found in the online sup-
plementary material. This algorithm follows the approach
proposed by Azampour et al. [1]

Generation of US-consistent partial views of the spine

Spine US scans, whether transverse or paramedian, typically
display only the vertebral arch’s surface. Figure2 showcases
partial vertebrae in US, displaying vertebrae L1, L2, and L3
of a lumbar phantom. Structures like the spinous process,
the laminae, the articular processes, and the transverse pro-
cesses are only partially visible. Parts of these structures are
rendered invisible due to a large angle of incidence between
the direction of theUSwave and the respective tissue. In other
cases, they are occluded by the surrounding structures due to
the effect of acoustic shadowing. Notably, the vertebral body
is frequently fully shadowed.

Beyond acoustic shadowing, US exhibits scattering, caus-
ing minor displacements in the way some tissue appear on
the image. This artifact amplifies noise and occlusions in an
US vertebral view. In what follows, we will showcase how
our technique produces partial spine views consistent with
these US-specific characteristics.

Angle of incidence-aware ray-casting
US visibility hinges on the interaction and reflection of

ultrasound waves with internal body structures. A pivotal
factor is the angle of incidence—the angle at which the US
wave hits the tissue. When this angle is below 90◦, the US
beam reflects, capturing and displaying the signal. Yet, at
angles over 90◦, especially when tissue boundaries align
with the beam, the signal goes undetected, omitting the tissue

interface from the display. For authentic, US-consistent PCs,
accounting for this phenomenon is vital.

We simulate the transversal US acquisition on spine
meshes to produce partial views. Addressing the angle of
incidence, we employ a technique that is cognizant of it. We
strategically position the virtual rendering camera over each
spinous process, casting rays to identify visible points. In
this process, we compute the angle between each ray and the
tissue plane and omit points with incidence angles of ≥ 90◦.
The impact of this technique is more significant degrees of
occlusion, thereby enhancing the resemblance of the result-
ing PC to a US view.

Account for ultrasound scattering
To emulateUS scattering—an effect whereUS beams reg-

ister off-plane echoes,we simulate off-plane signals by subtly
shifting the spine perpendicularly to the incident ray direc-
tion and ray-casting it alongside the originally positioned
spine. From this mesh, we then retain points unobstructed
by the shift. The resultant PC exhibits more shadows, thus
mirroring an ultrasound view of the spine.

Masking spine into separate vertebrae views

Our data generation pipeline concludes with dividing the
spine into individual vertebra views, resulting in five ver-
tebral PCs serving as partial network inputs. Segmenting
spinal ultrasound into distinct vertebrae levels is challeng-
ing and prone to errors. To the best of our knowledge, no
method can accurately differentiate between vertebrae levels
in ultrasound images. Hence, our approach aims for realistic
completions without relying on this specific information. To
increase our method’s robustness, we augment our data by
performing neighboring cloud fusion. This process merges
the PCs from one vertebra with points from directly adjacent
vertebrae.

Vertebrae shape completion

For the completion of vertebrae shapes, we employ a proba-
bilistic approach based on VRCNet [7].

The shape completion pipeline consists of two networks
that follow the variational autoencoder architecture. They are
trained end to end using a composite loss function that incor-
porates two distinct components: the Kullback–Leibler (KL)
divergence loss and the Chamfer Loss (CL) as reconstruc-
tion loss. The two networks are (1) Probabilistic Modeling
Network (PMNet) and (2) Relational Enhancement Network
(RENet) (for details see online supplementary material).

PMNet employs probabilistic modeling to yield initial
coarse completions by decoding global features. During
training, it grasps the prior distribution of vertebrae shapes,
capturing essential details about shape, size, and symmetry.
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Fig. 1 Overview of the training pipeline of our proposed method. First data generation is performed, followed by shape completion and post-
processing

Fig. 2 US scan of L1, L2, and
L3 vertebrae levels of a spine
phantom. These images
exemplify the partial view of the
vertebral arch as well as
US-specific artifacts. We can see
the effects of acoustic
shadowing in the partially
visible spinous process,
highlighted with a bounding box
on the left image

At inference, themodel refines the shape using observed data
and the posterior distribution, allowing for patient-tailored
completions that respect both general anatomical priors and
unique characteristics of the individual’s spine.

RENet operates on both the partial and coarse-complete
PCs produced by PMNet. Using an encoder–decoder design
enhanced with self-attention modules, it can aggregate point
features across various scales. This is crucial for detailed ver-
tebral completions, preserving input nuances from the partial
cloudwhile recovering specific occluded anatomical features
of individual anatomies.

The proposed method generates the completed shape as a
PC. To better visualize the results, we apply a step of post-
processing and generate a vertebral mesh based on Poisson
Surface Reconstruction.

Datasets description

Large-scale vertebrae segmentation challenge dataset
2020 [9–11] One dataset utilized in our study, referred to
as the VerSe20, comprises abdominal CT scans that con-
tain detailed annotations and classifications of vertebrae.
Specifically, VerSe20 includes 125 lumbar vertebrae, evenly

distributed across different levels, with 25 vertebrae per level.
For our work, VerSe20 serves as the foundational dataset of
our synthetic data generation pipeline.
Paired US/CT patient data The patient data comprises a
total of two paired US/CT scans [12]. The ultrasound sweeps
were obtained while the patient was in a sitting position,
which is the standard pose for epidural injections. Through
this data we assess the applicability of our method for this
procedure. To input this data into the shape completion net-
work, we first perform a manual annotation of the bone in
ultrasound, followed by a rough separation of the vertebrae.
To generate the ground truth (GT) complete vertebral shape,
we apply the automatic spine segmentationmethod proposed
by Payer et al. [13], and obtain vertebra-wise segmentations.
Phantom dataset To evaluate the shape and pose preserva-
tion of landmarks visible in the initial US, we use a lumbar
spine phantom. This phantom consists of all five lumbar ver-
tebrae as well as the intervertebral disks and the sacrum.

Shape completionmetrics

General metrics In our evaluation process, we utilized three
key metrics: CD, Earth Mover’s Distance (EMD), and F1-

123



International Journal of Computer Assisted Radiology and Surgery

score (F1). The CD, widely employed in the computer vision
community, calculates the point-to-point distance between
two PCs: one representing the completed shape and the other
the ground truth shape. To enhance interpretability, we scaled
our CD values by a factor of 104 following the approach
of VRCNet. EMD measures the dissimilarity between two
shapes by quantifying theminimumamount ofwork required
to transform one shape into the other. Lastly, to address the
impact of outliers, we incorporated an adapted version of the
F1-score, as proposed by Knapitsch et al. [14]. This metric
represents the harmonic mean of precision and recall, and
serves as an additional measure of our methodology’s per-
formance.
Anatomy-specific metrics Moving away from the general
metrics, we introduce two anatomy-specific metrics. The
spinous process is typically visible in ultrasound scans, mak-
ing it a key reference point for our shape completion network.
We aim to maintain its integrity and make sure it is placed
at the appropriate location. To assess this, we calculate the
Spinous Process Chamfer Distance (SP-CD) metric. This
metric involves comparing two point sets generated by man-
ually annotating the centerline of the spinous process surface
in both the input and the completion. This measurement
allowsus to evaluate thefidelity of the spinous process preser-
vation and placement in the completed shape.

Another anatomical landmark is the facet joint,which con-
nects neighboring vertebrae. To ensure that the facet joints
are preserved in the 3D completion at the correct position,
we measure the distance between the facet joint’s center in
the reconstruction and its correct location from the CT-based
ground truth.

Experiments

Our study begins with an evaluation of our proposed method
and comparison of two shape completion approaches: the
network described in 2.2 and the approach proposed by the
PCNwork [3]. This exemplifies the capability of our pipeline
to integrate any, and therefore the most suitable point cloud-
based shape completion approach for the task at hand. Next,
we conduct an experiment dedicated to verifying how well
the visible anatomical landmarks in US are preserved in the
completion. Lastly, we conduct two ablation studies, which
aim to investigate the impact of the two US-related steps in
the data generation pipeline, i.e., the US physics and the
neighboring cloud fusion, on the accuracy of our results.
To evaluate the suitability of each model for shape comple-
tion in patient ultrasound images, we also evaluate using the
paired US/CT patient dataset, the details of which are out-
lined in Sect. 2.3. Our analysis includes both quantitative and
qualitative results for a comprehensive understanding of the
outcomes.

Experimental setup of our method

We split the VerSe20 dataset subjects based into 60%–
20%–20% for training, validation, and testing. For each
experiment, we train for 100 epochs. The optimization uses
the Adam optimizer with a learning rate set at 0.0001. For
training, a batch size of 8 is utilized, whereas during test-
ing, a batch size of 2 is employed. The training procedures
are executed on an NVIDIA GeForce RTX 2080 GPU. The
training durations for the proposed methodology and the two
ablation studies are roughly 15h, 5h, 15h, respectively. Dur-
ing the inference stage, the shape completion process for a
batch comprising two vertebrae, on average, takes 0.22 s.

Anatomical landmarks preservation

In evaluating our method, we place special emphasis on the
vertebral arch, given its partial visibility in US. We want to
ensure that the shape and pose of the anatomical landmarks in
the vertebral arch such as the spinous process and the lateral
process are preserved. To evaluate if these landmarks are pre-
served, we compute the anatomy-specific metrics (Sect. 2.4)
on our phantom dataset. We choose the phantom instead of
the patient data for this experiment, since it facilitates the
correct identification of the landmarks’ pose.

Ablation study

In our ablation study, we systematically explore the impact
of individual steps in synthetic data generation on accurate
patient shape completion.

Synthetic data without considering US physics This
experiment assesses the significance of incorporating US
physics [15] into synthetic data generation. For this experi-
ment, we do not consider US-specific acquisition modalities
nor US-artifacts while generating the data. This translates to
a simplified ray-casting process, omitting considerations of
angle of incidence and completely bypassing the scattering
step.

Synthetic data without performing neighboring cloud
fusion This experiment explores the network’s performance
on inaccurately separated vertebrae from patient data when
trained solely on point clouds on which neighboring cloud
fusion augmentation has not been performed. These point
clouds therefore contain only points relevant to the specific
vertebra without including points from neighboring struc-
tures. To achieve this, we omit the masking step in the data
generation pipeline and, based on the CT annotations, gen-
erate vertebrae PCs that are meticulously separated from
neighboring vertebrae.
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Results

Evaluation of proposedmethodology on synthetic
and patient data

The plots in Fig. 3 compare the performance of the model
trained on synthetic data both on the generated test set and
patient data. Generally, the results on patient data show a
larger variance and slightly lower accuracy. However, the
differences of our method in all three metrics are relatively
small, suggesting that our network can generalize from syn-
thetic to patient data.

Additionally, we compare to PCN[3], which, trained in
the same manner, achieves comparable or even increased
accuracy in the case of synthetic data. This demonstrates
the interchangeability of the shape completion approach in
our pipeline. However, unlike the proposed shape completion
network, the PCN is not able to generalize well to the patient
data. This, by comparison, demonstrates the suitability of our
chosen shape completion method for clinical applications.

Preservation of landmark pose

Spinous process Table 1 displays the dissimilarity between
spinous process centerlines in the completion and in the input
for each vertebral level. The accuracy only for this landmark
is higher than the one for the complete shape. These results
demonstrate the ability of the network to preserve the US-
visible landmarks in the completion and reconstruct them at
the correct position.
Facet joints The facet joint reconstruction accuracies mea-
sured as the distances between the center of the facet joint in
the completion and GT are displayed in Table 1. According
to [16], an accuracy error of 5mm is still acceptable for a suc-
cessful anesthetic effect for facet joint injections. From our
results, three out of four completed facet joint pairs would
enable accurate injection delivery, while one pair (between
L3 and L4) exceeds this threshold by at most 1.66mm.

Ablation studies

Figure 3 reports the quantitative results of the ablation studies
on the patient dataset. Parallely, Fig. 4 shows examples of the
qualitative results of our completions. Extensive qualitative
results can be found in the online supplementary material.
Results without US physics Considering the physics of US
during the generation of synthetic data improves the accuracy
of shape completion on patient data. As measured by the
CD, the accuracy of all completions increases. Specifically,
we observe a median difference of 6.79 in the CD metric,
indicating a noticeable improvement. This difference is also
reflected in the other two scores, however, with a smaller
median difference.

Qualitatively, omitting US physics simulation during
training data generation leads to completion with unwanted
points in the vertebral spinal canal, the area that houses the
spinal cord. Additionally, important landmarks such as trans-
verse processes and facets aremissing in certain completions,
for example, the transverse processes in Fig. 4. Furthermore,
the completed shapes of the ablated model resemble less the
GT shape, which can be particularly observed when looking
at the vertebral body.

Results without neighboring cloud fusion The proposed
method outperforms the ablation model, an aspect which is
reflected in all three metrics. The largest median difference
of 0.06 is observed for the EMD score.

In terms of qualitative assessments, the completions of the
ablation model are relatively sparse. This is reflected in the
low F1 values of this experiment. Moreover, the resulting
completions contain multiple points in the spinal canal.

Discussion and conclusion

In this work, we present a novel technique that addresses the
challenge of completing anatomical structures given partial
visibility in 3D US. Our method leverages synthetic data
that considers US physics and artifacts, ensuring consis-
tency with the partial display of anatomy in US. Moreover,
generating this data considers process-specific augmenta-
tions such as curvature deformations and neighboring cloud
fusion.We specifically apply our shape completion approach
to the realm of US-based spine investigation. In this context,
the proposed method completes the shapes of vertebrae. We
demonstrate the generalizability of the proposed method to
patient data, although trained only on synthetic data. This
successful generalization emphasizes that our data genera-
tion process is realistic and US-consistent.

First of its kind, our proposed approach is capable of
completing the shape of the vertebrae without prior patient-
specific information, given only the US scan. This is par-
ticularly relevant in situations where a diagnostic CT scan is
either unavailable or acquiring one is restricted due to factors
like radiation concerns, for example, in the case of epidural
injections.

The obtained results show promising outcomes, indicat-
ing the potential for further exploration in this area. Notably,
enhancements in accuracy could be achieved by incorporat-
ing additional parameters such as vertebral level or patient
BMI. These details could offer valuable contextual cues
for the method, aiding in a more precise estimation of the
vertebral shape. To advance toward highly accurate, patient-
specific outcomes, the introduced approach could be refined
during the testing phase by including the patient’s CT scan
data. This would provide precise information about the ver-
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Fig. 3 Performance comparison (in terms of Chamfer Distance (CD), Earth’s Mover’s Distance (EMD), and F1-score) of our full pipeline with two
different shape completion approaches (VRCNet (blue) and PCN (orange))on synthetic and patient data, as well as results of the ablation studies

Table 1 Facet joint
reconstruction accuracy
measured as the distance
between the center of the facet
joint in the completion and in
the ground truth

Vertebra Level SP-CD Left facet joints dist (mm) Right facet joint dist (mm)

L1 6.81 4.50 5.19

L2 2.00 2.64 4.87

L3 2.88 4.97 3.46

L4 6.09 6.45 7.66

L5 5.88 – –

Fig. 4 Patient data results
obtained with the full pipeline
comparing two shape
completion networks as well as
two ablation studies. Given our
partial PC input (red), we
compare the reconstruction
(blue) with the ground truth
(green) and report three metrics:
CD, EMD, and F1. We
visualized the input and each
completed shape PC from two
views along the frontal and
longitudinal axes

tebra shapes, improving the performance of the US-based
completion.

In clinical settings, highly accurate, patient-specific com-
pletions would enable integrating the method into the work-
flow of spine injection surgeries. An ultrasound-based navi-
gation system that displays the complete vertebral anatomy
can assist surgeons in needle placement. For instance, it could
help identify the level of the currently visualized vertebra in
ultrasound, a very challenging and error-prone task. How-

ever, the final injection site confirmation would still rely on
the original ultrasound. To optimize this guidance system,
it is important to explore suitable rendering techniques and
devise an adequate real-time component for use in the oper-
ating room.

One current limitation of ourwork is the fact that it focuses
on a single anatomy for shape completion. The ultrasound
scan, which includes information about surrounding tissues,
organs, and structures, is not fully utilized in the comple-
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tion process. Incorporating this information could enhance
the accuracy, providing cues about the size, pose, or even
abnormalities of the vertebral bodies, a structure not often
captured in an ultrasound scan. This concept could be grad-
ually extended to other regions of the spine, then to all types
of rigid anatomies. Subsequently, devising appropriate meth-
ods to model and handle even deformable anatomies would
be a relevant research direction.

The proposed method relies on certain reference struc-
tures, such as the spinous process, to be correctly segmented
in US. This makes our method prone to errors if these struc-
tures are absent in the input PC or wrongly segmented.
Furthermore, the scope of our study was limited by the size
of our dataset. While our research successfully demonstrated
a proof of concept, a more comprehensive evaluation of the
proposed method’s capabilities necessitates a larger dataset,
in particular paired US/CT patient data. A broader, large-
scale study would provide a more thorough understanding
of the method’s performance across diverse scenarios, such
as pathologies, different US acquisition protocols or quality,
and further validate its effectiveness.

In conclusion, the proposed method improves the inter-
pretation of US images by enhancing the visualization of
anatomical structures inUS scans.Mimicking how clinicians
envision 3D anatomy, it incorporates prior knowledge of the
shape of the target structures, and considers the physics ofUS
imaging. In clinical practice, this technology could facilitate
experts to rapidly and intuitively gain better understanding of
the anatomy without the need for additional imaging modal-
ities. As an exemplary application, our method completes
occluded vertebrae in US spine scans. We show that using
synthetic 3D spinal views that consider the nature and arti-
facts of US imaging for training yields a model that provides
consistent results on synthetic and clinical data. Notably, our
approachmaintains crucial anatomical landmarks in 3Dcom-
pletion, like the spinous process and the facet joints. Overall,
this work shows a high potential for detailed lumbar verte-
brae visualization and, ultimately, a path to explore toward
the replacement of X-ray imaging for spine diagnosis and
intervention.
Supplementary information An accompanying PDF file
containing additional figures, comprehensive result visu-
alizations, and detailed algorithm descriptions is available
online alongside our main article.
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