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Abstract

Purpose This work presents FASTRL, a benchmark set of instrument manipulation tasks adapted to the domain of rein-
forcement learning and used in simulated surgical training. This benchmark enables and supports the design and training of
human-centric reinforcement learning agents which assist and evaluate human trainees in surgical practice.

Methods Simulation tasks from the Fundamentals of Arthroscopic Surgery Training (FAST) program are adapted to the
reinforcement learning setting for the purpose of training virtual agents that are capable of providing assistance and scoring
to the surgical trainees. A skill performance assessment protocol is presented based on the trained virtual agents.

Results The proposed benchmark suite presents an API for training reinforcement learning agents in the context of arthro-
scopic skill training. The evaluation scheme based on both heuristic and learned reward functions robustly recovers the ground
truth ranking on a diverse test set of human trajectories.

Conclusion The presented benchmark enables the exploration of a novel reinforcement learning-based approach to skill
performance assessment and in-procedure assistance for simulated surgical training scenarios. The evaluation protocol based
on the learned reward model demonstrates potential for evaluating the performance of surgical trainees in simulation.

Keywords Computer-assisted intervention - Reinforcement Learning - Benchmark - Surgical evaluation - Simulation

Introduction

Training procedures of surgical residents are heavily reliant
on accumulated operative time as a metric of proficiency.
The limited availability of in-vivo training opportunities, i.e.
patient cases, can result in a suboptimal or even deficient
training process of surgical novices [ 1] with far-reaching con-
sequences.

Surgical simulators provide training scenarios which
allow users to alleviate the bottleneck of low patient case
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numbers, but often use rudimentary evaluation metrics such
as total procedure time and instrument path length.

Intra-operative performance assessment [2] plays a central
role in answering the question how to evaluate a sequence of
decision steps taken by a surgeon. Furthermore, it also pro-
vides valuable feedback how to improve on a given surgical
task both for trainees and for experienced practitioners in
continuing education.

In order to adapt the training process accordingly, we pro-
pose to model the behaviour of surgical trainees on simulator
hardware in a principled way by considering a sequential
decision-making agent interacting with a surgical environ-
ment. This interaction is formalised by the reinforcement
learning (RL) framework. We envision a scenario where vir-
tual agents trained using RL and inverse RL methods are
utilised to provide real-time scoring and prediction of the
trainees’ performance as well as to generate visual cues
aimed at improving the performance or procedure guidance.
Inverse RL (IRL) methods are particularly appealing due to
their outstanding data efficiency and robustness to distribu-
tion shift [3] when compared to simpler imitation learning
methods such as behavioural cloning (BC). Contrary to com-
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monly studied surgical robotics settings employing RL [4,
5], this work primarily focuses on the study of training and
evaluation signals characterised by a reward function that the
agentreceives on interaction with the simulated environment.

The simulated environment is realised as a set of surgi-
cal tasks derived from the Fundamentals of Arthroscopic
Surgery Training (FAST) suite with the purpose of training
dexterous manipulation of arthroscopic instruments by a sur-
gical trainee. The FAST suite was designed in collaboration
with various orthopaedic surgeon associations! and is imple-
mented in Unity3D by VirtaMed AG.” It has been shown [6]
that the training of fundamental skills involving dexterous
manipulation of instruments using the FAST suite improves
the performance of arthroscopic trainees in subsequent pro-
cedures. Hence, the FAST framework provides a surgically
relevant skill basis for the purposes of simulated training.
We demonstrate the utility of our algorithmic pipeline by
evaluating a diverse set of human-recorded trajectories. The
pipeline also suggests a selection of scoring functions for
surgical performance.

This paper contributes the following scientific ideas and
research solutions:

e A configurable interface for the FAST surgical training
simulation (FASTRL).?> which allows easy deployment
of standard RL and inverse RL algorithms. To our knowl-
edge, this is the first benchmark aimed at improving both
evaluation and assistance of surgical training in the con-
text of RL, in contrast to robotic surgical environments.

e A new data-driven approach is based on expert demon-
strations for evaluation of surgical skill performance
using RL methods. We demonstrate the effectiveness of
this evaluation on datasets recorded by experts and novice
users of the simulation hardware.

Related work

RL frameworks for surgical robotics Automation of surgical
procedures holds promise of improving the surgical out-
come and, hence, defines a long-standing goal in robotics
for medicine. A number of benchmarks have previously been
proposed which enable to perform the training of RL agents in
asurgical robotics setting. In particular, the daVinci Research

I ABOS, AAOS, AANA.

2 virtamed.com, the environments are provided in binary format and
accessible via the FASTRL APL

3 Fundamental of Arthroscopic Surgery Training using Reinforce-
ment Learning (FASTRL). The API and the executables for the
presented environments are made public and are available under:
fastrl.ethz.ch The executables are distributed under the CC BY-
NC-ND license. Video material and further details are available under
the same URL.
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Kit (dVRK) [5] has been adopted as a popular platform by the
surgical community. In [4], the use of RL is demonstrated for
manipulation of soft tissues using a robot arm. Ho & Ermon
employ an adversarial imitation method [8] in the context
of surgical soft-tissue retraction using the dVRK platform
[5]. Xu et al. propose an open-source platform simulator to
replicate a series of manipulation tasks using the dVRK teler-
obotic platform that is specifically geared towards robotic
learning. In contrast to previous work focused on training
robotic policies, our benchmark design specifically suggests
a scenario of surgical teaching assistance of human trainees.
Furthermore, in our approach, we explicitly propose to use
the reward function recovered via IRL methods for the pur-
poses of trainee evaluation and guidance.

Surgical skill assessment using machine learning methods
The use of machine learning for the analysis and perfor-
mance of surgical procedures has previously been explored
in robotic surgery [10-12], where both kinematic and visual
data are readily available at procedure time. The demon-
strated approaches typically apply various forms of super-
vised learning methods which exhibit a trade-off between
how expressive models are and how many labelled examples
they require for training. A number of methods ranging from
score regression to deep neural network-based classification
and segmentation of surgical procedures from videos have
been presented in the literature [13, 14]. Typically, surgical
skills are assessed post-operatively with data recorded during
the procedure.

Contrary to established approaches, our system provides
a dynamic real-time assessment of the surgical performance
in simulated tasks as well as real-time feedback which can
be queried by the trainee in the course of a procedure.

Algorithmic pipeline for surgical assistance

In this section, we motivate the design and development of
the FASTRL set of tasks: (i) the algorithmic pipeline for
surgical training assistance and (Fig. 1) (ii) the realisation of
the FAST suite as an RL benchmark.

Problem setting

Simulated surgical training scenario Arthroscopic surgical
skills training in a computer simulation provides a demand-
ing and scalable setup to investigate an educational training
scenario for medical interventions. The trainee is challenged
with a number of basic instrument handling tasks which
are performed in an augmented reality (AR) simulator. The
instruments, typically consisting of an arthroscope, a pal-
pation hook and a grasper, are inserted into the half-dome
structure through portals, and the output of the arthroscopic
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Fig. 2 Benchmark environment tasks: (i) ImageCentring (ii) Periscoping (iii) TraceLines. The avatar highlighted in green displays
visual cues to guide the training agents. The cues are encoded as part of the heuristic reward structure used for forward RL training

camera is simulated on a screen (Fig. 2) depicting the surgery
environment. The simulated setting has a number of benefits,
including potentially unlimited interaction capacity between
the trainee and the surgical environment as well as access to a
variety of data modalities for analysis purposes, that are often
difficult to obtain in real-world settings with patients. We aim
to enhance the simulated training scenario with evaluation
and assistance based on the formalisation of the interaction
between simulator and trainee as an RL problem.

RL formalism We model the simulation environment for
surgical procedures as a Markov decision process (MDP)
M= (S, A, T, Py, R), where S is the state space, A is the
action space, 7 : S x A — & is the transition function, Py
is the initial state distribution, and R : S x A — R is the
reward function. A policy m : § — Ry, s +— 7m(als) is a
conditional probability distribution of actions a € A given
states s € S with state features ¢(s).

In the inverse reinforcement learning (IRL) setting, the
reward is unknown and a suitable parametric reward function
ry is estimated based on a dataset of expert trajectories Dg =
{ti}i<k where 7; = (sf’;)T, ail;)T) is a sequence of states and
actions of expert i of length 7. To achieve this goal, various
distribution matching methods can be used [8, 15, 16]. Under
the assumption of fixed transition dynamics 7, the reward
function defines a succinct representation of the task to be

performed and it elicits desired behaviours guided by RL
algorithms [3]. In the context of a simulated environment,
this learning control enables reward functions to serve as a
central part of evaluation schemes for human trainees.

We consider two learning modalities in our pipeline:

e Forward RL: model-free RL methods based on reward
heuristics designed by human experts.

e [nverse RL: inverse setting where the reward function is
directly inferred from a set of expert demonstrations.

In the first modality, we define heuristic reward functions
which enable training of virtual agents that learn to com-
plete the benchmark tasks. The benchmark tasks require a
level of sophistication which depends on the design of multi-
ple reward components in order to elicit correct behaviours.
This modality enables the training of agents which learn
to mimic surgical behaviour via the definition of a suit-
able reward function and standard model-free RL method
implementations. This modality mainly intends to explore
the underlying search space of surgically correct procedures
by specifying heuristic evaluation schemes. It can also enable
experts to generate virtual agents by specifying a set of prefer-
ence weights for the behavioural components of the heuristic
reward function via the provided API.

@ Springer
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Fig. 3 Assistant illustration. a path suggestion (green line) based on performed trajectory (yellow line) in the FAST dome with reward potential
around target (star), b path suggestion from camera POV, ¢ colour cue for the trainee’s current state

In the inverse modality, an extrinsic reward function is not
explicitly defined; instead, a reward function is inferred from
the union set of the recorded expert demonstrations on the
respective task. This modality directly allows users to be eval-
uated with respect to a learned reward function, as opposed
to a hand-designed heuristic. The combination of these two
modalities allows us to obtain a reward and value function
tuple (ry, V) and the policy 7, which has been trained to
optimise ry, derived from a set of expert demonstrations D,.

Both the policy and the reward function can be utilised as
feedback mechanisms for human learners. These functions
support real-time contextual evaluation of the trainee’s per-
formance as well as a quantitative prediction of the procedure
outcome, respectively.

In addition, the trainee can query the virtual agent policy
at any point in the procedure to generate a demonstration of
the next steps based on the current trainee state using the
simulated dynamics. This assistance modality is illustrated
in Fig.3.

In order to explore this setting, we propose a standard
RL benchmark set to train virtual agents aimed at surgical
assistance of arthroscopic procedures. An example pipeline
consisting of forward and inverse RL algorithms is illustrated
in Fig. 1.

Benchmark environment

We use the Arthros® FAST (Fundamentals of Arthroscopic
Surgery Training) simulator implemented in Unity3D and
provided by Virtamed AG to evaluate the RL pipeline. The
simulation provides a number of educational navigation
and manipulation tasks that have to be performed within
a hollow dome structure (Sawbones® FAST workstation) in
accordance with the FAST (Fundamentals of Arthroscopic
Surgery Training) training problem.* We consider three tasks
for our benchmark environment: image centring and hori-
zoning (ImageCentring), which trains basic endoscope
manipulation and monocular depth estimation, periscoping
(Periscoping), which trains the use of angled optics and

4 Developed by American orthopaedic associations ABOS (Ameri-
can Board of Orthopaedic Surgery), AAOS (American Academy of
Orthopaedic Surgeons) and AANA (Arthroscopy Association of North
America.)
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line tracing (TraceLines), which trains steady instrument
movement. The tasks consist of guiding the tip of the virtual
arthroscope to various locations marked by an avatar that
displays visual cues. The trainee or the virtual agent pursues
the goal of orienting the arthroscope in such a way that it
complies with the cues and that it centres the image of the
avatar in the field of view of the endoscope camera.

MDP formulation In order to solve the tasks using the
RL framework, we formalise it as the following contin-
uous control problem: a state s; in the continuous state
space S is defined as the concatenation of the three-
dimensional position x¥™ and rotation quaternion Q¥
of the arthroscope as well as the respective time deriva-
tives X2 action space and Q¥ Additionally, we provide
the position and rotation of the target avatar x:gt, ;gt
as well as the cross-product between the forward vec-
tor of the arthroscope camera and the forward vector of
the avatar transform atx (arth‘tgt), which describes the align-
ment between the arthroscope camera and the avatar. The
full-state specification is given as the following tuple:
atx(arth,tgt)) c
S. We propose two versions of the action space. The
seven-dimensional continuous action space A consists of
stacked acceleration and angular acceleration vectors as well
as the light cable rotation angle w. of the arthroscope,
which realises an independent camera angle control @, =
(X, (;5[ w:) € A. The alternative five-dimensional discrete
action space Ay is defined as the translation of the arthro-
scope along its axis x;, changes in pivoting angle around the
portal Acaj, AB), rotation around the translation axis Ad,
and the rotation of the camera w.. The transition function
f(st,a;) € T is implemented by the Unity physics engine,
which simulates the friction coefficients of the arthroscopic
entry point. The physical interaction is deterministic for most
use cases.

__ (warth ~arth Larth garth Aarth &8 ~tgt
Sl—(xt sQl ’Xf ,Xt th ,Xt ’ t

Reward shaping Eliciting successful behaviour crucially
requires a correct specification of the reward. During the pro-
cedure, the simulation provides visual avatar cues to the agent
which specifies a sparse reward scheme. In order to increase
the sample efficiency of the training process, we additionally
define a dense linear reward. The heuristic reward func-
tion rpeur = W! @(s;) is defined as a weighted sum of
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the reward features ¢>(s,~).5 The reward features and corre-
sponding reward weights are configurable at runtime and are
exposed to the user. In particular, this allows the experimen-
talist to explore the generation of behaviours based on various
combinations of reward features as well as multi-objective
optimisation methods.

Learning algorithms

The virtual agents are parameterised using an actor-critic
architecture which consists of the policy function my and
either the value function Vj(s) (on-policy) or state-action
value function Q4 (s, a) (off-policy). Vi (s) approximates the
discounted empirical returns V(s) =Y ,.7 y'r(s;) obtained
on rollouts of the policy. The agents are trained employing a
variant of the proximal policy gradient (PPO) [17] algorithm.
When learning from human trajectories, we utilise an off-
policy algorithm, soft actor-critic (SAC) [18], for purposes
of sample efficiency.

To solve the inverse RL problem with maximum entropy
regularisation as outlined in Section “Problem setting”, we
utilise the adversarial imitation learning approach [8].

Adversarial inverse RL (AIRL) methods yield a reward
function by learning to distinguish between the transitions
sampled from the dataset of expert trajectories T ~ Dg and
transitions continually sampled from the rollout buffer of
the improving policy t ~ D, . The policy 7y maximises an
expected cumulative reward objective based on the discrimi-
nator output. The discriminator is optimised using the binary
cross-entropy loss. We utilise both the standard discrimina-
tor structure described in [8] and the shaped structure from
[16] which separates into the state-dependent reward function
ry and the state-dependent shaping term. The reward func-
tion specifically is used for downstream evaluation of novel
trajectories. The off-policy formulation additionally neces-
sitates two algorithmic additions. The first is spectral norm
regularisation [19], a method which enforces the Lipschitz
smoothness of the discriminator and stabilises the adversar-
ial training procedure. The second is a modified sampling
procedure for discriminator training, only utilising samples
from the current policy rollout as opposed to mixture policy
samples from the replay buffer. We demonstrate the impact
of these additions in the experimental section.

Experiments

The algorithmic pipeline for surgical assistance (Fig.1)
allows us to evaluate of human demonstrations using heuris-
tic and learned rewards. In this section, we demonstrate its

applicability on a test set of human trajectories gathered using

3 A detailed overview of the features is provided in Appendix.

the simulator. Furthermore, we measure the performance of
various state-of-the-art methods in forward and inverse RL
to illustrate the learning complexity of the benchmark tasks.

Learning from demonstrations In the first set of experiments,
we demonstrate the ground truth task performance of the
algorithms used to recover the reward and value functions on
the proposed benchmark suite.

We obtain the demonstration set by sampling trajectories
from the best performing policy trained using the heuris-
tic reward formulation described in Section “Benchmark
environment”. In Fig.4 we observe that inverse methods
(GAIL, AIRL) converge to the desired solution faster for
the Periscoping and TraceLines tasks than the for-
ward RL method (PPO) but require more time to converge
to the optimal solution in the ImageCentring case. This
behaviour can be attributed to the degree of alignment
between heuristic reward components and state space specifi-
cation, which varies across tasks, making ImageCentring
easier to solve in the forward learning scenario (PPO). Fur-
thermore, the IRL method (AIRL) outperforms the pure
imitation learning method (GAIL) in the Periscoping
task. The discrepancy between GAIL and AIRL is ascribed
to different divergence measures realized by the algorithms.
Furthermore, the smaller number of parameters of the GAIL
discriminator may explain faster initial convergence. Both
policies trained using the forward RL method (PPO) and the
ones obtained via inverse methods (GAIL, AIRL) can be
used to generate trajectory suggestions in the assistance set-
ting. The exact hyperparameters and experimental settings
can be found in Appendix E.

In addition to evaluating the pipeline using synthetic
demonstrations sampled from a policy trained on heuristic
reward, we learn a policy and reward function from a set of
human trajectories recorded using the keyboard and mouse
user interface in the FASTRL APIL. We perform the evalua-
tion on the TraceLines task. In Fig. 5 we can observe that,
in order to attain sample efficient training and successfully
complete all subtasks, the algorithmic modifications outlined
in Section “Learning algorithms” are necessary.

Performance evaluation In this section, we evaluate two sets
of human trajectories using the reward and value functions
obtained by both AIRL and GAIL algorithms as scoring func-
tions. The first set of trajectories consists of three novices
(io, mk and mv) and two expert practitioners fm and an.
These trajectories have been recorded using the physical
hardware platform.® The second set of trajectories has been
recorded using the keyboard-mouse interface and features
three distinct skill levels defined based on the percentage of
completed subtasks.

6 We defer the details of data gathering procedure to appendix.

@ Springer
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Fig. 5 Ablation experiments for off-policy version of the presented
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ment. The label nouct denotes the use of samples from entire replay
buffer for specification of the density matching objective; nosn corre-
sponds to the removal of spectral normalisation of the discriminator

Table 1 Trajectory scores (heuristic and learned rewards and val-
ues) for human (fm, an, io, mk, mv) and virtual (fw) agents on the
Periscoping task. Here, ry denotes the learned reward, V4 the
learned value and r,,, the reward heuristic

Agent ry Vo Theur Trajectory
1D length

fw 0.99310004  0.87610076  0.9991+00002  1600.61971.0
fm 0.73240019  0.72810016  0.74210016  1821.511048
an 0.72010.042  0.71640.040  0.72940.030  1929.242774
mk 0.61740.117  0.627+0121  0.634:0106  2578.5+745.8
mv 0.518+0.094  0.521+0094  0.52910.095  3313.5+665.5
io 0.37410271  0.339+0249  0.38410278  4290.8+1981

In Table 1, we observe that both normalised value function
and reward function recover the correct ranking among the
five sets of trajectories. The learned reward and value func-
tions are consistent with both the heuristic reward baseline
and the trajectory length metric used in the simulator as the
standard evaluation option. In Fig. 6, we plot the spatial x and
y components of the states evaluated using the learned value
functions. We observe a clear distinction between the novice
and expert practitioners with the expert agent outperforming

@ Springer

the human expert in terms of the score. In Fig.7, we show a
comparison of the agents from Fig. 6 in terms of the deviation
from the expert agent reference over the course of the pro-
cedure. Again, a clear distinction between the skill levels of
agents is observed. The distinction is consistent with respect
to the ground truth level of expertise of the agents.

Table 2 summarises the results obtained on the reward
learned on human trajectories. We observe a similar result
in terms of the recovered ranking. The validation of learned
reward functions remains an open question. Evaluation of
synthetic policies typically relies on rollout performance on
the ground truth reward, which is not directly applicable to the
setting of human evaluation due to lack of a ground truth met-
ric which would capture all relevant aspects of the behaviour.

As future work, validation by an independent expert using
standardised evaluation protocols [20, 21] could be explored
to assess the validity of the proposed evaluation metrics.

Extension to laparoscopic setting In this section, we provide
a demonstration of the proposed method on a more challeng-
ing task, the diagnostic tour of the abdomen performed by
surgeons in the context of laparoscopic surgery. The task goal
consists of visualising a fixed sequence of anatomical land-
marks in the abdominal area. The simulated version of this
task is realised using a simplified version of the VirtaMed
Laparos®’ hardware platform. The main goal of this exper-
iment is to demonstrate the applicability of the algorithmic
pipeline described in Fig. 1 to a more sophisticated surgical
task, which features a larger cohort of demonstrations. In
particular, this task features both realistic textures and sig-
nificantly more complex anatomical constraints inherent to
the abdominal area compared to the FAST setting. Due to the
more challenging nature of the full diagnostic tour, we use
a subset of the tour which focuses on visualizing both liver
lobes and the falciform ligament. Furthermore, we restrict
the state space of the MDP S € R? to correspond to the
position of the endoscope camera.

7 https://www.virtamed.com/en/products-and-solutions/simulators/
laparos.
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Table 2 Normalised trajectory scores (heuristic and learned rewards
and values) for human trajectories Expert, Intermediate and Poor on
TraceLines task

Subject Ty Vs Theur Trajectory
length

Expert 0.794020 0911005  0.91+t0.035 2928.21167.67

Intermediate  0.3040.03 0.6410.02 0.55400220 2126.0190.48

Poor 01710035 0.331£0035 0.2310.027 11112112037

We evaluate the scoring functions obtained using the pro-
posed method on a selection of human trajectories recorded
as part of a surgical proficiency course.® We train our method
using 10 trajectories, which were rated best using the internal
heuristic score provided by the simulator. We use two scoring
metrics: (i) the economy score: the total distance covered by
the endoscope camera within the abdominal cavity and (ii)
the safety score: the sum of the Euclidean distances between

8 Details are provided in Appendix C.

the endoscope camera position and the closest anatomy ver-
tices.

We evaluate a total of 100 trajectories using the recovered
reward and value functions from both GAIL and AIRL for-
mulations and summarize the results in Fig.8 and Table 3.
We can observe a strong correlation in terms of the Spear-
man rank correlation coefficient between both the recovered
reward function and the scoring metrics as well as the
recovered value function and the scoring metrics. The total
instrument path length metric is strongly correlated with both
the learned reward and the learned value. The safety metric
exhibits a weaker correlation which is still significant accord-
ing to the observed p-values.

Discussion

In this paper, we have presented FASTRL, an RL benchmark
for training virtual assistant agents in the arthroscopic surgery
domain. We have investigated the performance of a number
of state-of-the-art forward and inverse RL approaches and

@ Springer
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the trajectory scores and correlations w.r.t. ground truth metrics (V-D:
Value-Distance, V-S: Value-Safety)

Table 3 Correlation coefficients (p-values in brackets) between laparoscopic trajectories evaluated using recovered rewards and two ground truth

metrics (Dst: total instrument distance and Sft: total safety distance)

Model Reward-Dst. (p) Reward-Sft. (p) Value-Dst. (p) Value-Sft. (p)
GAIL 0.73 £ 0.03 (0.00) 0.25 £ 0.02 (0.01) 0.78 £ 0.01 (0.00) 0.24 £+ 0.01 (0.02)
AIRL —0.82 £ 0.01 (0.00) —0.25£0.01 (0.01) 0.80 £ 0.00 (0.00) 0.24 £ 0.00 (0.02)

illustrated a prototypical solution to a surgical evaluation
and assistance framework for arthroscopic procedures using
model-free RL techniques. We have performed a feasibility
study using our API extension of the simulation software pro-
vided by VirtaMed AG. Limitations At the current state, only
three tasks have been converted and evaluated. More sophis-
ticated scenarios involving additional instruments such as the
palpation hook or the grasper are in development and will be
provided at a later stage. Currently, the pipeline has solely
been evaluated on kinematic data, but the possibility exists to
train image-based models on the rendered arthroscope cam-
era images.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-024-03116-
z.

Acknowledgements We would like to express our gratitude to Vir-

taMed AG for providing the simulator platform and Martina Vitz for
coordinating the data recording of the laparoscopic study.

@ Springer

Funding Open access funding provided by Swiss Federal Institute of
Technology Zurich This research was funded in whole, or in part, by
Innosuisse grant 28640.1 IP-ICT.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Consent to participate Informed consent was obtained from the partic-
ipants included in the evaluation study.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.


https://doi.org/10.1007/s11548-024-03116-z
https://doi.org/10.1007/s11548-024-03116-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

International Journal of Computer Assisted Radiology and Surgery

References

10.

11.

12.

Chiasson PM, Pace D, Schlachta C, Mamazza J, Poulin EC (2003)
Minimally invasive surgery training in Canada: a survey of general
surgery. Surg Endosc 17(3):371-377

Stauder R, Ostler D, Vogel T, Wilhelm D, Koller S, Kranzfelder M,
Navab N (2017) Surgical data processing for smart intraoperative
assistance systems. Innov Surg Sci 2(3):145-152

Ng AY, Russell S (2000) Algorithms for inverse reinforcement
learning. In: Ieml, vol 1, p 2

Tagliabue E, Pore A, Dall’Alba D, Magnabosco E, Piccinelli
M, Fiorini P (2020) Soft tissue simulation environment to learn
manipulation tasks in autonomous robotic surgery. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp 3261-3266. IEEE

Kazanzides P, Chen Z, Deguet A, Fischer GS, Taylor RH, DiMaio
SP (2014) An open-source research kit for the da vinci® surgical
system. In: 2014 IEEE international conference on robotics and
automation (ICRA), pp 6434-6439. IEEE

Cychosz CC, Tofte JN, Johnson A, Gao Y, Phisitkul P (2018)
Fundamentals of arthroscopic surgery training program improves
knee arthroscopy simulator performance in arthroscopic trainees.
Arthrosc J Arthrosc Relat Surg 34(5):1543-1549

Pore A, Tagliabue E, Piccinelli M, Dall’ Alba D, Casals A, Fiorini P
(2021) Learning from demonstrations for autonomous soft-tissue
retraction. In: 2021 international symposium on medical robotics
(ISMR), pp 1-7. IEEE

Ho J, Ermon S (2016) Generative adversarial imitation learning.
In: Advances in neural information processing systems, vol 29
Xu J, Li B, Lu B, Liu YH, Dou Q, Heng PA (2021) Surrol:
an open-source reinforcement learning centered and DVRK com-
patible platform for surgical robot learning. In: 2021 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
pp 1821-1828. IEEE

Kassahun Y, Yu B, Tibebu AT, Stoyanov D, Giannarou S, Metzen
JH, Vander Poorten E (2016) Surgical robotics beyond enhanced
dexterity instrumentation: a survey of machine learning techniques
and their role in intelligent and autonomous surgical actions. Int J
Comput Assist Radiol Surg 11(4):553-568

Garrow CR, Kowalewski K-F, Li L, Wagner M, Schmidt MW,
Engelhardt S, Hashimoto DA, Kenngott HG, Bodenstedt S, Speidel
S, Miiller-Stich BP, Nickel F (2021) Machine learning for surgical
phase recognition: a systematic review. Ann Surg 273(4):684-693
Lam K, Chen J, Wang Z, Igbal FM, Darzi A, Lo B, Purkayastha S,
Kinross JM (2022) Machine learning for technical skill assessment
in surgery: a systematic review. NPJ Digit Med 5(1):1-16

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Lavanchy JL, Zindel J, Kirtac K, Twick I, Hosgor E, Candinas D,
Beldi G (2021) Automation of surgical skill assessment using a
three-stage machine learning algorithm. Sci Rep 11(1):1-9

Liu D, Li Q, Jiang T, Wang Y, Miao R, Shan F, Li Z (2021) Towards
unified surgical skill assessment. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 9522—
9531

Ziebart BD, Maas AL, Bagnell JA, Dey AK (2008) Maximum
entropy inverse reinforcement learning. In: Aaai, vol 8, pp 1433—
1438. Chicago, IL, USA

Fu J, Luo K, Levine S (2018)Learning robust rewards with
adversarial inverse reinforcement learning. In: International con-
ference on learning representations. https://openreview.net/forum?
id=rkHywl-A-

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)
Proximal policy optimization algorithms. arXiv:1707.06347
Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic:
off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In: International conference on machine learning,
pp 1861-1870. PMLR

Yoshida Y, Miyato T (2017) Spectral norm regularization for
improving the generalizability of deep learning. arXiv:1705.10941
Vassiliou MC, Feldman LS, Andrew CG, Bergman S, Leffondré
K, Stanbridge DD, Fried GM (2005) A global assessment tool
for evaluation of intraoperative laparoscopic skills. Am J Surg
190(1):107-13

Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin B (2012)
Global evaluative assessment of robotic skills: validation of a clin-
ical assessment tool to measure robotic surgical skills. J Urol
187(1):247-52

Juliani A, Berges VP, Teng E, Cohen A, Harper J, Elion C, Goy
C, Gao Y, Henry H, Mattar M, Lange D (2018) Unity: a general
platform for intelligent agents. https://doi.org/10.48550/ARXIV.
1809.02627

Raffin A, Hill A, Ernestus M, Gleave A, Kanervisto A, Dormann
N (2019) Stable Baselines3. GitHub

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1705.10941
https://doi.org/10.48550/ARXIV.1809.02627
https://doi.org/10.48550/ARXIV.1809.02627

	Fundamentals of Arthroscopic Surgery Training and beyond: a reinforcement learning exploration and benchmark
	Abstract
	Introduction
	Related work
	Algorithmic pipeline for surgical assistance
	Problem setting
	Benchmark environment
	Learning algorithms

	Experiments
	Discussion
	Acknowledgements
	References


