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Abstract
Purpose Three-dimensional (3D) preoperative planning has become the gold standard for orthopedic surgeries, primarily
relying on CT-reconstructed 3D models. However, in contrast to standing radiographs, a CT scan is not part of the standard
protocol but is usually acquired for preoperative planning purposes only. Additionally, it is costly, exposes the patients to high
doses of radiation and is acquired in a non-weight-bearing position.
Methods In this study, we develop a deep-learning based pipeline to facilitate 3D preoperative planning for high tibial
osteotomies, based on 3D models reconstructed from low-dose biplanar standing EOS radiographs. Using digitally recon-
structed radiographs, we train networks to localize the clinically required landmarks, separate the two legs in the sagittal
radiograph and finally reconstruct the 3D bone model. Finally, we evaluate the accuracy of the reconstructed 3D models for
the particular application case of preoperative planning, with the aim of eliminating the need for a CT scan in specific cases,
such as high tibial osteotomies.
Results The mean Dice coefficients for the tibial reconstructions were 0.92 and 0.89 for the right and left tibia, respectively.
The reconstructed models were successfully used for clinical-grade preoperative planning in a real patient series of 52 cases.
The mean differences to ground truth values for mechanical axis and tibial slope were 0.52° and 4.33°, respectively.
Conclusions We contribute a novel framework for the 2D–3D reconstruction of bone models from biplanar standing EOS
radiographs and successfully use them in automated clinical-grade preoperative planning of high tibial osteotomies. However,
achieving precise reconstruction and automated measurement of tibial slope remains a significant challenge.

Keywords 2D–3D reconstruction · 3D preoperative planning · High tibial osteotomy · EOS imaging system · Deep learning ·
Weight-bearing
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Introduction

Over the past years, preoperative planning in orthopedic
surgery has undergone notable transformations, driven by
technological advancements and the introduction of novel
tools such as patient-specific instruments (PSI) [6]. Three-
dimensional (3D) planning has become an integral part of
surgical procedures [7], albeit often requiring laborious and
costly processes. Based on CT-reconstructed 3D models, the
surgeries are meticulously planned by biomedical engineers.
They define osteotomy cuts, calculate correction angles, and
determine the position of implants (e.g. fixation plates) such
that the targeted correction is achieved as accurately as pos-
sible. They do this while considering all clinically necessary
criteria and constraints for the placement of osteotomy cuts
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and implants. In cases with multiplanar deformities, this pro-
cess becomes particularly complex. In the end, the planning
is optimized through several rounds of discussions with the
treating surgeons. A more detailed description of the pre-
operative planning process can be found in our previous
publications [7, 10].

Currently, 3D planning requires the acquisition of a CT to
reconstruct 3D models of the patient anatomy, which serve
as the basis to simulate and define each step of the surgery.
However, for many surgeons, the 3D planning alone is not
deemed mandatory due to radiation exposure concerns. Fur-
thermore, theCT acquisition and the consequent 3Dplanning
is done in the supine position and therefore does not allow the
deformity assessment in the weight-bearing state. As a con-
sequence,most surgeons resort to the traditional 2D approach
using standing radiographs. An imperative advantage of uti-
lizing radiographs for surgery planning purposes lies in their
ability to capture the lower limb in a standing position, pro-
viding valuable information for biomechanical assessments
[10]. Compared to CT scans, standing X-rays offer a repre-
sentation of the weight-bearing situation, which is relevant
for the development of osteoarthritis (OA). The EOS imag-
ing system (EOS imaging system, EOS, Paris, France) has
therefore become increasingly widespread used in over 400
locations worldwide [8]. Although the system comes at high
cost, it features the acquisition of calibrated biplanar (90
degrees) standing radiographs at an ultra-low dose, which
is 50% lower than a standard X-ray [4].

Reconstructing 3Dmodels based on standing radiographs
combines the benefits of both worlds: It facilitates 3D
planning that is based on imaging data acquired in a weight-
bearing position with a reduced radiation dose. This exhibits
notable potential in enhancing the accuracy of preoperative
planning [17], particularly for procedures involving anatom-
ical structures that are influenced by posture, such as the
lower limb or potentially the spine. In this study, we investi-
gated the feasibility of performing 3Dplanning for high tibial
osteotomy (HTO) surgery without the need of a CT scan by
reconstructing a 3Dsurfacemodel of the proximal tibia solely
from biplanar radiographs acquired with the EOS system,
aiming to enhance efficiency, reduce healthcare costs, and
concurrently minimize radiation exposure for the patient.

2D-3D reconstruction fromX-ray imagery has been tradi-
tionally achieved by statistical shape models (SSM), which
are anatomical atlases created based on a large patient
database. In this approach, the parameters of an SSM are
optimized to match a 2D projection of the SSM and the
contour of the bone seen in the radiograph. The match-
ing process, however, is sensitive to initialization [12, 15,
21]. However, the major drawback of SSM is its inability
of representing patient-specific pathologies. Recent studies
have proposed deep-learning-based approaches for patient-
specific reconstruction of anatomies based on X-ray data for

different applications such as the spine [2, 3, 9] or the knee
joint [11]. Kasten employed an end-to-end trained CNN to
reconstruct the proximal tibia, distal femur, proximal fibula,
and patella from conventional radiographs and achieved
accurate 3D reconstructions with Dice scores between 0.85
and 0.95. However, they have reconstructed the 3D models
from radiographs including only one knee joint. To calculate
the required planning parameters (e.g., the mechanical axis
angle, defined by hip, knee and ankle joint centers), surgeons
often require a full standing leg radiograph, which always
includes both legs from hip to ankle joints. As a consequence
of this imaging setup, the two legs are at least partially super-
imposed in the sagittal image, making the 3D reconstruction
task more challenging.

To address the aforementioned challenges, we have
designed a deep-learning based pipeline to reconstruct 3D
surface models of the proximal tibial from biplanar standing
EOS radiographs for the purpose of 3D preoperative plan-
ning. In a first step, we localize several clinically required
landmarks in the biplanar radiographs. Thereafter, two sep-
arate sagittal images (each containing one leg) are generated
from the original sagittal radiograph. The frontal and the
separated sagittal image are then used to reconstruct the 3D
surface model of the proximal tibia, which is finally used
as an input to our automated preoperative planning pipeline
for high tibial osteotomy (HTO) surgeries. For evaluation,
we compare the solutions to the ground truth solutions gen-
erated based on CT-reconstructed 3D models using a series
of 52 patients. In summary, (1) our novel separation net-
work improves the 3D-reconstruction of anatomical regions
that overlap in X-ray data and (2) we clinically evaluate the
usability of the 2D-3D reconstructed models in a fully auto-
mated preoperative planning framework. The entire pipeline
is designed for using radiographs from the EOS imaging sys-
tem, a globallywidespread, pre-calibrated, low-dose biplanar
imaging system.

Methods

Our proposed pipeline for 2D–3D reconstruction is depicted
in Fig. 1. A biplanar EOS scan is used as input. A separa-
tion network is first designed to generate separated sagittal
images of both legs each containing the projection of a single
leg based on one original sagittal EOS image. Addition-
ally, a localization network determines the coordinates of the
joint centerswhich are required for orthopedicmeasurements
and preoperative planning purposes. The frontal EOS image
along with the separated sagittal EOS images are then used
as the input to a reconstruction network that is tasked with
producing the required 3D models. Finally, the triangulated
3D joint coordinates and the reconstructed 3D model of the
knee serve as input for a preoperative planning framework,
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scan
Frontal and lateral standing radiograph

Reconstruc�on Network
Reconstructs 3D surface model from the frontal and 

the (separated) sagi�al knee images

Coordinate Triangula�on

Separa�on Network
Generates two separate sagi�al images from the

sagi�al image of both legs

Landmark Localiza�on Network
of hip, knee and ankle joint centers of both legs in 

frontal and sagi�al images

Preopera�ve Planning Framework
The reconstructed 3D surface models and the 
localized landmarks are used for preopera�ve

planning

EOS

Fig. 1 The proposed pipeline. A biplanar EOS scan serves as input.
The separation network separates the two legs into two separate sagittal
images. The frontal and the separated sagittal image are used both for the
localization of the landmarks required for orthopaedic measurements

and for reconstruction. The localized 2D landmarks are triangulated to
obtain 3D landmarks. Together with the reconstructed 3D surface mod-
els, they are the input to the preoperative planning framework, which
generates ready-to-use preoperative planning solutions

which automatically generates the desired preoperative plan-
ning solution. This includes the positioning of the osteotomy
axis, the calculation of the opening angle, aswell as the place-
ment of the fixation plate and screws (Fig. 6C), all while
adhering to clinically necessary constraints and rules.

Dataset generation

The study was approved by the local ethics committee and
informed consentwas obtained fromall patients (ZurichCan-
tonal Ethics Commission, KEK 2018-02242). To train the AI
networks involved in our pipeline,we utilized a dataset of 175
HTO patients who underwent CT scans of both legs (Philips
Brilliance 64, Philips Healthcare, Best, The Netherlands,
or Somatom Definition AS Siemens Healthcare, Erlangen,
Germany). Patients with only a unilateral CT scan of the
pathological leg were excluded. For the evaluation in section
"Preoperative planning accuracy" we have used a different
set of patients, which was the same set as in our previous
publication [16].

The CT scans were obtained following the MyOsteotomy
protocol, which involved separate scans for the hip, knee, and
ankle joints (whilst skipping the bone shafts) to minimize
radiation exposure. Prior to our study, these CT scans were
segmented using commercial segmentation software (Mim-
ics Medical 19.0, Materialise NV, Leuven, Belgium) and the
hip, knee and ankle joint centers (HJC, KJC, AJC)wereman-
ually annotated.TheHJCwasdefined as the center of a sphere
fitted to the femoral head while the KJCwas located between

the two tibial eminences. The AJC was determined by cal-
culating the center of all points of the distal tibial and fibular
articular surfaces (see [7] for details).

To facilitate a reliable comparison between the 3D recon-
structions generated by our neural network and the ground
truth, in this study, we have trained and tested our networks
using digitally reconstructed radiographs (DRR). To this end,
we have used segmented CT scans of 175 patients and devel-
oped a DRR generation method specifically for the geometry
of the EOS imaging system, which utilizes a unique bipla-
nar imaging geometry with a moving fan beam emitter. We
have described the EOS imaging system in our previous pub-
lication [16]. Using a CT scan as the input, we generated a
frontal and sagittal image for each patient in our dataset,
I f ron and Isag . Besides the normal sagittal image of both
legs, we additionally generated sagittal images containing
only the left or the right leg, respectively, as the targets for
our separation network (I Lsag and I Rsag). At the same time,
the 3D landmarks annotated in the CT are utilized and pro-
jected to the frontal and sagittal image planes to obtain the
ground truth 2D landmark coordinates required for the land-
mark localization network (Fig. 2).

In clinical practice, when acquiring an EOS image,
patients are instructed to position their right foot slightly
in front of their left foot to enhance the distinguishability
of the two legs in the sagittal image. However, despite this
positioning, a certain degree of superimposition remains. To
mimic this positioning in our DRR generation process, we
randomly applied shifts (40 to 60 mm) and rotations (10° to
20° around the center of the image) in the sagittal plane to
the CT scan of the right leg before generating the image. To
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Fig. 2 DRR-generated images for one patient. a Frontal image, b ground truth 3Dmodel frontal view, c sagittal image of both legs, d sagittal images
of single legs, e ground truth 3D model sagittal view

augment our dataset, this process was repeated three times
for each patient, resulting in a final dataset consisting of 525
biplanar image pairs, each comprising a frontal and a sagittal
DRR, along with their corresponding ground truth 3D bone
models. The subsequent splitting of data into train and test
sets was on patient level to prevent the mixing of patients
between the sets. The same split was used for all three net-
works.

Leg separation network

We designed a dedicated network capable of separating the
two legs in the sagittal radiograph, allowing us to obtain indi-
vidual images for each leg. To this end, we employed a CNN,
which was trained using the original DRR as the input and
the two separated DRRs as the targets. The CNN architecture
consisted of one encoding path and two separate decoding
paths, each corresponding to one output image. Model archi-
tectures are shown in Fig. 3, details can be found in Table 1.

When directly using I Lsag and I Rsag as the target images,
our network encountered difficulties in discerning between
the contralateral leg, which needed to be removed from the
image, and the surrounding soft tissue, that should be pre-
served. To address this issue, we applied a contrast enhancing
transformation to the pixel values x of I Lsag and I Rsag which
is represented in Eq. (1), facilitating the isolation of the
bone structures from the surrounding soft tissue (Fig. 4). The

Table 1 Network parameters for the separation, the landmark localiza-
tion and the 3D reconstruction networks

Separation Landmark
localization

3D
reconstruction

Convolution
Kernel size

3 3 3

Pooling size 2 2 2

Activation
function

ReLu ReLu ReLu

Padding ‘same’ ‘same’ ‘same’

Weight
initialization

‘he_normal’ ‘he_normal’ ‘he_normal’

Final layer
activation
function

‘sigmoid’ ‘sigmoid’ ‘softmax’

Learning rate 0.001 0.0001 0.00005

Optimizer Adam Adam Adam

Loss function MSE +
GCOR

Binary
Crossen-
tropy

Dice +
Crossentropy

Epochs 20 20 30

Batch size 16 1 1

Number of
samples

525 525 525

Train
(train/val)/test
split

90
(80/20)/10

90 (80/20)/10 90 (80/20)/10
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Fig. 3 Model architectures of the
separation, landmark localization
and 2D – 3D reconstruction
networks
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parameters of Eq. (1) were determined empirically.

f (x) � 1

1 + e− x−0.45
0.12

(1)

The loss function L(y, ŷ) � 1
2

(

1
N

∑N
i�1 (yi−ŷi)2 +LGC(y,

ŷ)
)

comprised a combination of the mean squared error

(MSE) loss andgradient correlation (Eq. 2),where the ground
truth and the predictions are represented by y and ŷ, respec-
tively.

The gradient correlation metric is based on the horizon-
tal and the vertical image gradients and is used to improve
the clarity and sharpness of the leg outlines in the separated
radiographs [5]. μλ and μκ are the mean pixel values of the

horizontal and vertical gradient images, respectively.

LGC (y, ŷ) � 1

2
(NCCx (y, ŷ) + NCCy(y, ŷ)) (2)

NCCx (y, ŷ) �
∑

i (λ1(i) − μλ1 )(λ2(i) − μλ2 )
√

∑

i (λ1(i) − μλ1 )
2 ∗

√

∑

i (λ2(i) − μλ2 )
2

(3)

NCCy(y, ŷ) �
∑

i (κ1(i) − μκ1 )(κ2(i) − μκ2 )
√

∑

i (κ1(i) − μκ1 )
2 ∗

√

∑

i (κ2(i) − μκ2 )
2

(4)
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Fig. 4 a Input to the separation network: sagittal DRR of both legs. b Sagittal DRRs of right (top) and left (bottom) leg. c Contrast enhanced sagittal
DRRs, used as targets for the separation network

Landmark localization network

Another CNN was designed to localize the three joint center
landmarks of hip, knee and ankle joints (HC , KC , AC ) in
I f ron as well as I Lsag and I Rsag . To generate the training data,
3D landmarks of the ground truth CT data were projected as
2D landmarks onto the DRR-generated images. These coor-
dinates were used to generate target heatmaps, containing a
Gaussian distribution of values between 0 and 1 around the
ground truth joint center location. The model architecture is
depicted in Fig. 3, additional raining and network details can
be found in Table 1. The binary crossentropy loss is defined
as

L(y, ŷ) � − 1

N

n
∑

i�1

yi log(ŷi ) + (1 − yi )log(1 − ŷi ) (5)

3D reconstruction network

Similar to [11], we designed a U-net for 2D–3D reconstruc-
tion of 3D bone models of the proximal tibia from the frontal
as well as the separated sagittal DRR. As the target, we used
the segmentation labelmaps of theCTs fromwhich theDRRs
were generated. For thefirst two levels of theCNN, the frontal
and sagittal 2D images are processed in two separate network
branches. After two levels, 2D feature maps (size 128× 128)
were replicated 128 times over the third dimension to obtain

arrays of size 128 × 128 × 128. The arrays were then fused
into a two-channel representation and subsequently averaged
per voxel, resulting in 3D feature maps of size 128 × 128 ×
128. The rest of the encoding aswell as the decoding pathwas
performed in 3D. Skip connections were used on all levels
except the two top layers. The model architecture is shown in
Fig. 3, training details are summarized in Table 1. As a loss
function we used the sum of the Dice and the crossentropy
loss:

L(y, ŷ) �
n

∑

i�1

1 − 2
∑

yi ∗ ŷi
∑

yi +
∑

ŷi
− yi log(ŷi ) (6)

The final 3D bone models were obtained by applying
a Marching Cubes algorithm [13] to the 3D binary output
arrays.

Surgery planning

Finally, we have integrated our previously validated preop-
erative planning framework [16] in the current pipeline. The
framework is basedon agenetic algorithm formulti-objective
optimization (MOO) and takes a 3D model of the proximal
tibia, the 3D landmark coordinates for hip, knee and ankle
joint centers H3D

C , K 3D
C and A3D

C (Fig. 5) as well as target
values�MA and�T S for the two anatomical deformity mea-
surements (mechanical axis (MA) and the tibial slope (TS))
as input.
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Fig. 5 An example for the localized landmarks of a left leg in the frontal
and sagittal planes

Based on the joint center landmarks, the framework calcu-
lates the patient’s deformity measurements (Fig. 6A, B). The
MA is defined as the angle between the two lines connecting
the H3D

C , K 3D
C and A3D

C , projected to the frontal plane. A
plane fitting algorithm is used to find the articular surface
plane of the proximal tibia, and the angle between its nor-
mal and the line connecting K 3D

C and A3D
C , projected to the

sagittal plane, is defined as the TS.
The MOO framework subsequently optimizes a set of

twelve osteotomy parameters to find the ideal solution. The
twelve osteotomy parameters comprise values for the posi-
tion and orientation of the osteotomy axis (4), the osteotomy
angle (1), the fixation plate position (3) and orientation (3) as
well as the inclination angle of the osteotomy plane (1). The
quality of a solution is assessed by three fitness functions,
measuring (1) the deviation to the target MA, (2) the devia-
tion to the target TS and (3) the mean distance between the
fixation plate and the bone. The optimization is guided by
non-linear constraints which are formulated based on clini-
cal requirements regarding the positioning of the axis, cutting
plane and fixation plate.

Evaluation

The precision of the localized landmarks was evaluated
by calculating the Euclidean distance to the ground truth
landmarks. The performance of the separation network was
assessed by performing an ablation study which compared
the performance of the reconstruction networkwith andwith-
out prior separation.

The accuracy assessment of the entire deep-learning based
3D reconstruction pipeline was assessed by two metrics.
First, Dice scores were computed between the predicted and
ground truth segmentation label maps. Secondly, the mean
Euclidean distance between the predicted and ground truth
meshes was calculated by averaging the distances between
each vertex in the predicted and its closest point in the ground
truth model.

Finally, the feasibility for using the reconstructed 3Dmod-
els for preoperative planningwas evaluated by comparing the
results to the solutions using ground truth 3D bone models as
depicted in Fig. 6C–F. The same patient series was used as
in the previous publication, except for one patient who was
excluded due to a pre-existing implant.

Results

3D reconstruction

The Dice coefficients for the reconstructed proximal tibiae
in the test set were 0.92 ± 0.02 and 0.89 ± 0.06 for the right
and left sides, respectively. The mean Euclidean distances
between closest points were 1.21 ± 0.38 mm and 1.63 ±
0.74 mm for the right and left side. Two examples are pre-
sented in Fig. 7.

Landmark localization

Mean localization error in the frontal plane for hip, knee
and ankle joints were 1.78 ± 1.19 mm, 1.64 ± 0.97 mm
and 1.64 ± 0.91 mm, respectively. In the sagittal plane, the
same mean errors were 3.72 ± 2.45 mm, 2.71 ± 2.41 mm
and 1.84 ± 1.16 mm.

This resulted in a mean 3D Euclidean distance to the
ground truth landmarks of 2.87± 1.37 mm, 3.63± 2.35 mm
and 2.87 ± 1.29 mm, leading to a mean difference in the
measured MA of 0.52° ± 0.47° between the ground truth
and the reconstructed models. The mean absolute measured
difference for the TS was 4.33° ± 3.92°.

Separation

An ablation studywas performed and resulted in a Dice coef-
ficient of 0.90± 0.07 and 0.85± 0.03 for the right and the left
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Fig. 6 Anatomical deformity measurements and evaluation of surgery
planning. a The MA is defined by the hip, knee and ankle joint cen-
ters. b The TS is defined by the tibial mechanical axis (KC to AC) and
the tibial slope plane. c Surgery planning includes the placements of
osteotomy axis, osteotomy plane and fixation plate as well as the cal-
culation of the correction angle. The planning solutions were evaluated

based on d the Euclidean distance between the ground truth (green)
and predicted (blue) osteotomy axes as well as the orientation of the
osteotomy plane normal, e the difference in correction angle and f the
translational and rotational differences of the fixation plate position

Fig. 7 The two test set examples
with the highest and lowest Dice
scores. The ground truth models
are displayed in orange, the
reconstructed models in green.
The Dice coefficient of the
shown examples are 0.83 (top),
and 0.96 (bottom)
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b 

Fig. 8 Two examples of our separation results. The input image is shown in the first column, the second and third column show the separated images
(right and left leg, respectively)

side, respectively. Therefore, the separation network could
improve the reconstruction performance by 2.2% and 4.7%,
respectively. Two examples are shown in Fig. 8.

Preoperative planning accuracy

The trained networks were applied to the series of 52
patients, which was used for validating our preoperative
planning pipeline [16]. Our algorithm found clinically fea-
sible solution for all patients. We compared the preoperative
planning solutions that were obtained based on the 2D–3D
reconstructed models with the previously generated ground
truth solutions, which were based on the CT-reconstructed
models (Fig. 6C–F).

Fitness values

We assessed the fitness of a given solution by calculating
(1) the deviation from the target MA, (2) the deviation
from the target TS and (3) the mean difference between
the fixation plate and the bone surface. The mean absolute
difference between the target MA and the achieved MA
is 0.06° ± 0.11° and 0.11° ± 0.33° for the ground truth
and the reconstruction solutions, respectively. The mean

absolute difference between the target TS and the achieved
TS is 0.04° ± 0.13° and 0.80° ± 2.13°. The mean difference
between the bone and the fixation plate was 2.28 ± 1.48 mm
for the ground truth solutions and 2.34 ± 1.55 mm for the
reconstruction solutions.

Osteotomy planning

The mean absolute Euclidean difference for the position of
the osteotomy axis in the frontal plane was 2.93 ± 1.90
mm, resulting from a difference of 2.27 ± 1.88 mm in the
medial–lateral direction and 1.52± 1.11 mm in the superior-
inferior direction (Fig. 6D).

The normal vector of the osteotomy planewas projected to
the frontal and to the sagittal plane to assess the deviation to
the normal vector in the ground truth solution. The measured
differences were 2.16° ± 1.73° and 8.32° ± 6.45° for the
frontal and sagittal plane, respectively (Fig. 6D).

The mean difference for the correction angle was 1.25° ±
1.14° (Fig. 6E).

The mean absolute 3D difference of the fixation plate was
7.06 ± 7.50 mm in 3D. The 2D error in x, y and z direction
was 2.54 ± 2.84 mm, 2.41 ± 1.97 mm and 5.34 ± 7.32 mm,
respectively. The mean absolute angular difference of the
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fixation plate position was 4.95° ± 5.29°, 3.1° ± 2.36° and
4.30° ± 4.04° (Fig. 6F).

Discussion

2D-3D reconstruction is a highly active research topic in
general computer vision and more recently in medical
imaging research. CT scans are not only expensive and
expose the patients to a high ionizing radiation dose but are
also acquired in a non-weight-bearing position. Therefore,
multiple research groups have tried to reconstruct accurate
3D bone models from standing 2D radiographs. Various
approaches have been tried for spine [2, 9] and lower limb
reconstruction [1, 11].

In our study, the specific aim was to investigate whether
2D-3D reconstructed models are sufficiently accurate to be
used for clinical-grade preoperative planning [16]. The EOS
imaging system is an emerging imaging technology, provid-
ing low-dose biplanar standing radiographs at a fixed angle
of 90°. Hence, this imaging modality was used as the basis
for our 2D–3D reconstruction task. To this end, we used a
CNN algorithm to perform the reconstruction task. As for the
training data, we created EOS DRRs from a large dataset of
patient CT scans. The 3D models were successfully used for
preoperative planning and yielded similar planning solutions
to the ground truth models. With the separation network, we
additionally contributed to the processing of long-leg stand-
ing radiographs by addressing the issue of superimposition
in the sagittal images. In the separated image of the left leg,
we often observed blurry contours, particularly in the area of
the tibial tuberosity, which is usually overlapped by the right
leg in the original image. This also explains the slightly lower
Dice coefficient for the subsequent reconstruction of the left
side compared to the right side. However, this region is not of
great importance for surgical planning purposes. Kasten et al.
also reconstructed lower limb bones from biplanar radio-
graphs and achieved a slightly higher Dice coefficient for
the tibia [11]. However, they used single-leg radiographs and
thus did not encounter the issue of sagittal superimposition.

Our framework was able to find clinically acceptable 3D
surgical plans for all patients using 2D-3D reconstructed
bonemodels. The achieved fitness values for both the ground
truth and the reconstructed solutions differ only slightly,
which demonstrates the usability of the reconstructed mod-
els for 3D preoperative planning. Furthermore, we calculated
and reported the average differences of the correction angle
as well as the positioning of osteotomy axis, osteotomy
plane and fixation plate between the ground-truth and the
reconstructed solutions. Some of these differences appear
significant, but it should be kept in mind that the underlying
problem is multi-objective and several solutions along the
Pareto front can be considered as optimal.

While MA measurements were accurate for the recon-
structed models through landmark localization, the differ-
ences for TS were significantly larger (mean 4.33°) and
outside the acceptable range. This difference is entirely
attributable to a correspondingly large difference in the plane
that was fitted to the articular surface of the tibia, while the
landmark localization (KJC, AJC) and thus the mechanical
axis measurement were highly accurate. It is known that the
plateau is not a flat plane but has medial and lateral variations
in slope [20], which are difficult to discern in the sagittal pro-
jection [14]. Consequently, accurate 3D reconstruction of the
articular surface from frontal and sagittal projections only is
not possible. Additionally, in OA patients, the plateaus are
oftennot even.Thedifferences inmeasuredTSalso indirectly
affect the orientation of the normal vector of the planned
osteotomy plane, resulting in higher differences in the sagit-
tal projection. Besides complex approached based on deep
learning, a simpler approach could involve the detection a
plane in the biplanar 2D image set, and subsequently use it
for initialization and articular surface point selection in 3D.

While we designed a custom DRR protocol that respected
the EOS imaging geometry, our study is limited by the use
of DRRs, whose appearance differ from real EOS images.
There are various approaches in the literature which will
be leveraged to address this issue in future work. Kasten
et al. trained a CycleGAN-based network for domain adap-
tation [11]. Another group proposedDeepDRR, a framework
for deep-learning-based fast and realistic simulation of flu-
oroscopy and digital radiography from CT scans. Networks
trained on DeepDRRs generalized well to real data with-
out re-training or domain adaptation [18, 19]. Evaluating the
performance of our framework using real EOS radiographs
is part of our future work.

Furthermore, we would like to explore if PSIs created
based on 2D–3D reconstructed bone models can be used as a
surgical navigation technique. PSIs are frequently used nav-
igation aids to ensure an accurate surgical execution of the
preoperative plan. Since PSIs are molded to a patient’s bone
anatomy, they are directly dependent on the accuracy of the
bone model reconstructed from the patient’s image data.

Finally, the standing position of the patients during image
acquisition is not standardized. It is influenced by the instruc-
tions of the radiologist, the physical abilities of the patient and
the magnitude of pain in the knee. Investigating the patient’s
position in the scannerwould be very interesting in the future.

In summary, this study has demonstrated that the recon-
struction of 3D bone models from biplanar radiographs is
sufficiently accurate to be used in the context of 3D preoper-
ative planning of HTO. The precise reconstruction of the TS
remains challenging and needs to be addressed in the future.
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