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Abstract
Purpose Surgical workflow recognition is a challenging task that requires understanding multiple aspects of surgery, such as
gestures, phases, and steps. However, most existing methods focus on single-task or single-modal models and rely on costly
annotations for training. To address these limitations, we propose a novel semi-supervised learning approach that leverages
multimodal data and self-supervision to create meaningful representations for various surgical tasks.
Methods Our representation learning approach conducts two processes. In the first stage, time contrastive learning is used
to learn spatiotemporal visual features from video data, without any labels. In the second stage, multimodal VAE fuses the
visual features with kinematic data to obtain a shared representation, which is fed into recurrent neural networks for online
recognition.
ResultsOur method is evaluated on two datasets: JIGSAWS andMISAW.We confirmed that it achieved comparable or better
performance in multi-granularity workflow recognition compared to fully supervised models specialized for each task. On
the JIGSAWS Suturing dataset, we achieve a gesture recognition accuracy of 83.3%. In addition, our model is more efficient
in annotation usage, as it can maintain high performance with only half of the labels. On the MISAW dataset, we achieve
84.0% AD-Accuracy in phase recognition and 56.8% AD-Accuracy in step recognition.
Conclusion Our multimodal representation exhibits versatility across various surgical tasks and enhances annotation effi-
ciency. This work has significant implications for real-time decision-making systems within the operating room.

Keywords Semi-supervised learning · Multimodal learning · Surgical workflow recognition · Robotic surgery

Introduction

In robot-assisted minimally invasive surgery (RMIS), intra-
operative context-aware assistance has gained significant
attention beyond current passive augmentation, such as pre-
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cise tool control and superior visualization. This support can
enable intelligent scheduling and resource management [1],
surgical trainingplatforms [2], and autonomous robotic assis-
tance [3]. For optimal online surgical assistance, it is essential
to understand the surgical workflow and surgeons’ actions
and intentions at different levels of granularity, such as states,
procedures, phases, steps, activities, gestures, and dexemes
[4]. However, this is a challenging task due to the complexity
of the surgical workflow, the variability among surgeons, and
the diversity of multimodal data sources.

Most existing methods for surgical recognition rely on
supervised learning, which requires costly annotations for
training. Moreover, they are usually limited to single-
modality and/or single-taskmodels,which cannot capture the
holistic aspects of surgery. In contrast, representation learn-
ing aims to learn meaningful and general representations for
multiple tasks by effectively capturing structures and rela-
tionships underlying the data without the need of annotations
[5]. In robotic surgery, visual data provides a comprehen-
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sive view of the surgical procedure, while kinematic data
captures the precise movements and manipulations of the
tools and the surgeon. These modalities contain unique and
complementary information that can enhance surgical scene
understanding. Furthermore, the surgical process is sequen-
tial and multimodal, as the surgeon performs multi-stage
tasks while interacting with different modalities. This struc-
ture is suitable for representation learning that leverages both
temporal and multimodal information.

In this work, we propose a semi-supervised learning
method that combines representation learning with super-
vised classifiers for holistic surgical scene understanding.
Our representation learning method employs time con-
trastive learning to extract spatiotemporal representations
from visual data without any labels, which are then inte-
grated into a shared representation by the multimodal varia-
tional autoencoder (MVAE) considering the complementary
relationships between modalities. This results in a shared
representation that encodes various facets of surgery and
demonstrates its versatility across multi-granularity work-
flow.

Designed for online inference, multimodal integration,
and multi-granularity recognition, our model can provide a
real-time comprehensive understanding of robotic surgery in
contrast to traditional offline models. This capability enables
the integration of extensive online context-aware support,
ranging from time and resourcemanagement based on a high-
level understanding to autonomous robotic assistance that
are adapted to fine-grained gestures. Moreover, our semi-
supervised method effectively addresses the challenge of
limited annotations in surgical applications.

Related work

Surgical workflow recognition

The evolution of surgical workflow recognition began with
supervised graphical models [6], transitioning to deep learn-
ing with unimodal approaches like sequential models [7]
and convolutional neural networks [8]. While foundational,
these models were constrained by their focus on unimodal
data. On the other hand, multimodal models, such as Fusion-
KV [9] with weighted voting, MRG-Net [10] utilizing a
relational graph network, and MA-TCN [11] applying mul-
timodal attention, have achieved high accuracy in gesture
recognition. However, their reliance on labeled data limits
their applicability.

In contrast, semi-supervised models can extract valuable
insights from large unlabeled data or efficiently use them
alongside limited annotations. SurgSSL [12] achieved on-par
performance with fully supervised models, using only 50%
labeled data for surgical workflow recognition, underscor-

ing the importance of capturing sequential patterns. Tanwani
et al. [13] utilize contrastive learning, while Wu et al. [14]
employ cross-modal prediction of kinematic data from opti-
cal flow, to extract meaningful representations. However,
these semi-supervised methods rely solely on visual data.
Even the cross-modal method presented in [14] utilizes mul-
timodal data exclusively during training and operates as a
unimodal model during inference.

Our model stands out from previous works by incorpo-
rating both kinematic and visual data in a semi-supervised
setting. This approach overcomes the limitations of existing
methods that heavily depend on single inputs or fully labeled
data.

Contrastive learning for video understanding

Video understanding without supervision is a challenging
task that requires a framework that can capture both the static
content and the dynamic context of the images. Contrastive
learning is a technique that learns to bring similar samples
closer and push dissimilar ones apart in a latent space. It
has achieved remarkable progress in self-supervised image
recognition. Recent research has extended this approach to
learning spatiotemporal features in video data.

For instance, SeCo [15] learns multiple aspects of video
through inter-frame/intra-frame discrimination and tempo-
ral order validation. TCLR [16] leverages two loss functions
for discriminating between non-overlapping clips from the
same video and between timesteps within the clip’s feature
map to obtain local and global representation. Notably, both
SeCo and TCLR have showcased remarkable performance in
action recognition, a global-level understanding task. Time-
contrastive networks (TCN) [17] learn to find commonalities
in temporal neighbors and differences in temporally distant
points using multiple or single viewpoints. TCN has enabled
reinforcement learning for robot’s human imitation, demon-
strating its ability to capture the sequential flow and detailed
motion of the video.

Method

We consider a multimodal dataset X = {md,t , kld,t ,

krd,t }D,Td
d=1,t=1, containing D demonstrations with a duration

of Td . This dataset comprises visual data md,t and kinematic
data kd,t from the right and left robot arms. For simplicity,
subscripts d and t may be omitted in the rest of the paper.
Our model consists of two components: self-supervised rep-
resentation learning and supervised learning (Fig. 1). First,
the spatiotemporal feature extractor generates visual features
v from the video frame m. Then, MVAE obtains the shared
representation z by combining vwith kinematic data {kl , kr }.
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Fig. 1 Overview of the proposed semi-supervised model for multi-granularity workflow recognition

Finally, z is fed into supervised LSTMs to recognize multi-
granularity workflow.

Spatiotemporal feature extractor

We introduce a single-view version of TCN [17] into the net-
work architecture inspired by [18] to obtain spatiotemporal
properties in robotic surgery. The process starts with the base
encoder f (·), a ResNet50 without the fully connected layer,
which transforms input imagesm into visual features v. Next,
v are further processed by an MLP projection head g(·) and
subjected to L2 normalization, resulting in features b. This
enables us to preserve more information in visual features v
than b [18].

The objective ofTCN is to ensure that a feature vector bd,ta
(anchor) is closer in the latent space to its temporal neighbor
bd,tp (positive) within a positive range rp, than a temporally
distant point bd,tn beyond a margin range rm , using a triplet
loss [19].

Ltriplet =
[
||bd,ta − bd,tp ||22 − ||bd,ta − bd,tn ||22 + α

]
+ (1)

Here, α is a margin that is enforced between positive and
negative pairs, and the loss is averaged over all triplets.
For optimization, TCN needs to recognize the similari-
ties between temporal neighbors and dissimilarities between
distant points. This encourages the model to focus on
temporal variant factors while ignoring static background.
In addition, temporal neighbors are situated closer in the
latent space than distant points, facilitating sequential under-

standing. TCN captures the situation and progression of
manipulated objects, such as the robot and the processed
area.

Multimodal variational autoencoder

We utilize MVAE to project data from M modalities into
a shared latent space. These modalities contain the visual
feature and kinematic data in robotic surgery, denoted as
X = {xm}Mm=1 = {v, kl , kr }, where M equals three. MVAE
extends the ability of standard VAEs to handle multimodal
data sources. It assumes each modality is conditionally inde-
pendent given z. This assumption reflects the complementary
relationships betweenmodalities, with eachmodality captur-
ing a different aspect of the comprehensive surgical situation
represented by z.

In this study, we obtain individual z from each unimodal
encoder and aggregate them into a shared representation z
by a product of experts (PoE) [20, 21]. MVAE is trained
by minimizing the loss function that combines the stan-
dard VAE loss with weight β [22] and its extension loss
for multimodal VAE with weights λm and β [20], preventing
specific modalities from dominating the shared representa-
tion z.

LMV AE (X) =
∑
xm∈X

−Eqφ(z|xm )[log p�(xm |z)]

+βDKL(qφ(z|xm)||p(z))
−Eqφ(z|X)[

∑
xm∈X

λm log p�(xm |z)]

+βDKL(qφ(z|X)||p(z)) (2)
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LSTM classifier

We train LSTMs independently for workflow recognition at
each of the G granularity levels, with workflow labels ygd,t
corresponding to each level. LSTMs capture the sequential
nature of the surgical process from z and predict the corre-
sponding labels. They retain relevant information, update it
with new data, and preserve both short-term and long-term
context, making them suitable for sequential recognition.
LSTMs are trained using cross-entropy losses as discrim-
inative models for online workflow recognition at each
granularity, denoted as p( ygd,t |zd,1:t ).

Experimental setup

We evaluate the proposed model’s performances in multi-
granularity workflow recognition through gesture recogni-
tion on JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS) dataset [23], and phase recognition and step
recognition onMIcro-SurgicalAnastomoseWorkflow recog-
nition on training sessions (MISAW) dataset [24].

Datasets and evaluationmetrics

For gesture recognition, we use Suturing (SU), Knot Tying
(KT), and Needle Passing (NP) tasks from the JIGSAWS
dataset, which were recorded using the da Vinci surgical
system. Eight surgeons, categorized into three skill levels
based on robotic surgical experience, performed each task
five times. The dataset provides synchronized data at 30 Hz,
including kinematic data from two robot arms (Patient-Side
Manipulators: PSMs) and two controllers, as well as stereo
video. Each frame is labeled using 15 common vocabularies
across all tasks. For model training, we used the right cam-
era frames and normalized robot arms data to have zeromean
and unit variance.

Thedataset includes twocross-validation strategies: leave-
one-supertrial-out (LOSO) and leave-one-user-out (LOUO).
LOSO reserves one trial from each user for testing, while
LOUO utilizes one user’s trials for testing. We evaluated our
gesture recognition performance using both cross-validation
methods by frame-wise accuracy (Acc) and edit score
(Edit*). The edit score, computed as the Levenshtein distance
between the true and predicted segments and normalized to
[0,100], assesses segment order rather than timing, penaliz-
ing misordering and over-segmentation [4].

The MISAW dataset, designed for surgical workflow
recognition, includes synchronized stereo video and kine-
matic data from two robot arms at 30Hz. It offers annotations
for 27 demonstrations across three granularities: phase, step,
and activity. We evaluated our model at the phase (3 classes)

and step (7 classes) levels, using balanced application-
dependent accuracy (AD-Accuracy) as in the original paper,
which assigns equal importance to each class and allows for
a transition delay of d = 500ms.

Implementation details

All modules were implemented using PyTorch and trained
independently on an NVIDIA RTXA6000 GPU, with ReLU
activation and theAdamWoptimizer. The same hyperparam-
eters were applied to all experiments.
TCN: It was trained at 3 FPS, with a positive range of 6,
a margin range of 12, a batch size of 128, α of 0.2, and
an embedding layer with 32 dimensions for the projection
head, following [13]. We used a ResNet50 model pre-trained
on ImageNet and added a projection head with hidden lay-
ers {1000, 500} instead of the fully connected layer. It was
trained for 100 epochs with a learning rate of 0.0005 and a
weight decay of 0.01. Features were saved at 30 FPS after
training.
MVAE: It includes dense layers for each robot arm (hid-
den layers: {200, 500}) and visual features (hidden layer:
{1000}), and a shared representation vector with dimension
500. It was trained with β of 0.1, a learning rate of 0.0001,
and a batch size of 256 at 30 FPS. Training was stopped
when the validation loss did not decrease for fifteen epochs
between 25 and 300 epochs.
LSTM: It has a single layer with 300 hidden units, applying
50% dropout to input and output layers. It was optimized
with a learning rate of 0.001, a weight decay of 0.05, and a
batch size of 3 on 70 epochs at 5 FPS and 30 FPS.

Results and discussion

Visualization of latent representations

To evaluate the abilities of TCN and MVAE, their rep-
resentations were projected to 2D using UMAP [25] and
visualized in normalized frame indexes to observe the
sequence and workflow labels, as shown in Fig. 2. The visual
feature v in Fig. 2a and c illustrates TCN’s ability to capture
both the video sequence and gestures, respectively, implying
that our model can effectively break down the surgical pro-
cess into gesture-level components. Figure2b, d and e shows
that MVAE creates solidified clusters for gesture, phase, and
step. These results suggest that the proposed representation
learning can capture the hierarchical workflow without any
labels by effectively integrating and interpreting multimodal
data.
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Fig. 2 UMAP visualization of v and z: a and b gesture labels obtained from TCN and MVAE respectively; c Normalized frame indexes on
JIGSAWS SU; d and e phase and step labels on MISAW

Gesture recognition

Comparison with other online applicable models

We compared the performance of our semi-supervisedmodel
in gesture recognition with state-of-the-art models that can
be applied to online scenarios, where future data are not
available. To ensure a fair comparison, we used LOUO cross-
validation for supervised models and LOSO cross-validation
for semi-supervised models (Table 1).

Compared with the supervised models, our model outper-
forms the unimodal models in accuracy at 5 and 30 FPS
on SU, even though it is semi-supervised. The effective-
ness of a multimodal representation is visible in the accuracy
improvement compared to a Forward LSTM [7], which only
uses kinematic data. When compared with semi-supervised
models, the proposed approach surpassed them in all tasks
by approximately 3% or more, demonstrating its superior-
ity within online semi-supervised approaches. Furthermore,
multimodal models like ours generally outperformed uni-
modal ones, underscoring the advantages of multimodal
integration, which considers the relationship betweenmodal-
ities.

Note that the data show a performance decrease onKT and
NP, with accuracies dropping by 7.8% to 19.0% compared
to SU, alongside greater variability. This mirrors the trend of
lowerKTandNPperformance found inprevious research [6],
worsened by non-optimized hyperparameters and the repre-
sentation’s alignment challenges in complex tasks. Similarly,
segmental coherence represented by the edit score could be
affected by several factors. A higher frame rate of recognition
can increase the likelihood of introducing noise, disrupting
segmental coherence. Edit score is affected by noise, as even
one wrong prediction can become an additional segment and
lower the score considerably. Only downsampling the FPS
can provide large benefit, as shown in Table 1, where using
5 FPS (as in [7, 8, 11]) instead of 30 FPS improved edit
scores. Offline inference, which is excluded in this com-
parison due to the use of the entire sequence, could also
enhance prediction consistency and performance compared
to online inference. Our task-agnostic representation, which
encompasses information for various tasks, contributes to
the instability in segmental prediction, leading to our high
variance. Further analysis of the NP task and details of com-
parison targets are available in the supplementary material.

The proposed model also often fails to recognize the
gestures G9 and G10 in SU and NP. The proposed repre-
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Table 1 Comparison of gesture recognition performance with online applicable models on JIGSAWS (mean and standard deviation, %)

Model Condition SU KT NP

Type/Valid/Mod Acc Edit* Acc Edit* Acc Edit*

SC-CRF [6] Sup/LOUO/Kin 81.7 – 79.0 – 74.8 –

Forward LSTM [7] Sup/LOUO/Kin 80.5(6.2) 75.3 – – – –

3D-CNN [8]1 Sup/LOUO/Vis 81.8 58.7 – – – –

Fusion-KV [9] Sup/LOUO/ 86.3 87.2 – – – –

Kin, Vis

MRG-Net [10] Sup/LOUO/ 87.9(4.2) 89.3(5.2) 88.1(3.8) 87.0(6.8) – –

Kin, Vis

MA-TCN [11] Sup/LOUO/ 83.4(5.8) 81.6(7.6) – – – –

(casual) Kin, Vis

Ours (top: 30 FPS Semi/LOUO/ 83.3(8.3) 61.8(17.3) 75.5(14.6) 51.7(18.2) 64.3(14.0) 37.2(12.7)

bottom: 5 FPS) Kin, Vis 82.4(9.2) 76.7(15.2) 77.8(12.8) 63.9(20.9) 63.0(13.2) 59.4(13.2)

Motion2vec [13]2 Semi/LOSO/Vis 84.4 – – – – –

Cross-modal [14]3 Semi/LOTO/ 68(3) – 64(3) – 64(3) –

(Kin), Vis

Ours (top: 30 FPS Semi/LOSO/ 87.9(6.6) 71.5(15.9) 77.2(13.8) 53.8(20.3) 71.5(17.3) 47.7(19.4)

bottom: 5 FPS) Kin, Vis 87.3(6.9) 82.9(14.1) 78.4(15.4) 67.2(23.0) 71.8(17.3) 65.7(17.3)

The bold values indicate the highest performance among the models that use the same cross-validation strategy within each task (SU, KT, or NP)
‘Sup’: Supervised learning, ‘Semi’: Semi-supervised learning, ‘Kin’: Kinematic data, ‘Vis’: Visual data,
1For the online condition, the model without looking ahead was selected
2Result of a KNN classifier for the online condition and average of 4 iterations on the LOSO test set
3Segmental classification on leave-one-trial-out cross-validation, Kin is only used for training

Table 2 Gesture recognition performance of different input modalities
on JIGSAW SU for LOUO cross-validation at 30 FPS

Modalities Acc Edit*

l-PSM, r-PSM 73.4 41.7

Visual 75.6 52.6

Visual, l-PSM 80.9 60.8

Visual, r-PSM 81.5 66.1

Visual, l-PSM, r-PSM 83.3 61.8

l-PSM: left-PSM, r-PSM: right-PSM
The bold values indicate the highest performance among different input
modalities

sentation learning may overlook them due to their under-
representation: G9 and G10 appear in only 6.7% and 1.7%
of SU frames, and 5.9% and 0.2% ofNP frames, respectively.
Training with a larger, unlabeled dataset or balanced classifi-
cation loss may improve our model’s ability to identify such
gestures.

Ablation analysis for multimodal integration

To evaluate the effect of multimodal integration, we per-
formed five LOUO cross-validations on JIGSAWS SU with
different input modalities for MVAE. Table 2 shows the
performance for various modality combinations, indicat-

ing that MVAE effectively takes advantage of multimodal
data. This observation is consistent with PoE’s property that
aggregation of more modalities leads to a sharper poste-
rior distribution [5]. Adding {l-PSM} to {Visual, r-PSM}
improved accuracy but reduced the edit score. This suggests
that while additional information enhances recognition of the
current scene, it may introduce noise unrelated to workflow,
disrupting the coherence of the segmented output. Strate-
gies such as FPS reduction or post-processing based on prior
knowledge can mitigate this issue and should be carefully
tailored and applied to specific applications to ensure stable
segmental consistency.

Effect of decreasing the amount of annotation

To showcase the performance with limited annotations, we
experimented using LOUO cross-validation, which involved
fewer labeled demonstrations for training.We trained the rep-
resentation learning components with the entire data (w/o
annotation) and trained LSTM with varying amounts of
annotation on JIGSAWS SU. Our findings show that with
annotations from only 15 demonstrations, roughly half of
the total training data, the model consistently maintained a
high accuracy of 81.2% (Fig. 3). This accuracy is only 2.1%
lower than the 83.3% achieved with the entire dataset and
still comparable to the supervised models in Table 1. These
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Fig. 3 Effect of the amount of labeled data used for training on the
JIGSAW SU for LOUO cross-validation at 30 FPS

Table 3 Comparison of phase and step recognition performance on
MISAW

Model (Team) Networks Mod AD-Accuracy

Phase Step

UniandesBCV SlowFast,CNN V 89.45 60.21

Wr0112358 CNN V 91.60 63.74

MedAIR MRG-NET [10] K,V 96.53 84.02

IMPACT CNN K,V 80.66 46.48

Ours (30 FPS) CNN,VAE,RNN K,V 84.03 56.78

The bold values indicate the highest performance among models
‘K’: Kinematic data, ‘V’: Visual data Refer to the supplementary mate-
rial and [24] for details

results suggest a high annotation efficiency, which enables
improved generalizability when large datasets with partial
labeling are available, thereby reducing the need for costly
annotations.

Phase and step recognition

To assess higher granularity levels than gestures, we bench-
marked our phase and step recognition against models
presented in theMISAWreport [24] using a hold-outmethod.
These models, employing supervised learning techniques,
include both uni-task and multi-task methods. Our compar-
ison focused exclusively on uni-task models to eliminate
multi-task learning effects, aiming for a direct performance
assessment at individual granularity level (Table 3).Although
our performance did not consistently surpass these super-
vised models, it was still competitive. This result shows that
our task-agnostic representation can retain high-level work-
flow informationwithout being limited to fine-grained levels,
leading to a more holistic surgical understanding.

Figure4 shows the AD-Accuracy obtained for the phase
and step recognition tasks depending on participants’ skills.

Fig. 4 Test AD-Accuracy on MISAW: dash lines represent mean and
sd

Phase recognition excelled in half the demonstrations (5 in
total) with AD-Accuracy over 95%, yet the lowest score was
around 50%with no notable difference between surgeons and
students. On the other hand, in step recognition, there was
a clear distinction: Student demonstrations average 63.4%
AD-Accuracy,while surgeondemonstrations average 46.8%.
These results highlight a shortfall in generalization for certain
instances and skill levels.

Training data of the MISAW dataset comprises 7 demon-
strations by surgeons and 10 by students, with students
exhibiting longer sessions. Surgeons’ videos average 2.5min
in length, while students’ average 4.0min. This relatively
small dataset size, combined with great variability in skill
and instance differences, likely contributes to the increased
instability of the proposed model. Although self-supervised
learning methods originally aim to enhance generalizability
from large unlabeled data, high variability in a small dataset
poses a significant challenge to find underlying general pat-
terns from the data. In contrast, supervised learning methods
can mitigate the effect of variability with explicit label guid-
ance, resulting in a performance difference compared to our
self-supervised learning.

Conclusion and future work

In this study, we developed a multimodal self-supervised
representation learning method capable of understanding
surgicalworkflowacross various granularity levels, fromges-
tures to phases. The performance achieved across these tasks
is comparable to fully supervised models designed for spe-
cific tasks, highlighting the versatility of our representation.
This capability gives the model a broader perspective and
allows for intelligent surgical platforms that provide exten-
sive context-aware support, ranging from decision-making
and resource management to autonomous robotic assistance
and error detection.
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Our approach holds promise in addressing surgical anno-
tation challenges. It maintains high performance with par-
tially labeled data and does not rely on labels for repre-
sentation learning. This enables the use of large unlabeled
data and continuous performance improvement. Another key
benefit is the ability to handle multiple modalities, promot-
ing enhanced expressiveness and adaptability. This capability
can be extended to integrating new modalities, such as sur-
geon gaze, voice, and other interface information. It is also
useful for handling information from multiple robot arms,
which is invaluable in scenarios where a human operates two
or more robots simultaneously, or when additional robots
provide autonomous assistance.

Nevertheless, it is important to note that some tasks may
still exhibit performance gaps between supervised models
and theproposed semi-supervisedmodel, especially in highly
complex scenarios. The limited size of datasets like JIG-
SAWS and MISAW currently hinders a full exploration
of self-supervised methods’ capabilities. Current robotic
surgical setups allows for rich self-supervised signals, includ-
ing sequential properties and synchronization of diverse
multimodal data. Developing larger multimodal workflow
datasets, expanded through partial labeling, will benefit self-
supervised methods and enable the application of successful
strategies from computer vision and natural language pro-
cessing. Future research should explore transfer learning
and fine-tuning schemes, to enhance generalizability and
applicability. Additionally, our experiments were limited to
benchmark tests. We also plan to collect real-world datasets
and examine thismodel’s behavior and responsiveness in real
time.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-024-03101-
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