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Abstract
Purpose Motor neuron disease (MND) causes damage to the upper and lower motor neurons including the motor cranial
nerves, the latter resulting in bulbar involvement with atrophy of the tongue muscle. To measure tongue atrophy, an operator
independent automatic segmentation of the tongue is crucial. The aim of this study was to apply convolutional neural network
(CNN) to MRI data in order to determine the volume of the tongue.
Methods A single triplanar CNN of U-Net architecture trained on axial, coronal, and sagittal planes was used for the
segmentation of the tongue in MRI scans of the head. The 3D volumes were processed slice-wise across the three orientations
and the predictions were merged using different voting strategies. This approach was developed using MRI datasets from 20
patients with ‘classical’ spinal amyotrophic lateral sclerosis (ALS) and 20 healthy controls and, in a pilot study, applied to
the tongue volume quantification to 19 controls and 19 ALS patients with the variant progressive bulbar palsy (PBP).
Results Consensus models with softmax averaging and majority voting achieved highest segmentation accuracy and out-
performed predictions on single orientations and consensus models with union and unanimous voting. At the group level,
reduction in tongue volume was not observed in classical spinal ALS, but was significant in the PBP group, as compared to
controls.
Conclusion Utilizing singleU-Net trainedon three orthogonal orientationswith consequentmergingof respective orientations
in an optimized consensusmodel reduces the number of erroneous detections and improves the segmentation of the tongue. The
CNN-based automatic segmentation allows for accurate quantification of the tongue volumes in all subjects. The application
to the ALS variant PBP showed significant reduction of the tongue volume in these patients and opens the way for unbiased
future longitudinal studies in diseases affecting tongue volume.
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Introduction

Amyotrophic lateral sclerosis (ALS), themost common adult
motor neuron disease (MND), is characterized by a progres-
sive loss of motor neurons that leads to progressive pareses,
respiratory failure, and death mostly within 3 to 5 years after
its onset [1]. Bulbar dysfunction, characterized by tongue
wasting and fasciculation, accompanied by flaccid dysarthria
and dysphagia, is emerging in the vast majority of patients
during the advanced phases of the disease [1, 2], as onemajor
factor that determines a patient’s prognosis [3]. Prognostic
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biomarkers ofALSare needed, particularly of bulbar involve-
ment, which is one of the key determinants of long-term
prognosis and survival in this disorder [4]. Progressive bul-
bar palsy (PBP) is an ALS variant in which patients show
an isolated bulbar onset with a progressive affection of the
lower cranial nerves including tongue atrophy [5] before they
develop spinal symptoms of MND.

Quantitative noninvasive imaging-based assessment of the
severity of tongue volume loss requires conduction of lon-
gitudinal studies measuring several tongues features with
specialized instruments including magnetic resonance imag-
ing (MRI) or high-resolution ultrasound. Several case reports
and few systematic imaging studies have suggested structural
tongue measures in the course of ALS [3, 6, 7]. Specifically,
T1 sequences were used to assess atrophy, fibrosis and fatty
degeneration, and a previous large-scale study suggested that
in vivo sonography and region-of-interest (ROI)-based MRI
tonguemeasures could aid as biomarkers to reflect bulbar and
motor function impairment in ALS [7]. Although it has been
previously shown by ultrasound that the tongue thickness in a
group of 18 ALS was lower than that of healthy controls [3],
tongue size and shape can significantly vary across subjects
and longitudinal studies need to be performed to investigate
the tongue muscle atrophy in diseases like ALS.

In order to access measurements like volume, thickness,
or shape of a given structure, the anatomy needs to be seg-
mented, which is a time-consuming and error-prone process
when performed manually. To reduce the time and subjec-
tivity of medical segmentations and consequently improve
reliability, automatic segmentation methods based on deep
convolutional neural networks (CNNs) were used [8]. It has
been shown by the authors of the nnU-Net, i.e., a framework
relying on 2D and 3D U-Nets that automatically configure
themselves [9] that plain end-to-end CNNs with U-Net like
architectures perform exceptionally well in most biomedical
image segmentation tasks.

After several studies based on CNNs for MRI and ultra-
sound images of the vocal tract for understanding speech
production [10–14], more studies on using semantic seg-
mentation based on deep CNNs for tongue segmentation
have been recently conducted, and the effect is better than
most of the traditional image segmentation methods [15, 16].
However, there are still limitations in those methods, e.g.,
including image preprocessing such as image enhancement
[17] making the whole segmentation process more complex
or brightness discrimination [18] reducing the ability of gen-
eralization as a deep learning-based model.

The aim of the present study was to adapt the CNNmodel
of U-Net architecture to MRI data of the tongue (which are
included in routinely acquired volume-rendering scans of
the human head) with the final goal to obtain an automated
pipeline for determination of tongue atrophy in neurologic
diseases. In our approach, the T1-weighted MRI images

from the 3D volumes are processed slice-wise across the
axial, sagittal, and coronal planes with the CNN of U-Net
like architecture, and the predictions from the three orthogo-
nal orientations are merged using different voting strategies
integrating more 3D information into the 2D model. Com-
pared to the original triplanar U-Net approach where three
orientation-specific U-Nets are trained [19], we utilize a sin-
gle U-Net which is trained on axial, sagittal, and coronal
slices [20], allowing to share common features across orienta-
tions. Furthermore, we investigate the sensitivity of different
voting strategies for merging the predictions from different
orientations. We developed our approach using 40 datasets
available with reference segmentation of the tongue (20 from
healthy controls and 20 from MND patients diagnosed with
ALS) and applied it in a group comparison study compris-
ing further 19 controls and 19 MND patients diagnosed with
PBP.

Methods

MRI dataset

Seventy-eight T1-weighted whole head MRI datasets
acquired on a 1.5 TMRI scanner (Symphony, Siemens Med-
ical, Erlangen, Germany) with a T1-weighted 3D MPRAGE
sequence as a standardized clinical MRI examination pro-
tocol for patients with MND were available for this study.
Datawere obtained from theMRI database of theDepartment
of Neurology, University of Ulm, Germany. The respective
ethics application includes the recording and the analysis of
MRI data, irrespective of the analysis technique; no addi-
tional MRI scans have been performed for the current study.
The field-of-view of the T1-weighted images of the head
usually also covers the tongue so that these images could
be used for segmentation of the tongue. T1-weighted scans
that did not cover the tongue were not used in this study. In
addition, motion artifacts due to tongue movement could not
be excluded although subjects were not instructed to keep
the tongue still. Figure 1 provides overview of all available
datasets with the corresponding demographic data for each
group.

Forty datasets including 20 healthy subjects without any
neurologic/psychiatric disease or other medical condition
and 20 patients with sporadic ALS who were diagnosed with
definite, probable, or possible ALS according to revised E1
Escorial criteria [22] recruited in the outpatient and inpatient
settings of the Department of Neurology, University of Ulm,
Germany were available with the corresponding reference
segmentation of the tongue. For methodological develop-
ment, the data samples from controls and ALS patients were
randomly split into training and test datasets at a ratio of
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Fig. 1 Overview of all available
datasets subdivided into data
used for method development
and method application in a
group comparison study.
Demographic characteristics for
all data groups are listed in the
respective table.
ALS-FRS-R—revised ALS
functional rating scale [21],
ALS—amyotrophic lateral
sclerosis patients,
PBP—progressive bulbar palsy
patients, CNTRL—controls

70%/30% at subject level, resulting in 14 training and 6 test
datasets from each group.

Further, 19 patients diagnosed with PBP, who met the
diagnostic criteria for PBP, and 19 controls were investigated
in the group comparison study. The MRI data were part of
a previous study with a different research focus [23]. All
PBP patients showed an isolated bulbar onset with a progres-
sive affection of the lower cranial nerves causing dysarthria
and/or dysphagia, tongue wasting and fasciculation before
they developed spinal MND symptoms. To be eligible, sub-
jects had to fulfill the following criteria: no family history
of MND, no clinical diagnosis of frontotemporal dementia,
no other major systemic, psychiatric or neurologic illnesses,
no history of substance abuse. Further mandatory criteria for
inclusion were negative tests for other neuromuscular dis-
eases and for infections of the central nervous system, and
routine MRI scans excluded any brain abnormalities indi-
cating a different etiology of the clinical symptoms. These
data were available without the corresponding ground truth
labels.

Preprocessing and generation of ground truth
segmentations

For image preprocessing and creating a ground truth label the
software package Tensor Imaging and Fiber Tracking (TIFT)
was used, expanded by a volumetric extension package [24].
In the preprocessing pipeline, original 3D MPRAGE vol-
umes were first rescaled to a 256 × 256 × 256 matrix with
an isotropic resolution of 1.0 × 1.0 × 1.0 mm3. After rescal-
ing, the data were reoriented with the palatal tip in the center
of the matrix and with the nose pointing to the right in the
sagittal image. Data were intensity-normalized with z-score
normalization based on the mean and standard deviation of
the means of all subjects who participated in the study. The

mean intensity value for the individual subjects was deter-
mined in an area defined by a matrix of 128 × 128 × 128
voxels with the tongue as the center (note: this area was the
same for all subjects). A visualization is provided in Fig. 2.
The segmentation was then carried out in a rescaled matrix
of 256 × 256 × 256 voxels with a resolution of 0.5 × 0.5
× 0.5 mm3. The segmentation of the ground truth data of
the tongue was performed manually using a 3D intensity
threshold-based marking tool. Data were displayed in paral-
lel in axial, sagittal, and coronal views and the tongue was
manually marked (Fig. 2, right) by a 3D painting/drawing
tool implemented in the TIFT software platform by a trained
operator (HPM) and controlled by amedical expert (JK). The
number of slices covering the tongue varied between sub-
jects and orientations with an average number of 120 slices
in axial, 95 slices in sagittal, and 143 slices in coronal orien-
tation.

Model training

For trainingweusedU-Netmodel implemented fromscratch.
In contrast to original architecture with five convolutional
blocks on each branch, the number of feature channels in
the contracting path was reduced to 32, 64, 128, 256, and
512, respectively. To increase the network generalization and
reduce overfitting, a dropout layer was applied after repeated
3 × 3 convolutional layers with ReLU activation in each
downsampling step. The modified U-Net architecture with
the corresponding layers’ settings is shown in Fig. 3.

The training was performed along 50 epochs using early
stopping where the training was stopped when the validation
loss was observed to have ceased improving for 10 consec-
utive epochs with a batch size of 16 images per pass. The
loss function was based on the categorical cross entropy
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Fig. 2 Preprocessing pipeline. The original MPRAGE images were
(if necessary) rescaled to 1.0 × 1.0 × 1.0 mm3 and reoriented with
the tongue in the center of the dataset. After intensity normalization

segmentation was performed in a 256 × 256 × 256 matrix (resolution
0.5 × 0.5 × 0.5 mm3). The central sagittal slices are displayed

Fig. 3 Modified U-Net architecture. Each brown box corresponds to a
multi-channel feature map with the number of channels denoted on top
of the box and x–y-size provided at the left edge of the box.White boxes

represent copied feature maps. Arrows denote different operations with
the corresponding settings

and Adaptive Moment Estimation (Adam) with the learn-
ing rate of 10–4 and remaining hyperparameters kept with
their default Keras values was used as the optimizer. Mean
Intersection over Union (IoU) was used as metric to evaluate
the model. Fivefold cross-validation strategy was applied for
training, where 20% of available data was hold-out at each
fold as validation set.

Inference

For inference, the weighted ensemble average of all fivefold
models with the fixed weights, i.e., the validation IoU at each
fold, was used for 2D slice-by-slice segmentation of axial,
sagittal, and coronal images, respectively (Fig. 4).

Resulting axial, sagittal, and coronal predictions were
merged using four different voting strategies to produce the
final segmentation mask. In addition to softmax averaging

with equal weights as a baseline approach [19], we com-
pared three different voting strategies in order to find the
optimal balance of recall and precision. For these approaches,
we first thresholded the softmax scores of each of the three
orientations to obtain hard predictions. Then, the following
strategies were applied: the exact segmentation of a tongue
was defined as the union of the corresponding positive voxels
across (a) at least one orientation prediction (union); (b) at
least two orientation predictions (majority); (c) all orienta-
tion predictions (unanimous voting).

Evaluationmetrics

To evaluate the introduced approaches, performance met-
rics such as precision, recall, and the principal segmentation
metric, i.e., Dice score which is equivalent to F1 score, were
calculated via the true positives (TP), false positives (FP),
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Fig. 4 Segmentation pipeline using the triplanar U-Nets m0, …, m4
trained on slices from the three orthogonal planes in fivefold cross-
validation process. For every individual orientation the predicted
probability vectors at each fold are weighted with the corresponding

fixed weights and averaged to obtain final softmax score. In the final
step, the predictions of the individual orientations are merged to yield
the final segmentation

and false negatives (FN). Further, ground truth tongue vol-
umes and tongue volumes predicted by different approaches
were compared applying a paired Student’s t test according to
Shapiro–Wilk test for normality (p-value < 0.05was assumed
statistically significant). Finally, we accessed the differences
between tongue volumes in the control and the PBP group
applying unpaired t test or Mann–Whitney U rank test as
appropriate depending on the results of Shapiro–Wilk test.

Results

While having the highest number of TP among all investi-
gated prediction strategies, the most inclusive strategy, i.e.,
union, achieved the best recall (0.93 on average) due to signif-
icantly lower number of FN, but a very low precision (0.78)
given by the large number of FP, resulting in an overall Dice
score of 0.85. The Dice score for very restrictive, unanimous,
votingwas similar (0.85) having the highest precision of 0.92
(due to the lowest number of FP), but the lowest recall of
0.80 (due to the highest number of FN). Softmax averaging
and majority voting performed best in terms of segmentation
accuracy (Dice score of 0.88) due to similarly high precision
(0.88) and recall (0.88), outperforming two other merging
strategies and improving predictions on single orientations.
These results are summarized in Table 1.

Qualitative results from a single MRI slice of ALS patient
confirmed results of the confusion matrices and are summa-
rized in Fig. 5. All models provided similar number of true
predictions (magenta overlay in Fig. 5). While predicting

less false positives (blue overlay) than e.g., the axial model
only or the consensus model with union voting and missing
very little number of positives (yellow overlay) as compared
to e.g., the consensus model with unanimous voting, con-
sensus models with softmax averaging and majority voting
performed best.

Differences in volume quantification between each
approach and ground truth in the test dataset subdivided into
control and ALS subgroups (6 subjects each) are demon-
strated in Fig. 6a. Very good accordance was observed
between ground truth tongue volumes and predictions in both
ALS and controls with consensus models with softmax aver-
aging and majority voting, which obviously outperformed
predictions on individual orientations. Highly significant
overestimation of tongue volumes in comparison to ground
truth in both groups was observed for the consensus model
with union voting and underestimation with unanimous vot-
ing, especially in the ALS group. The differences in tongue
volumes between controls’ and ALS patients’ test groups
with either approach were relatively small and statistically
not significant.

The analysis at the group level using the best performing
consensus models with softmax averaging and majority vot-
ing revealed a significant reduction in the quantified tongue
volume at p � 0.002 in PBP patients (91 ± 16) versus con-
trols (106 ± 8), even in this rather low sized data sample of
19 subjects per group (Fig. 6b).
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Table 1 True positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), as well as calculated performance metrics (mean
precision, mean recall, and mean F1 score) achieved with predictions on single axial, sagittal, and coronal orientations and after application of
consensus models with different merging strategies (softmax averaging, union, majority, and anonymous voting) calculated on 12 test datasets
consisting of 6 controls and 6 ALS patients

Axial Sagittal Coronal Softmax Union Majority Unanimous

TP × 105 6.75 ± 1.20 6.54 ± 1.21 6.54 ± 1.19 6.68 ± 1.22 7.08 ± 1.28 6.66 ± 1.21 6.09 ± 1.13

TN × 105 159 ± 1.43 159 ± 1.63 159 ± 1.32 159 ± 1.43 158 ± 1.54 159 ± 1.42 160 ± 1.40

FP × 104 13.0 ± 4.11 11.2 ± 6.74 9.29 ± 3.58 8.95 ± 4.66 19.4 ± 5.65 8.99 ± 4.61 5.09 ± 3.29

FN × 104 8.87 ± 5.74 11.0 ± 6.40 10.9 ± 6.37 9.58 ± 6.17 5.53 ± 3.92 9.77 ± 6.22 15.5 ± 8.04

Precision 0.84 ± 0.05 0.86 ± 0.07 0.87 ± 0.05 0.88 ± 0.06 0.78 ± 0.06 0.88 ± 0.06 0.92 ± 0.05

Recall 0.89 ± 0.06 0.86 ± 0.07 0.86 ± 0.07 0.88 ± 0.07 0.93 ± 0.04 0.88 ± 0.07 0.80 ± 0.09

F1 score 0.86 ± 0.03 0.86 ± 0.02 0.86 ± 0.03 0.88 ± 0.03 0.85 ± 0.03 0.88 ± 0.03 0.85 ± 0.04

The best performing method is displayed in “bold”

Fig. 5 Visual results from a
single axial slice of an ALS
patient from the test group. Each
image represents the overlay of
the ground truth tongue mask and
predicted mask returned by the
axial model as well as consensus
models with softmax averaging
of three respective orientations,
union, majority, and unanimous
voting on the respective axial
MRI slice. Color coding is as
follows: matching pixels between
ground truth tongue mask and
predicted tongue mask with
either approach are shown in
magenta, false positives are
shown in blue, and false
negatives are shown in yellow

Discussion

Accurate delineation of the tongue from low-contrast medi-
cal MR images of soft tissue remains a challenge, due to the
lack of definitive boundary features separating many of the
adjacent soft tissue [25]. Different from the conventional seg-
mentation tasks in nature scene, tongue segmentation is more
challenging because of the following issues: (1) large varia-
tions of tongue appearance for different patients while higher
precision requirement; (2) data imbalance, e.g., small parts
of foreground region (tongue body) compared with the back-
ground region; and (3) hard sample mining, e.g., lip pixels as
the hard samples is hard to be segmented from tongue pix-
els because the similar appearances and close touch between
them [15]. Recent studies demonstrated the applicability of

AI methods in tongue segmentation [14, 26]. MRI is a use-
ful modality for the noninvasive quantification of the tongue
volume for longitudinal assessments of the muscle atrophy
associated with the disease progression e.g., in patients with
MND [7] who often present with tongue atrophy as a bul-
bar sign. Thus, an automatic method providing segmentation
accuracy of the tongue comparable to that of an expert can be
highly beneficial to reduce manual reading time and efforts.

In this methodological pilot study, we approach this chal-
lenge presenting a CNN-based method using single U-Net
trained on three orthogonal orientations with consequent
merging of respective orientations in a consensus model
using different voting strategies. Training of a triplanar net-
work as opposed to training of three orientation-specific
networks requires that all slices have identical dimensions
whichwe have ensured by resampling the volume to a regular
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Fig. 6 Tongue volume quantification using different prediction strate-
gies. a Bar plot comparing average tongue volumes in ALS patients’
(light red bars—prediction, dark red bars—ground truth) and control’s
(light blue bars—prediction, dark blue bars—ground truth) groups from
the test dataset consisted of 6 subjects each quantified with different
prediction strategies. *(p < 0.05), **(p < 0.005) significance in volume
quantification between either approach and ground truth was calcu-
lated using paired Student’s t test. b Bar plot comparing average tongue

volumes of 19 PBP patients and 19 healthy controls quantified with
consensus models with softmax averaging (light red and light blue bar,
respectively) and majority voting (dark red and dark blue bar, respec-
tively) with black error bars denoting standard deviations. **(p < 0.005)
significance in volume quantification between both groups with either
approach was calculated using unpaired Student’s t test

cube in the preprocessing step. Further,wehave observed that
single orientation predictions tend to containmany erroneous
detections, hence we applied different merging strategies of
individual orientations in order to potentially reduce both the
numbers of false positives and false negatives and to increase
the segmentation accuracy. The most restrictive unanimous
merging strategy implying that only pixels that had been
confirmed in all three orientations are accepted has been pre-
viously suggested to be a key factor for the good performance
of lesion segmentation [20]. In our study, unanimous voting
strategy achieved the highest precision, i.e., most of the pix-
els predicted as tongue were true predictions. However, this
precision gain was outweighed by the loss in recall showing
that this approach missed pixels from the tongue. The oppo-
site approach with union of all orientations achieved very
high recall at the contrary, but obviously is limited by the
low precision. As a result, both approaches yield significant
deviation in segmented tongue volume compared to unbiased
ground truth. Softmax averaging of predicted probabilities
(which is equivalent to merging with majority voting in case
of equal weights for the three respective orientations) per-
formed best, balancing precision and recall better than other
models and achieved an average Dice coefficient of 0.88.
Very good accordance between ground truth tongue volume

and tongue volume provided by consensus models with soft-
max averaging and major voting was achieved in our test
dataset, outperforming all other strategies at the group level.

In our datasets from ALS patients with ‘classical’ spinal
manifestation on the one hand and patients with the ALS
variant PBP with prominent bulbar syndrome including
hypoglossus nerve involvement with consecutive tongue
affectation on the other hand, plausible results could be
obtained. Using the introduced automatic approach, the
assessments in the ‘classical’ spinal ALS showed no signifi-
cant results versus controls with respect to tongue volumes.
These data are in accordancewith previous studies, including
a study in 206 ALS patients in which the MRI analyses of
the tongue for different parameters including sagittal tongue
area resulted in only small effect sizes [7]. Obviously, the
variability of the tongue involvement as one part of the bul-
bar syndrome is high in ‘classical’ spinal ALS. In contrast, a
highly significant difference in tongue volume was obtained
between PBP patients and healthy controls in our study, even
though high variability of tongue volumes was also observed
at cross-sectional level. In this group with prominent bul-
bar symptoms, tongue involvement is a major element of the
clinical presentation.
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Conclusions

A CNN model of U-Net like architecture was success-
fully adapted for segmentation of the tongue from routinely
acquired MRI scans of the human head. The training on
three orthogonal orientations with consequent merging of
respective orientations in a consensus model allowed for
an automated determination of atrophy of the tongue at the
group level. That way, the added value of this study is the
future use of the developed pipeline in longitudinal clini-
cal studies for the detection of tongue atrophy in neurologic
diseases. To this end, not only larger patient groups have
to be investigated, but correlation analyses have to follow
with clinical (and perhaps other technical) markers of dis-
ease severity and longitudinal progression.More specifically,
the structure/volume of the tongue will have to be correlated
with tongue function assessments including tongue move-
ment ability and swallowing function.
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