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Abstract

Purpose Endoscopic pituitary surgery entails navigating through the nasal cavity and sphenoid sinus to access the sella using
an endoscope. This procedure is intricate due to the proximity of crucial anatomical structures (e.g. carotid arteries and optic
nerves) to pituitary tumours, and any unintended damage can lead to severe complications including blindness and death.
Intraoperative guidance during this surgery could support improved localization of the critical structures leading to reducing
the risk of complications.

Methods A deep learning network PitSurgRT is proposed for real-time localization of critical structures in endoscopic
pituitary surgery. The network uses high-resolution net (HRNet) as a backbone with a multi-head for jointly localizing critical
anatomical structures while segmenting larger structures simultaneously. Moreover, the trained model is optimized and
accelerated by using TensorRT. Finally, the model predictions are shown to neurosurgeons, to test their guidance capabilities.
Results Compared with the state-of-the-art method, our model significantly reduces the mean error in landmark detection
of the critical structures from 138.76 to 54.40 pixels in a 1280 x 720-pixel image. Furthermore, the semantic segmentation
of the most critical structure, sella, is improved by 4.39% IoU. The inference speed of the accelerated model achieves 298
frames per second with floating-point-16 precision. In the study of 15 neurosurgeons, 88.67% of predictions are considered
accurate enough for real-time guidance.

Conclusion The results from the quantitative evaluation, real-time acceleration, and neurosurgeon study demonstrate the
proposed method is highly promising in providing real-time intraoperative guidance of the critical anatomical structures in
endoscopic pituitary surgery.

Keywords Surgical scene understanding - Segmentation - Landmark detection - Pituitary tumour

Introduction the brain close to critical nerves and vessels [1, 2]. Tumours
formed on this gland may lead to symptoms such as vision
The pituitary gland secretes hormones essential for support-  loss and changes in bodily function [3]. Endoscopic pituitary

ing human life. It is a pea-sized gland found at the base of  surgery is the gold-standard method for removing pituitary
tumours [3]. With the assistance of an endoscope to visu-
59 Zhehua Mao alize the procedure, surgeons enter the sella through the
z.mao@ucl.ac.uk nasal cavity, with the aim of maximizing tumour resection
whilst minimizing collateral damage to critical surrounding
anatomical structures [3]. Identifying these critical structures
is challenging, as the structures are located behind the sphe-
noid bone so their position can only be inferred from the their
imprints on the bone (see Fig. 1) [1, 2]. Failure to distinguish
the safe sella region, behind which the tumour is located,
from the other structures may lead to adverse effects [2].
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During the surgery, the most common way to locate these
anatomical landmarks involves using an optical tracking sys-
tem [4]. This system registers the patient’s head to a 3D
magnetic resonance image before the operation, and then
a tracked pointer is used to identify the specific areas of the
sella and landmarks of other critical structures on the sphe-
noid bone [4]. However, if the surgeon’s view is obstructed
by blood or if they remove and then replace the endoscope
in the sphenoid sinus, they may need to re-identify these
critical anatomical structures. Moreover, this process is time-
consuming, disrupts surgical workflow, and can also bring in
potential risks [2, 5].

Deep learning encoder—decoder architectures find exten-
sive application in tasks such as image segmentation and
landmark detection [6]. Convolution neural networks (CNN5s)
are often used in the encoder phase to extract features from
images, progressively reducing the resolution of the feature
maps. Subsequently, the decoding phase involves gradual
image reconstruction through upsampling or deconvolution.
In [7], apyramid scene parsing network (PSPNet) was trained
to localize the safe and dangerous areas of dissection and
anatomical landmarks during the laparoscopic cholecystec-
tomy. In [8], an UNet model was trained to predict the
positions of critical anatomical structures in the nasal phase
of endoscopic pituitary surgery. In [9], a multi-task network
(PAINet) was proposed to identify the areas of the sella and
clival recess, and central points of eight other critical struc-
tures during the sellar phase of endoscopic pituitary surgery.
Based on a U-Net++ [10] architecture with an EfficientNetB3
encoder [11], PAINet achieved state-of-the-art performance
on the dataset. However, while PAINet managed to give tem-
porally consistent segmentation performance, the detection
of landmarks required extensive improvement.

Moreover, real-time inference is always needed for intra-
operative guidance in clinical settings. In general, the pursuit
of ever more accurate results frequently results in highly
complex deep learning architectures that are computation-
ally costly and slow [12]. One approach to this issue is to
design more efficient architectures by using techniques such
as downsampling and upsampling [13], efficient convolution
[14], residual connection [15]. In [16], by holistically and
efficiently aggregating spatiotemporal knowledge through
the convolutional long short-term memory (LSTM) lay-
ers, the method achieves real-time instrument segmentation.
In [17], authors designed an encoder—decoder architecture
featuring a residual block with a squeeze-and-excitation
network, achieving real-time segmentation in colonoscopy
with fewer parameters. Despite achieving real-time perfor-
mance with well-designed architectures, these methods face
constraints, especially when utilizing common backbone
networks in deep learning models, where backbone architec-
tures usually remain unchanged [12]. In these cases, using
model acceleration techniques [18] is a more flexible solu-
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tion in practice, which can reduce the dependence on the
network structure design. Among these methods, open neu-
ral network exchange (ONNX)! and NVIDIA TensorRT? are
most widely used. ONNX is a standard for model inter-
change, allowing models to be shared between different
deep-learning frameworks. TensorRT, on the other hand, is
focused on accelerating the inference of deep learning mod-
els on NVIDIA GPUs.

Improving on the downfalls of PAINet [9], PitSurgRT is
proposed. Our contributions are as follows:

(1) Based on the HRNet [19] which originally solved the
segmentation task only, we proposed a multi-task net-
work named PitSurgRT that can solve the anatomy
segmentation and landmark detection simultaneously in
the endoscopic pituitary surgery.

(2) An effective loss function that combines four losses is
proposed in this paper to solve the issue of the highly
imbalanced dataset for the training.

(3) Through the fivefold cross-validation based on the in-
vivo dataset, the proposed PitSurgRT is demonstrated to
significantly improve the landmark detection and seman-
tic segmentation of the critical anatomical structures in
the sellar phase of endoscopic pituitary surgery com-
pared with our previous work PAINet.

(4) The proposed model is accelerated by using the Ten-
sorRT technique to achieve real-time intraoperative
guidance. The results are verified by 15 neurosurgeons.

To the best of our knowledge, this is the first work that can
achieve real-time and simultaneous inference of anatomy
segmentation and landmark detection in endoscopic pituitary

surgery.

Methodology
Clinical motivation and validation

The pituitary tumour is found behind the sella, highlighted in
blue in Fig. 1, and is required to be opened during endoscopic
pituitary surgery. The clival recess, highlighted in yellow in
Fig. 1, is not as surgically important as the other structures.
However, as it is a large, visually distinct, and common struc-
ture, it provides additional visual information to help locate
the other structures while training the model.

Our problem is focused on landmark detection of four
critical structures, namely the left and right carotid and the
left and right optic protuberance, shown in Fig. 1. Since these

! https://github.com/onnx/onnx.

2 https://developer.nvidia.com/tensorrt.
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Fig. 1 Critical anatomical structures as present during the sellar phase
of endoscopic pituitary surgery. Sella (1) and Clival Recess (2) are rela-
tively bigger structures and easy to identify. Carotids (3 left, 6 right) and
Optic Protuberance (4 left, 5 right) are critical neurovascular structures
to be avoided

structures are small with poorly defined boundaries, segmen-
tation is not desired. The remaining 4-structures detected in
[9] have not been used in this study as they are considered
less important for the surgery compared to other structures.
The proposed model is measured by the performance of:
(i) the semantic segmentation of the sella and clival recess,
using the mean interval over union (mloU) metric; and (ii) the
landmark detection of the remaining 4-structures, using the
mean percentage of correct keypoints within 20% (MPCK20)
and mean distance (mDistance) metrics. MPCK?20 is the per-
centage of predicted landmarks that fall within a 144-pixel
(20% of the image) radius of the ground truth, mean-averaged
across the 4 structures. mDistance is the Euclidean distance
between the predicted and the ground-truth landmarks, mean-
averaged across the 4 structures.
Clinical Validation: As many images in our dataset are
not fully labelled, (i.e. some anatomical structures do not
have ground truth on images), a clinical validation test was
conducted on the proposed model validation outputs. 10
predicted outputs (without ground-truth labels) from 10 ran-
domly selected patients were selected. For each landmark
predicted on each image, the neurosurgeons were requested
to rate them on a scale of 1 to 5, where (1) not accurate at
all; (2) somewhat accurate but acceptable; (3) sufficiently
accurate to be acceptable; (4) accurate; (5) very accurate.
Fifteen neurosurgeons (4 consultants, 11 trainees) evaluated
the outputs by questionnaire.

Proposed PitSurgRT

While an encoder—decoder architecture like UNet [20] has
been demonstrated to be effective for segmentation tasks in
biomedical images, the resolution reduction in continuous
downsampling causes the loss of spatial detail information,
especially in the pooling layers, which is detrimental to
position-sensitive vision problems such as landmark deten-
tion [9, 19]. Therefore, to improve the performance of
PAINet [9], especially for landmark detection, we utilize

HRNet as the base model to maintain high-resolution repre-
sentations. Compared with UNet++ structure used in PAINet,
which maintains multi-resolution representation to improve
spatial precision by continuously fusing low-resolution
expression with high-resolution expression, HRNet not only
maintains several resolutions in a parallel manner but also
repeatedly fuses high and low resolutions between stages
to boost high-resolution and low-resolution representations
[19], which are beneficial for both segmentation and land-
mark detection tasks.

The proposed PitSurgRT architecture is shown in Fig.2.
The input image first passes through a stem, and the image
resolution is reduced to 1/4 of the original through two 3 x 3
convolution operations with a step size of 2. Then, the output
feature maps pass the main body of the HRNet consisting
of four stages with four parallel convolution branches. The
resolutions of feature maps in four branches are maintained
as 1/4, 1/8, 1/16, and 1/32, respectively. The first stage of
the HRNet consists of four residual units and the width of
the output feature maps are 48 and 96 for the two branches
formed in stage 2. Starting from the second stage, each branch
will maintain a fixed feature map width. Every time from the
previous stage to the next stage, the number of branches will
increase by one, and the feature map width of the newly added
branch is twice that of the previous branch. The final feature
map widths of the four branches are 48, 96, 192, and 384,
respectively. Between each two stages, the high-resolution
feature maps and the low-resolution feature maps will be
fused to exchange information. After the fourth stage, the
low-resolution feature maps are upsampled and then fused
with the output of the first branch to obtain a high-resolution
feature map with 720 channels.

Multitask heads

Following the output feature map, two heads are connected
that are responsible for the (a) segmentation of sella and clival
recess and (b) landmark detection of the other four anatomies,
respectively.

The segmentation head contains a 1 x 1 convolutional layer
with stride 1, followed by batch normalization and ReLU
activation, and finally outputs the segmentation results by
using a 1 x 1 convolutional layer with stride 1, followed
by argmax activation and upsampling to recover the original
resolution for segmentation.

In terms of head for landmark detection, the output feature
maps are passed through 1 x 1 convolutional layer with stride
1, active average pooling with output size 1, ReLU activation,
and fully connected layers to output the eight coordinates of
four landmarks on the target image.

@ Springer
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Fig.2 The architecture of PitSurgRT for simultaneous segmentation and landmark detection

Combined losses for highly imbalanced dataset

While focal loss (FL) and mean squared error (MSE) loss
are commonly used for imbalanced datasets and landmark
detection in a variety of works, highly imbalanced class
distributions are found in our datasets (see section “Data
description and preparation” for details). Therefore, it is nec-
essary to design a set of optimal combinations to achieve
high-quality segmentation and landmark detection. Through
extensive ablation studies (see section “Ablation study”), it
was found the following combination of four losses is very
effective for our tasks:

Loss = wDice + w,BDL + w3Wing + w4FL, (1)

where the combination of Dice and boundary loss (BDL) are
responsible for segmentation [21]. The combination of Wing
loss [22] and focal loss (FL) is used for landmark detection.
w1, wa, w3, and wy are hyperparameters which are used to
balance the losses.

The proposed method is implemented using PyTorch
1.12.0 on Python 3.8.17. The code is available here https://
github.com/ZH-Mao/PitSurgRT.git.

Model optimization for real-time guidance

While maintaining high-resolution representations and low
representations together is promising to improve the per-
formance of segmentation and landmark detection, such an
architecture requires more computational resources and time,
which is detrimental to intraoperative guidance that requires
real-time performance.

Thanks to the model acceleration engine TensorRT, we can
optimize and accelerate our proposed PitSurgRT on NVIDIA
GPUs to achieve real-time performance. TensorRT offers
options for accelerating trained models with various preci-
sions such as 32-bit floating point precision (FP32), 16-bit
floating point (FP16), and 8-bit integer precision (INTS).
There is a trade-off between the model’s precision and
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efficiency. The open-source library torch2trt’ was used to
convert our PyTorch model to the tensorRT engines directly.

Experimental setup
Data description and preparation

The dataset used in this study is the same as those used in [9],
which consists of 635 frames obtained from 64 endoscopic
pituitary surgery videos. Due to the challenges of annotating
these images, the task was completed by four experts with
consensus. Please refer to [9] for more details about annota-
tion. Even so, there are still many anatomical structures that
are not annotated. Except for the two largest areas sella and
clival recess, only at most 65% of the data for the remaining
anatomical structures have been annotated.

To validate the performance of the proposed model, five-
fold cross-validation is used. Images are randomly split such
that the number of structures in each fold is similar. Images
from the same patients are put into the same fold, presenting
in either the training or validation dataset. The class distri-
bution over five folds is presented in Fig. 3.

Training details

The training and validation processes are completed on an
NVIDIA DGX A100 server on a single GPU with 48 GB
memory. The proposed network is optimized by using an
SGD optimizer during the training, with a momentum value
of 0.9. The initial learning rate is set as 0.01 and a linearly
decreasing scheduler is used for adjusting the learning rate
every epoch. The minimum learning rate is 0.0001, and the
model is trained for 500 epochs. For the first 300 epochs,
only the segmentation head was trained while the landmark
detection head was frozen. In the subsequent 200 epochs,
both were trained simultaneously.

3 https://github.com/NVIDIA- AI-IOT/torch2trt.
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Given a limited number of annotated images for training,
data augmentation is used. We shift images in the training
dataset by up to 10% in any direction, zoom out or in images
by up to 30%, and rotate them around the centre of images up
to 30 degrees. In addition, we randomly increase or decrease
brightness, contrast, and saturation by up to 30%, and hue
by up to 10%. 50% of training data are augmented in each
epoch. In addition, since many images in our datasets are not
fully labelled, we use a sampler in our data loader to increase
the probability of images with more anatomical structures on
them. The probability is equal to the reciprocal of the number
of images with the same number of anatomical structures.

Ablation study

To find the best combination of losses and their corresponding
weights, extensive ablation studies are conducted. We start
with the same loss combination as that used in PAINet, i.e.
(FL + MSE), followed by testing various loss combination
strategies, which are listed in the first column in Table 2.
For the preliminary tests about loss combination, the weight
parameters are added empirically so that all losses are of
the same order of magnitude. After the best combination of
losses is found, the weight parameters are fine-tuned.

In addition, we also investigate the precision selection
during the model optimization process using tensorRT. We
compare the results of the original model, the converted
model with FP32 precision, and the converted model with
FP16 precision in terms of both accuracy and inference speed.

Results and discussion

From Table 1, it is clear HRNetv?2 has significantly improved
performance over the current state-of-the-art, PAINet. When
using the same loss (FL + MSE), there is a small improve-
ment in segmentation performance (+3.28% mloU) but a
significant improvement in landmark detection (+44.15%

MPCK?20). This is further improved with the proposed
weighted loss, with +3.54% segmentation mloU and +2.55%
landmark MPCK?20. Although calibration parameters of
endoscopes are not available, according to [23], the diameter
of the sella is about 10—15 mm, which is around 200-300 pix-
els in our dataset. Thus, we estimate the scale of our images is
about 0.05 mm/pixel. Therefore, according to Table 1, it can
be estimated that the accuracy of landmark detection using
our method is around 2.35—3.10 mm. The ablation studies
displayed in Table 2 show the proposed weighted loss is most
effective, with a —7.53 mDistance pixel improvement over
the next best loss. While IoU of clival recess is compara-
tively low, this is mainly because of this structure (a) not
having a well-defined boundary and (b) missing annotations.
However, as mentioned in section “Clinical motivation and
validation”, clival recess is not considered critically impor-
tant by the surgeons.

Figure 4 shows the qualitative results on images from four
different surgeries also showcasing the inter-patient variabil-
ity in such procedure. Note that all predictions appeared in
anatomically correct regions. Figure 4a and b shows cases
where the landmarks align 100% with the groundtruth, and
this is also confirmed by the strong agreement among the
consultant and trainee neurosurgeons mostly rating these
cases as precisely accurate. In Fig. 4c, left optic protuber-
ance did not accurately align with the groundtruth. Figure 4d
is the most challenging case, where the predicted landmarks,
though within MPCK20, were not 100% aligned with the
groundtruth. There were disagreement in surgeons’ rating for
this case too, considering the visually different and clinically
challenging nature of this case.

While half-precision generally leads to lower perfor-
mance, it is found that our TensorRT-FP16 model has an
over 25x speed improvement over PyTorch, with no appar-
ent decline in segmentation and detection performance, as
displayed in Table 3. The slight improvement of the model
with FP16 in the segmentation of the clival recess was due

@ Springer
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Table 1 Comparison with PAINet (fivefold cross-validation, results are displayed as mean + std)

Model Loss Sella Clival recess Sella Clival recess Landmarks
ToU(%) Precision(%) MPCK20 (%) Distance (pixels)
PAINet FL+MSE 62.69 £ 1.90 36.59 £5.40 84.12+£3.70  71.124+4.80 51.20 +£2.80 138.76 £ 2.30
HRNetv2 FL+MSE 63.18 £ 4.59 42.65 +£8.75 7944 £2.74  69.17+£11.22  95.35 £ 3.81 65.53 £10.21
HRNetv2 CE+MSE 63.58 +4.20 45.97 £5.27 79.67+3.00 67.29+7.87 97.31 £3.70 64.13 £7.60
PitSurgRT  0.9Dice+0.1BDL 67.00 =4.18 45.92 +5.21 81.3+2.70 71.72 £+ 8.81 97.90 £ 4.01 54.48 +7.45
+0.8Wing+0.2FL*
*Denotes resampled. Bold values indicate the best-performing model for that column’s metric
Table 2 Ablation studies (single-fold)
Loss Sella Clival recess Sella Clival recess Landmarks
ToU(%) Precision(%) MPCK20 (%) Distance (pixels)
CE+MSE+BCE 68.01 47.14 73.23 63.20 75.39 102.09
CE+MSE+FL 68.06 49.07 72.98 66.84 86.43 84.05
CE+Wing+FL 66.83 49.34 71.86 65.33 99.22 60.22
CE+Wing+FL* 68.07 49.65 71.99 63.26 99.81 57.85
1.2CE+0.8 ABL+Wing+FL* 68.12 49.65 73.83 67.50 99.61 62.94
CE+0.01BDL+Wing+FL* 67.87 47.50 72.42 65.55 99.22 60.00
gDice+0.01BDL+Wing+FL* 66.09 51.29 80.14 72.39 100.00 61.43
Dice+0.1BDL+Wing+FL* 69.28 49.06 79.65 68.14 99.81 57.68
0.9Dice+0.1BDL+0.8Wing+0.2FL* 72.06 47.96 82.51 81.16 100.00 50.15

*Denotes resampled. gDice stands for generalized Dice. Bold values indicate the best-performing model for that column’s metric. The bottom row

is the proposed model, PitSurgRT

Table 3 Comparison of model acceleration (fivefold cross-validation, results are displayed as mean =+ std)

Model ToU(%) MPCK20 mDistance Inference time Frames per
Sella Clival recess (%) (pixels) (milliseconds) second (fps)
PyTorch model 67.00 £ 4.18 4592 £5.21 97.90 £4.01 54.48 £17.45 90.18 £5.15 11.12 £ 0.60
TensorRT engine (FP32) 67.00 £4.18 4592 £5.21 97.90 £4.01 54.48 £17.45 4413 £7.95 233.77 +39.81
TensorRT engine (FP16) 67.00 £4.18 45.93 £5.23 97.90 +£4.01 54.48 £17.45 33.55+1.65 298.81 + 14.80

Bold values indicate the most efficient model for that column’s metric

to random factors. The results demonstrate real-time perfor-
mance of our model is feasible in practice.

The results from the PitSurgRT output clinical validation
study are displayed in Fig. 5. On mean-average, 88.67% of all
neurosurgeons agreed the landmark detection outputs were
acceptable, increasing to 89.4% of consultants. Less than
1.34% of neurosurgeons (0.00% of consultants) believed the
outputs were (1) Not accurate at all. This is because images
challenging for PitSurgRT are even difficult for consultant
neurosurgeons to identify landmarks on. This is the primary
reason ground-truth landmarks were not available for such
cases. The clinical validation study demonstrates the suc-
cess of the network, and that clinical translation is desirable.
Moreover, with PitSurgRT already having real-time imple-
mentation, feasibility trials in mock operating room settings
are planned next. Example images where landmarks were
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considered accurate and inaccurate to identify are displayed
in Fig. 4a and d, respectively.

Conclusion

The intraoperative localization of crucial anatomical struc-
tures in the sellar phase of endoscopic pituitary surgery
poses a formidable challenge due to the limited visibility
of critical structures, the demand for high accuracy, and the
imperative for real-time inference. In this paper, a multi-
task model PitSurgRT is proposed to achieve real-time and
simultaneous inference of anatomy semantic segmentation
and landmark detection with improved accuracy. Compared
to the current state-of-the-art, PAINet, PitSurgRT achieved
67.00% (+4.31%) and 45.92% (+9.33%) IoU for sella and
clival recess segmentation, respectively. More impressively,
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Fig.4 Qualitative evaluation of
the predicted results
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Fig. 5 Clinical validation results in which 4 consultant neurosurgeons and 11 trainee neurosurgeons participated to validate the accuracy of

PitSurgRT on surgical images from 10 patients

it achieved 97.90% (+46.7%) MPCK20 and 54.48 (—84.28)
mbDistance for 4-structure landmark detection. In the clinical
validation study comprising 15 neurosurgeons, PitSurgRT
demonstrated accurate enough for real-time guidance in
88.67% of cases.

An international Delphi consensus panel determined the
phases for endoscopic transsphenoidal pituitary adenoma
resection surgery [5]. This process identified that landmark
detection is key to the success of this surgery. In this paper,
we have presented technological progress in identifying these
landmarks. Future work will deploy this system and assess
clinical impact.
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