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Abstract
Purpose In surgical computer vision applications, data privacy and expert annotation challenges impede the acquisition of
labeled training data. Unpaired image-to-image translation techniques have been explored to automatically generate annotated
datasets by translating synthetic images into a realistic domain. The preservation of structure and semantic consistency, i.e.,
per-class distribution during translation, poses a significant challenge, particularly in cases of semantic distributionalmismatch.
Method This study empirically investigates various translationmethods for generating data in surgical applications, explicitly
focusing on semantic consistency. Through our analysis, we introduce a novel and simple combination of effective approaches,
which we call ConStructS. The defined losses within this approach operate on multiple image patches and spatial resolutions
during translation.
Results Various state-of-the-art models were extensively evaluated on two challenging surgical datasets. With two different
evaluation schemes, the semantic consistency and the usefulness of the translated images on downstream semantic segmen-
tation tasks were evaluated. The results demonstrate the effectiveness of the ConStructS method in minimizing semantic
distortion, with images generated by this model showing superior utility for downstream training.
Conclusion In this study, we tackle semantic inconsistency in unpaired image translation for surgical applications with
minimal labeled data. The simple model (ConStructS) enhances consistency during translation and serves as a practical way
of generating fully labeled and semantically consistent datasets at minimal cost. Our code is available at https://gitlab.com/
nct_tso_public/constructs.
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Introduction

The rapid advancements in deep learning (DL) techniques in
the last decade has led to the growth of surgical data science
[1]. However, the potential for training large and powerful
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models is impeded by the requirement of large annotated
datasets [1, 2]. Multiple challenges contribute to this limita-
tion, including the technical complexities in acquiring patient
data directly from the operating room [3], legal regulations
on data sharing, and the substantial costs involved in expert
labeling, given the restricted availability of domain special-
ists (i.e., surgical professionals). One potential solution to
overcome these challenges is adopting synthetic training data
generated through computer simulations [4–6]. Synthetic
data present the advantage of automatically generating sub-
stantial volumes of fully labeled data. Nonetheless, enforcing
real-world characteristics in such synthetic datasets can be a
significant hurdle.

Image-to-image translation (I2I) methods are generative
modeling techniques that have gained popularity for trans-
lating images between different domains. Within the field
of data generation, the applicability of paired image trans-
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Fig. 1 Generation of realistic data from synthetic surgical images with
unpaired image translation method. The semantic mismatch between
domains can lead to inconsistent translations, like blood texture (red

color) getting mapped onto different structures (highlighted in white
boxes). Some regions with consistent semantic translation are indicated
in blue boxes

lation methods [7] is limited. Conversely, unpaired image
translation methods [8], which do not require corresponding
image pairs, have emerged as promising solutions for various
computer vision tasks. Overall these methods are suitable for
surgical applications, but they face challenges in preserving
contextual and semantic details across the domains.

In practice, translation methods aim to align the image
statistics between the two domains. In addition to the
difference in image distributions, semantic variations in dis-
tributions also exist, which is commonly referred to as
“unmatched semantic statistics” [9] and poses a critical
problem in preserving the semantics during translation. As
displayed in Fig. 1, when faced with unmatched semantic
distributions, attempting to align the distributions between
translated and target images forcibly can result in spurious
solutions, where semantic information is distorted [9, 10].

In real surgical scenarios, an additional challenge arises
from the variations in lighting conditions, which may not
be adequately reflected in existing baseline datasets [7, 11].
While synthetic images can incorporate such parameters, cre-
ating such a realistic environment takes time and effort. Also,
semantic consistency can be affected when such variations
exist and addressing these short comings is essential as with-
out doing so, the generated data lacks practical utility for
subsequent training of models (Section "Results").

Our contribution

To the best of our knowledge, this study represents the first
comprehensive investigation of unpaired image translation
techniques to generate data in the context of surgical appli-
cations. We summarize our contribution as follows.

• We empirically analyze various methods for unpaired
image translation by assessing both the semantic consis-
tency of the translated images and their utility as training
data in diverse downstream tasks.

• We tackle the underexplored problem of creating seman-
tic consistent datasets with annotations (see Fig. 2). We
focus on translating synthetic anatomical images into
realistic surgical images on datasets from minimally-
invasive surgeries, namely, cholecystectomy and gastrec-
tomy.

• Guided by our analysis, we define a novel combination of
an image quality assessment metric [12] as a loss func-
tion with the contrastive learning framework [13] as a
simple yet effective modification to tackle the challenge
of semantic distortion.

• We found that this simple combination to be more
effective than many of the existing unpaired translation
methods in maintaining semantic consistency. When the
translated images from this method are mixed with the
real images, we found a 22% improvement in segmen-
tation score compared to a model trained only using the
real images.

Related work

Image-to-image translation

The objective is to generate images in a desired target domain
while preserving the structure and semantics of the input.
Generative adversarial networks (GANs) [14] have proven
to be a powerful approach for image translation, learning
the mapping between input and output images. In the case
of unpaired translation, cycle consistency [8] was intro-
duced, which seeks to learn the reverse mapping between
different domains by leveraging reconstruction loss. Various
approaches have been proposed to address multi-modal and
domain translations, focusing on disentangling images’ con-
tent and style information in distinct spaces [4, 15–17]. In the
context of the surgical application, [18] utilized cycle consis-
tency for endoscopic image synthesis. The paired translation
was adopted in [5] whereas cycle consistency with struc-
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Fig. 2 The structure and semantic characteristics of the translated images and their correspondence to the semantic labels. The ConStructS method
shows consistent translation performance leading to the generation of semantically consistent dataset with labels

tural similaritywas combined to generate laparoscopic image
[4](LapMUNIT ) and video data [6], respectively. Although
these approaches effectively exploit cycle consistency, they
often rely on the assumption of a bijective relationship
between domains, which can be overly restrictive. Achieving
perfect reconstruction becomes challenging, and they still fall
behind in maintaining semantic consistency during transla-
tion.

In contrast, one-sided translationmethods such asGcGAN
[19], which incorporates an equivariance constraint, and
DistGAN [20] enforcing consistency regularization based on
distances between the images have been proposed. Efforts
such as [21, 22] have been made to minimize the percep-
tual or content loss by utilizing a pre-trained VGG model to
decrease the content disparity between the domains. How-
ever, this approach is computationally expensive and lacks
adaptability to the available data. Our approach is based on
a contrastive learning method proposed in CUT [13], where
embeddings are learned by associating similar signals in con-
trast to negatives.

Semantic robustness via losses

Despite its aim to promote content (structure) consistency,
the CUT [13] method still faces challenges when the two
domains have different semantic characteristics. This chal-
lenge stems from the limited ability of the contrastively
learned semantics to enforce correspondence across different
domains effectively. Recently, two approaches were pro-
posed to minimize semantic distortion during translation.
SRUNIT [9], based on CUT, defined a semantic robust-
ness loss that is optimized between the input features of the
domainX with the perturbated variant of the same. Similarly,
a structural consistency constraint (SCC) [10] was proposed
to maintain the semantics. The color randomness in the pixel
values of the images before and after the translation was
reduced by exploiting mutual information.

Methods like NEGCUT [23] trained a separate generator
to generate negative samples dynamically, effectively bring-
ing positive and query examples closer together, whereas
F-LeSim [24] focused on preserving scene structures by
minimizing losses based on spatially-correlative maps. The
standalone use of any of these models fails to simultaneously
reduce the domain gap and maintain semantic consistency
during translation.

In this work, we devise an approach that is a novel combi-
nation of different losses, namely, the patch-based contrastive
loss along with the multi-scale structural similarity [12], that
regularizes the model on various image resolutions, thereby
maintaining consistent translations between the simulated
and realistic domains. This approach relies neither on cycle
consistency nor other additional networks during translation,
thereby paving the way for one-sided, unpaired image trans-
lation.Many of the stated approaches have focused primarily
on just realismas the central concept during translation.How-
ever, for surgical application in hand, it is equally important
to access both the semantic consistency and the usefulness
of such translated images in downstream applications.

Model setup

In this section, we provide an overview of the essential
components for the formulation of the approach that pre-
serves both the content and semantic correlation between the
anatomical structures during translation.

Adversarial learning

GANs [14] have been promising candidates for image trans-
lation tasks. The main goal of such an image translation
technique is to acquire the ability to map between two
domains, X and Y , based on training samples xi and y j
drawn from the distributions p(X) and p(Y ), respectively.
The generator GXY learns the mapping between domains
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and generates the translated image T (y) and the discrimina-
tor DY is trained to distinguish between original images x
and translated images. The adversarial loss is defined as,

LGAN
(
GXY , DY

) = Ey∼p(Y )

[
log DY (y)

]

+ Ex∼p(X)

[
log

(
1 − DY

(
GXY (x)

))
. (1)

Typically, the loss is used to encourage the distributional
match between the translated images and images from
domain Y .

Patch constrastive learning

This framework was formulated on noise contrastive esti-
mation (NCE), aiming to maximize the mutual information
between the domains. The InfoNCE loss [25] was used to
learn embeddings between the domains and establish asso-
ciations between corresponding patches of input and output
images while disassociating them if unrelated. The central
idea lies in associating a “query” point with the “positive”
points while contrasting away from other “negative” points
in the dataset. Let s be the query vector and s+ and s− be
the positive and negative vectors from the images, respec-
tively. The s− vectors are sampled at N different locations
in the input. Finally, the loss is formulated as an (N+1)- way
classification and defined as

LNCE = − log

[
exp

(
s · s+/τ

)

exp
(
s · s+/τ

) + ∑N
n=1 exp

(
s · s−n /τ

)

]

(2)

where τ is a scaling parameter to factor the distances between
the vectors. The query vector is drawn from the translated
images, while s+ and s− are the corresponding and non-
corresponding image (feature) vectors from the input images.
We refer to the suppl. material for the computation procedure
of these vectors.

A multilayer patch-based contrastive loss was further
employed within the CUT framework, formally defined as
PatchNCE. It leverages the ready availability of the generator
GXY to extract features from L layers at S spatial locations.
The PatchNCE loss is defined as,

LPatch(X) = Ex∼X

L∑

l=1

S∑

s=1

LNCE (3)

Semantic consistency

Next, we define the multi-scale structural similarity (MS-
SSim) [12] metric. This measure was proposed as a metric
for image quality assessment. The extracted structure infor-
mation from the images is compared on varying image

resolutions with a weighting factor for each. Initially, given
two images, x and y, let v1 = 2σxy + C2 and v2 =
σ 2
x + σ 2

y + C2. Then contrast sensitivity(cs) and structure
map (ss) are defined as,

cs(x, y) = v1

v2
, ss(x, y) = (2μxμy + C1)v1

(μ2
x + μ2

y + C1)v2
(4)

where μ(·) and σ(·) are the mean and variance of the
image(pixels) and σx,y is the covariance between x and y.
C1 and C2 are stability constants computed as (K ∗ L)2

and K � 1, L depending on the dynamic range of pixels
(0 − 255). The MS-SSim metric is defined as,

MS-SSim(x, y) = [Wi ] ·
K∏

i=1

csi · ssi (5)

where i = 1 · · · K denotes the number of different image
scales and Wi the weight for the i th scale. Hereafter, we
mention the loss as semantic loss. It is defined as,

Lsemantic = 1 − MS-SSim(x, y) (6)

Constrastive learning coupled with MS-SSim

We couple the strengths of both Contrastive Learning with
Structural Similarity (ConStructS) as a model to tackle
semantic distortion. To the best of our knowledge, this com-
bination has not been proposed yet. As a combined loss the
image features at patch level are learned to enforce corre-
spondences during translation. The final objective is defined
as,

Ltotal = LGAN+λxLPatch(X)+λyLPatch(Y )+λssLsemantic

(7)

where λx , λy , and λss are weighting parameters for the
PatchNCE and semantic losses, respectively. The LPatch(Y )

resembles the identity loss [8] and is applied between the
images y ∈ Y and translated images. The ConStructS
approach is a one-sided unpaired translation method that
relies on no additional generators or discriminators and
imposing the LPatch(Y ) component is necessary to prevent
degenerate cases from the generator.

Experiments

In this section, we outline our experiments where the perfor-
mance of several popular unpaired image translation models
are compared. Themodels include CycleGAN [8], the VGG-
based perpetual loss [22], DRIT++ [26], LapMUNIT [4],
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UGAT-IT [27] using cycle consistency, one-sided approach
such asGcGAN [19] andDistGAN [20]Also, various config-
urations of contrastive-based models were investigated. The
CUTmodelwas trainedwith the SCC loss [10] and SRC [28].
F/LeSim [24], SRUNIT [9] and NEGCUT [23] were trained
with the CUT as the backbone. We demonstrate the effec-
tiveness of ConStructS in translating synthetic data to the
realistic domain with minimal semantic distortion. In par-
ticular, the existing baselines exhibit distinct strengths and
weaknesses. While certain baselines excel in specific tasks,
they may falter in others. Except for LapMUNIT [4] and
CycleGAN [8], no tailored approach exists for surgical sce-
narios.Consequently,we evaluateConStructS against several
other methods to align with the prevailing research.

Finally, we provide a rationale for the design choicesmade
in the ConStructSmodel to ensure semantic consistency with
an ablation study. We train the model without the semantic
loss, which reverts to the basic CUT model [13] and without
the PatchNCE loss. Similarly, we combined the semantic
loss with cycle consistency into the CycleGAN model for a
different combination. For the details on implementation the
readers can be refer to the suppl. material.

Data

We evaluated the methods mentioned above on two different
surgical datasets consisting of anatomical organs such as the
liver, liver ligament, gallbladder, abdominal wall, pancreas
as well as surgical tools.

Cholecystectomy dataset

This surgery serves to remove the gallbladder. For the simu-
lated domain X , we utilized the publicly available synthetic
dataset resembling laparoscopic scenes [4]. A total of 20, 000
rendered images forms the synthetic dataset. The real images
for the domain Y are taken from the Cholec80 data set [29].
Wefinally created a training dataset of approximately 26, 000
images from 75 patients. A separate segmentation dataset of
5 patients was chosen. The liver was manually segmented in
196 images for the downstream evaluation (Sect. 4.2.2). The
images were cropped to 256 x 512 pixels, and the training set
consists of 17, 500 images, with the remaining 2500 serving
as the test set.

Gastrectomy dataset

For this case, we utilized the real and synthetic dataset from
[5], based on 40 real surgical videos of distal gastrectomy.
The dataset consists of 3400 synthetic and 4500 real images
with corresponding segmentation masks. 2400 images con-
stituted the training set, with 1000 images as the test set. The
images were resized and cropped to 512 x 512 pixels.

Evaluation

Weadopted twodifferent schemes to assess both the semantic
consistency and the usefulness of generating such data.

Train:Real−→Eval:Synthetic

Firstly, we adopted the practice of computing metrics based
on an off-the-shelf segmentation model following [5, 11, 13,
19]. We train a segmentation model on the real images of
the specific dataset. Then the translated synthetic images are
tested using this pre-trained model i.e, the metrics are com-
puted against ground truth labels of the synthetic images. The
underlying intuition is that, if the translation model is able to
reduce the domain gap, then the segmentation accuracy from
this pre-trained model on the translated synthetic images
would be higher [7]. This method assesses both the qual-
ity, as well as semantic consistency of the translated images.
We refer to this method as consistency evaluation.

Translated images as training data

Furthermore, we assess the practical utility of the trans-
lated images in a downstream task in two different methods.
Firstly, we train a segmentation model using only the trans-
lated images and evaluate the performance of this model on
segmenting the organ liver on real images. Secondly, we fine-
tune this model on the real data and evaluate them on the
same test set of real images. The performance is also com-
pared to a baseline model trained only on real images. This
approach aligns with the intuition mentioned above and pro-
vides insights into the realism of the translated images. We
report the mean dice scores for this method. Hereafter, we
refer to this method as downstream evaluation.

Results

Cholecystectomy dataset

The quantitative results are presented in Table 1, highlight-
ing the performance of different models. Comparatively, the
CycleGAN model with the VGG loss demonstrates better
performance than SCC variant. The geometric consistency in
GcGAN[19] leads to a comparable class-accuracy valuewith
ConStructSwhile outperformingDistGAN[20] andDRIT++
[26]. The LapMUNIT [4] model achieves better scores than
the attention-based models. As for the variants of CUT, the
addition of SCC loss did not improve its performance fur-
ther. Overall, as evidenced by the results, the ConStructS
model minimizes semantic distortion to a greater extent and
outperforms the recent methods.

Table 2 indicates the results of the downstream evaluation.
When only the translated synthetic images are used as train-
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Table 1 Consistency evaluation results of various translation models on the cholecystectomy dataset. pxAcc and clsAcc denotes the pixel and mean
class accuracy, respectively. mIOU is the mean intersection over union scores

Approach Method pxAcc clsAcc mIOU

Cycle consistency CycleGAN [8] 0.49 ± 0.08 0.41 ± 0.14 0.23 ± 0.09

CycleGAN+VGG [22] 0.52 ± 0.09 0.43 ± 0.11 0.25 ± 0.10

DRITT++ [26] 0.42 ± 0.03 0.28 ± 0.05 0.17 ± 0.04

LapMUNIT [4] 0.53 ± 0.06 0.38 ± 0.08 0.25 ± 0.06

UGAT-IT [27] 0.40 ± 0.03 0.28 ± 0.05 0.16 ± 0.04

One-sided translation GcGAN [19] 0.51 ± 0.08 0.44 ± 0.10 0.26 ± 0.08

DistGAN [20] 0.40 ± 0.03 0.28 ± 0.50 0.16 ± 0.04

Contrastive learning SRC [28] 0.51 ± 0.07 0.43 ± 0.16 0.25 ± 0.09

NEGCUT [23] 0.49 ± 0.08 0.41 ± 0.15 0.23 ± 0.09

FeSim [24] 0.41 ± 0.10 0.37 ± 0.16 0.20 ± 0.09

LeSim [24] 0.47 ± 0.09 0.43 ± 0.13 0.24 ± 0.09

Semantic consistency CycleGAN+SCC [10] 0.50 ± 0.10 0.43 ± 0.15 0.25 ± 0.10

CUT+SCC [10] 0.42 ± 0.06 0.35 ± 0.12 0.18 ± 0.07

SRUNIT [9] 0.50 ± 0.08 0.40 ± 0.13 0.23 ± 0.08

Ablation study ConStructS w/o Lsemantic [13] 0.50 ± 0.07 0.40 ± 0.14 0.26 ± 0.09

ConStructS w/o PatchNCE 0.50 ± 0.10 0.40 ± 0.14 0.25 ± 0.10

CycleGAN+ Lsemantic 0.49 ± 0.10 0.43 ± 0.15 0.24 ± 0.09

ConStructS 0.59 ± 0.07 0.44 ± 0.12 0.29 ± 0.09

The best result is indicated in bold, and the second best is underlined

Table 2 The quantitative results (mean dice scores) for downstream
eval. Pretraining followed by fine-tuning on real images leads to
considerable performance gain using images from the ConStructS
method

Data generation method Syn Syn+Real

CycleGAN [8] 0.62 ± 0.14 0.74 ± 0.10

GcGAN [19] 0.63 ± 0.14 0.78 ± 0.05

LapMUNIT [4] 0.56 ± 0.19 0.68 ± 0.16

SRUNIT [9] 0.61 ± 0.13 0.75 ± 0.07

ConStructS (ours) 0.65 ± 0.21 0.84 ± 0.05

Baseline (real data only) 0.62 ± 0.11

Bold values indicate the best results

ing data, the ConStructS model yields comparable results
on segmenting the liver to GcGAN [19]. A gain of 3% in
dice score is obtained compared to the baseline model. Fine-
tuning the samemodel on real data shows that theConStructS
method outperforms all themodels, showing an improvement
of 22% compared to the baseline. The qualitative results in
Fig. 3 indicate that the ConStructS model reduces the seman-
tic distortion, although not completely, but better than most
other translation methods.

Gastrectomy dataset

As presented in Table 3, quantitative analysis reveals that
LapMUNIT [4] outperforms both GcGAN [19] and Cycle-
GAN [8] models. Conversely, the ConStructS model sig-
nificantly mitigates semantic mismatches and exhibits a
moderate improvement in performance compared to all the
other models. Readers can refer to suppl. material for addi-
tional results.

Ablation study

The qualitative results of the ablation study are presented
in Fig. 4. When examining the CUT model, specifically
ConStructS, without semantic loss, we observe that the struc-
ture is well preserved during translation. However, there is
a noticeable mismatch in texture in regions with reduced
brightness. In the absence of the PatchNCE loss, as there is
no explicit control over image patches, structure information
is mixed, resulting in the different style mapping (e.g., fat or
blood) to unlikely structures. Lastly, the combination of the
semantic loss with the CycleGAN model yields an improve-
ment compared to the basicCycleGANmodel. Regardless, as
seen from Table 1, this combination still lacks performance.
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Fig. 3 Qualitative results of various translation methods on the chole-
cystectomy dataset. At the junction of two structures, the textures were
interchanged in most of the models. Although not solved completely,

the ConStructS model reduces semantic inconsistency. Some regions
are highlighted in white boxes

Table 3 The quantitative results of the consistency eval. on the gastrec-
tomy dataset

Method pxAcc clsAcc mIOU

CycleGAN [8] 0.39 ± 0.12 0.17 ± 0.14 0.09 ± 0.10

GcGAN [19] 0.40 ± 0.13 0.18 ± 0.01 0.10 ± 0.01

LapMUNIT [4] 0.43 ± 0.01 0.21 ± 0.10 0.11 ± 0.09

CUT [13] 0.42 ± 0.01 0.22 ± 0.02 0.11 ± 0.05

SRUNIT [9] 0.44 ± 0.01 0.20 ± 0.01 0.10 ± 0.05

ConStructS 0.46 ± 0.08 0.24 ± 0.13 0.10 ± 0.09

The best result is indicated in bold, and the second best is underlined

Discussion

Traditional approaches, such as DistGAN [20] or the L1

reconstruction loss in CycleGAN [8], typically do not effec-

tively enhance semantic consistency. They are susceptible
to structural transformations and variations in lighting con-
ditions, which can introduce artifacts during translation
(Fig. 3). While SRUNIT [9] and CUT [13] show promise
in reducing semantic distortion, they alone are insufficient
for the surgical application. On the contrary, the NEGCUT
[23] model aims to preserve the overall structure during
translation but needs to be more accurate in mapping tex-
tures between these structures. The same limitation has been
observed in the LeSim [24] model. Although LapMUNIT
[4] utilizes the semantic loss with cycle consistency, seman-
tic inconsistency still prevails and is reflected in the results
(Fig. 3). Enforcing the perceptual loss [22] with additional
networks did not improve performance.

Fig. 4 Qualitative results of the ablation study on the cholecystectomy
dataset. Texture mismatch occurs in low-lighting regions without the
semantic loss. As seen from the 2nd row without the PatchNCE loss, no

explicit boundary exists between the liver and abdominal wall leading
to both regions having the same semantic textures
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The results of our ablation study demonstrate the crucial
role of combining PatchNCEwith semantic loss inmitigating
semantic distortion. We posit that leveraging the contrastive
learning approach makes learning higher-level attributes,
such as organ or tool structures, possible. However, relying
solely on this aspect for matching semantic information has
limitations [9]. To address this, we introduced the semantic
loss as a regularizer that operates on the multiple scales of
the images (i.e., different resolutions). This loss additionally
checks the images’ perceptual quality, factoring the challeng-
ing lighting conditions (Eq. 4). This combination of losses
proves effective in preserving the semantic characteristics
throughout the translation process.

Limitations

The ConStructS model holds promise for mitigating seman-
tic inconsistencies; however, it is essential to acknowledge its
limitations. Notably, this method overlooks the synthesis of
multi-modal data. By incorporating multi-model outcomes
with additional apriori information (such as segmentation
mask), this model emerges as a promising candidate for
generating structure-specific and diverse surgical images.
Additionally, adding per-frame consistency leads to gen-
erating temporally consistent surgical video datasets. As a
future line of work, we believe ConStructS to be a valu-
able model to address the challenges in developing annotated
video datasets.

Conclusion

In conclusion,we conducted an empirical investigation on the
issue of semantic inconsistency in unpaired image transla-
tion, focusing on its relevance to surgical applications where
labeled data are minimal. We extensively evaluate several
state-of-the-art unpaired translation methods, explicitly tar-
geting the translation of images from a simulated domain to
a realistic environment. Addressing the problem of semantic
distortion, we found a novel combination of a structure sim-
ilarity metric with contrastive learning as the most effective.
Surprisingly, this simple model reduces semantic distortion
while preserving the realism of the translated images and
shows the highest utility as training data for downstream
tasks.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-024-03079-
1.
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