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Abstract
Purpose Edema, or swelling, is a common symptom of kidney, heart, and liver disease. Volumetric edema measurement is
potentially clinically useful. Edema can occur in various tissues. This work focuses on segmentation and volumemeasurement
of one common site, subcutaneous adipose tissue.
Methods The density distributions of edema and subcutaneous adipose tissue are represented as a two-class Gaussianmixture
model (GMM). In previous work, edema regions were segmented by selecting voxels with density values within the edema
density distribution. This work improves upon the prior work by generating an adipose tissue mask without edema through
a conditional generative adversarial network. The density distribution of the generated mask was imported into a Chan-Vese
level set framework. Edema and subcutaneous adipose tissue are separated by iteratively updating their respective density
distributions.
Results Validation results on 25 patients with edema showed that the segmentation accuracy significantly improved. Com-
pared to GMM, the average Dice Similarity Coefficient increased from 56.0 to 61.7% (p < 0.05) and the relative volume
difference decreased from 36.5 to 30.2% (p < 0.05).
Conclusion The generated adipose tissue density prior improved edema segmentation accuracy. Accurate edema volume
measurement may prove clinically useful.

Keywords Generative adversarial network · Level set segmentation · Adipose tissue · Edema segmentation

Introduction

Edema is swelling that results in fluid retention [1]. It often
occurs within subcutaneous tissue [2]. Its presence could
be caused by kidney disease [3], heart failure [4], and liver
cirrhosis [5, 6]. There are currently several ways edema is
assessed in the clinic. For example, edema can be graded
by physically pressing on edematous tissue (e.g., the leg or
body wall) and assessing the pit depth and recovery time [1].
Another method assesses sodium homeostasis using body
weight and other factors using the Edelman equation [7, 8].
Both measurements are also useful to assess patients with

B Jianfei Liu
jianfei.liu@nih.gov

1 Imaging Biomarkers and Computer-Aided Diagnosis
Laboratory, Clinical Center, National Institutes of Health,
Bethesda, MD 20892, USA

2 Diagnostic Radiology, Walter Reed National Military
Medical Center, Bethesda, MD 20889, USA

an exacerbation of heart failure [9] and monitor the nutri-
ent intake of older recuperative care patients [10]. However,
such grading can only approximately measure the amount
of edema fluid. Another approach is to assess body weight
change although this measurement sometimes has to be
adjusted, such as for severely burned patients [11]. Direct
volume measurement of edema using imaging could be a
useful supplement to evaluate these conditions.

Automatic edema measurement is nontrivial. Rather than
being localized like a tumor or an organ, edema is usually
heterogeneous, discontinuous and highly variable in distribu-
tion and shape (Fig. 1). For this reason, there is little research
on edema segmentation. In previous work [12], a two-class
Gaussian mixture model was developed to represent CT den-
sity distributions of edema and subcutaneous adipose tissue.
Edema regions were segmented by identifying voxels within
the density values within the edema density distribution.

Adipose tissue segmentation based on deep learning has
attracted much attention in the past decade [13–17]. They
are generally categorized into 2D [13, 14] and 3D [15–17]

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-023-03051-5&domain=pdf
http://orcid.org/0000-0001-9885-1695


444 International Journal of Computer Assisted Radiology and Surgery (2024) 19:443–448

Fig. 1 Comparison of patients
without and with edema on
abdominal CT. Edema is
visually represented as
heterogeneous regions within
the adipose tissue (arrows, A).
In contrast, adipose tissue is
homogenous in a patient without
edema (B)

U-Net variants. These works rely on manual annotations of
adipose tissue for training deep learning models. However,
it is difficult to manually annotate edema because the edema
is diffused within the adipose tissue with unclear boundaries
(Fig. 1). That is the major difficulty for applying deep learn-
ing to edema segmentation [12].

Expanding upon the idea of unsupervised density distribu-
tion modeling [12], this paper integrates this modeling into a
Chan-Vese level set segmentation framework [18]. The den-
sity distributions of edema and adipose tissue are iteratively
updated with level set propagation. In addition, the density
histogram is computed from an adipose tissue mask created
by a conditional generative adversarial network (C-GAN)
[19], which is used as the tissue density prior. Comparing the
histogram of the density prior and the one from the adipose
tissue regions in the CT image leads to an additional con-
straint for level set propagation, which helps achieve better
segmentation accuracy.

Methods

Adipose tissue density prior from C-GAN

The key contribution of this work is to generate an adipose
tissue mask and better tissue density prior to differentiate
adipose tissue from edema. C-GAN [19] is used because it
can artificially generate original images from binary masks.
Similar to the original C-GAN [19], PatchGAN and U-Net
are used to formulate the discriminator D and the generator
G, respectively. Unlike the original C-GAN that uses paired
original images and binary masks as input, a grayscale image
mask (bottom image, Fig. 2A) is chosen to replace the orig-
inal image by only keeping adipose tissue regions in a CT
image. Paired binary and grayscalemasks frompatientswith-
out edema (Fig. 2A) are used to train the C-GAN.

Once C-GAN is trained, it is used to generate a grayscale
adipose tissue mask without edema (Fig. 2E) for a CT image
with edema (Fig. 2B). The image is input into a segmentor
S (Fig. 2) to get its corresponding adipose tissue segmenta-
tion (Fig. 2C). Here, S is a residual U-Net [17]. Assuming
the background value is zero in the segmentation mask

(Fig. 2C), multiplying it with the CT image (Fig. 2B) leads
to a non-synthetic grayscale adipose tissue mask with edema
(Fig. 2D), Ins(x), x ∈ �, where � is the image domain.
Importing the segmentation mask (Fig. 2C) into the C-GAN
also generates a synthetic grayscale tissue mask without
edema (Fig. 2E), Is(x), as the density prior. Two histograms,
G(Ins) and theG(Is), are constructed. The normalized corre-
lation of the two histograms is used as the addition constraint
for edema segmentation

F(Ins , Is) =
∑

�

(
G(Ins) − Ḡ(Ins)

) (
G(Is) − Ḡ(Is)

)

√
∑

�

(
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�

(
G(Is) − Ḡ(Is)

)2

(1)

Here, Ḡ = ∑
� G/N and N is the total number of histogram

bins.

Chan-vese level set edema segmentation

The next step is to use theChan-Vese level set framework [18]
to segment edema with the additional constraint of Eq. 1. Let
φ : � → R be a signed distance function that represents the
level set function [20].

E =
∫

�

{(Ins(x) − C1)2 H(φ) +
[
(Ins(x) − C2)2

+αF(Ins, Is)] (1 − H(φ)) + β|∇H(φ)|}dx
(2)

Here, H(x) is the Heaviside function, with H(φ) = 1 if
φ ≥ 0; otherwise H(φ) = 0. C1 and C2 are mean values
of the edema and adipose tissue regions inside and outside
of the level set φ.

∫
�

|∇H(φ)|dx represents the length of φ.
α and β are hyperparameters that balance the influence of
adipose density prior and the length of φ, respectively. Note
that F(Ins, Is) is only computed in the background regions
of φ < 0 because they correspond to adipose tissue regions.
Since the histogramG(Is) in Fig. 2G is aGaussian, the gener-
ated adipose tissue is homogenous. F(Ins, Is) in Eq. 1will be
maximized if an image region is diffusedwith edema because
G(Ins) is a two-class Gaussian mixture model. It will force
the level set to continuously propagate and separate edema
from adipose tissue. This process gradually splits the Gaus-
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Fig. 2 Processing pipeline for edema segmentation on CT images. A
C-GAN consisting of a discriminator D and a generator G is trained
beforehand on paired, 2D binary and grayscale adipose tissue masks
(A) from patients without edema. During edema segmentation, a CT
image (B) of an edema patient is imported into a segmentor S to obtain
its adipose tissue segmentation mask (C). Multiplying B and C yields

a non-synthetic grayscale adipose tissue mask (D). Importing C into
the generator G also generates a synthetic grayscale tissue mask with-
out edema (E). The adipose tissue density histogram (G) is constructed
from (E), which is embedded into the level set segmentation framework
by comparing it with the one (F) from (D). Propagating level set yields
the final edema segmentation (H)

sian mixture model into two Gaussian models. Eventually,
F(Ins, Is)will be minimized if an image region is composed
of homogenous adipose tissue.

The minimization is solved by alternatively updating C1,
C2, and φ [18]. For fixed φ, the optimal values of C1, C2 are
the mean values of edema and adipose tissue regions.

C1 =
∫
�
Ins(x)H(φ)dx
∫
�
H(φ)dx

(3)

C2 =
∫
�
Ins(x)(1 − H(φ))dx
∫
�
(1 − H(φ))dx

(4)

For the fixed C1 and C2, the level set evolution equation
of φ is

∂φ

∂t
= δ(φ)

[−(Ins(x) − C1)2 + (Ins(x) − C2)2

+αF(Ins , Is) + βdiv

( ∇φ

|∇φ|
)] (5)

Figure 2H shows the final edema segmentation computed
using Eqs. 3–5 in the current CT image. Combining seg-
mentation results of all images leads to the final edema
segmentation on the current CT scan.

CT data and validationmethods

Weused two datasets to train the adipose tissue generator and
to validate edema segmentation accuracy, respectively. The
first dataset consisted of 101 contrast-enhanced CT scans (52
females and 49 males, average age 66.64±5.12 years) from
patients without edema. The majority of these scans were
used for a previously published muscle segmentation paper
[21]; this paper focuses on adipose tissue generation. One
CT scan was removed due to the failure of creating adipose
tissue masks.

The validation dataset consisted of 25 CT scans from 25
patients with edema (9 females and 16 males, average age
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Table 1 Demographics of 25 patients with edema used for evaluating
segmentation accuracy

Age (years) Gender Race CT Types Scanner

[22, 78] 16 Males 20 White 19 contrast 24 Siemens

51.96±14.67 9 Females 5 Black 6 non-contrast 1 Toshiba

51.96±14.67 years). They were identified using a keyword
search for “edema” and “anasarca” in radiology reports ofCT
scans that included the abdomen and pelvis. The presence of
edema was confirmed with the guidance of an experienced
radiologist. The exclusion criteria were scatter and signif-
icant motion artifacts. The demographics of these patients
are presented in Table 1.

A residual U-Net [17] was used to segment the adipose
tissue on the 101 CT scans without edema. 6,403 paired 2D
binary and grayscale tissue masks were randomly selected
from the segmentation results to train C-GAN. For the CT
scans with edema, five images with subcutaneous edema
were randomly selected. The interval between adjacent slices
was adjusted as large as possible to emphasize different body
regions. ITK-SNAP software was used to manually anno-
tate edema [22]. Each slice was first thresholded using a
density range of [−50, 50] HU. Adipose tissue segmenta-
tion masks [17] to remove tissues outside the subcutaneous
region. Finally, the remaining thresholded resultsweremanu-
ally edited by deleting non-edema and adding edema regions.
The whole process was performed by a grader under the
supervision of an experienced radiologist. Three additional
graders (two radiology residents and one postdoctoral fel-
low) also preformed the same process to annotate 5 CT
scans (5 slices per scan). Three sets of subcutaneous edema
annotations were compared to understand the inter-observer
difference.

The previous GMM method was chosen as the base-
line [12]. We used four segmentation metrics to evaluate
accuracy: intersection over union (IoU), Dice Similar-
ity Coefficient (DSC), absolute volume difference (AVD)
between manually annotated and automatically segmented
edema, and relative volume difference (RVD), the ratio of
AVD over manually-annotated edema volumes. Eighteen CT
scans were contrast-enhanced, and the remaining ones were
noncontrast-enhanced.

Results

There was substantial variation of edema annotations among
three graders, two residents in particular with IoU less than
50% (Table 2). One resident tended to include surround-
ing affected tissue as edema. It resulted in larger annotated
regions than the ones from the other two graders.

Table 2 Annotation comparison between two radiology residents (A
and B) and one postdoctoral fellow (C) on 5 abdominal CT scans with
edema

Graders IoU (%) DSC (%) AVD (liter) RVD (%)

A vs. B 49.8±16.6 65.1±15.5 0.017±0.011 73.9±57.8

A vs. C 51.3 ± 17.7 66.2 ± 16.7 0.016 ± 0.018 99.1 ± 106.8

B vs. C 74.2 ± 10.6 84.8 ± 7.1 0.003 ± 0.002 16.2 ± 16.8

Table 3 Segmentation accuracy comparison between GMM [12] and
the proposed method on 25 abdominal CT scans with edema

Method IoU (%) DSC (%) AVD (liter) RVD (%)

GMM 41.2±17.9 56.0±19.4 0.021±0.022 36.5±18.8

Proposed 46.8 ± 17.5 61.7 ± 17.7 0.018 ± 0.020 30.2 ± 16.4

Bold font indicates improvement

Across all four segmentationmetrics, the proposedmethod
significantly improved upon the baseline GMM (p < 0.05)
with IoU, DSC, and RVD values increasing by 5–6% and
AVD decreasing by 0.003 ls (Table 3).

Visual comparison of segmentation results on CT scans
from four patients with edema also confirmed better seg-
mentation accuracy with the proposed method (Fig. 3). Both
GMM and the proposed method slightly under-segment
edema in the pelvis in comparisonwith themanual annotation
(top two rows). However, compared to GMM, the proposed
method preserves small, isolated edema better (white arrows
in Figs. 3A4 and 3B4). It is probably because the intensity
prior of F(Ins, Is) in Eq. 5 is high in these regions. It forces
the level set to propagate till the edema and adipose tissue are
separated. The under-segmentation issuewas improved in the
abdomen for both GMM and the proposed method (bottom
two rows). However, the proposed method performed better
on isolated edema.

Conclusion and future work

In this paper, we developed a Chan-Vese level set framework
with adipose tissue density prior for subcutaneous edema
segmentation on abdominal CT. The key contribution lies in
the use of aC-GAN to convert a binary adipose tissuemask to
a grayscale one. Since C-GAN is trained on patients without
edema, it generates edema-free adipose tissue masks even
when the input binary masks are from patients with edema.
In comparison with the baseline GMMmethod [12], the pro-
posed method achieved better segmentation accuracy with
5–6% increase of IoU, DSC, and RVD and 0.003 ls decrease
of AVD. Qualitatively, the proposedmethod preserved small,
isolated edema foci better than did the GMM.
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Fig. 3 Edema segmentation results on four patients with edema. Each
row (A–D) corresponds to a unique patient. Manual annotations of
edema are shown in red (A2–D2), segmentations results from GMM
are in yellow (A3–D3), and results from the proposed method are in

green (A4–D4). Both GMM and the proposed methods extract main
regions of edema well, but the proposed method preserves small, iso-
lated edema (white arrows) better than GMM thanks to the adipose
density prior constraint

Under-segmentation of subcutaneous edema sometimes
occurred in the pelvis. Additional priors, such as shape,
are potentially useful to reduce the error. Segmentation
results were only validated on 25 contrast enhanced CT
scans with edema from a single institution. Future work
will include more CT scans from different institution. The
inter-observer study among two radiology residents and one
postdoctoral fellow showed substantial variation on edema
annotations, particularly between two residents. It demon-
strated the importance of developing an automatic edema
segmentation method, as it can measure edema volumes
objectively. Visceral edema is not considered in this work
although it is a useful indicator for some clinical scenarios
[23–25]. The combined volume measurements of subcuta-
neous and visceral edemas could be useful for assessing
patients with heart failure [9] and monitoring the nutrient
intake of older recuperative care patients [10]. Moreover,
ascites and pleural effusion are often observed in conjunc-
tion with edema in anasarca patients. Fortunately, our group
developed a set of automatic tools to measure their volumes
[26–28]. A list of fluid volumemeasurements would be more
beneficial for clinical use. The integration of these tools with

edema segmentationmethod is another direction in the future
work.

Automatic segmentation of subcutaneous edema provides
a good starting point to quantitatively evaluate conditions
that produce edema. It could be a useful supplement to body
weight measurements that are widely used in the clinic.
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