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Abstract
Purpose Standardized uptake values (SUVs) derived from 18F-fluoro-2-deoxy-D-glucose positron emission tomogra-
phy/computed tomography are a crucial parameter for identifying tumors or abnormalities in an organ. Moreover, exploring
ways to improve the identification of tumors or abnormalities using a statistical measurement tool is important in clinical
research. Therefore, we developed a fully automatic method to create a personally normalized Z-score map of the liver SUV.
Methods The normalized Z-score map for each patient was created using the SUV mean and standard deviation estimated
from blood-test-derived variables, such as alanine aminotransferase and aspartate aminotransferase, as well as other demo-
graphic information. This was performed using the least absolute shrinkage and selection operator (LASSO)-based estimation
formula.We also used receiver operating characteristic (ROC) to analyze the results of people with and without hepatic tumors
and compared them to the ROC curve of normal SUV.
Results A total of 7757 people were selected for this study. Of these, 7744 were healthy, while 13 had abnormalities. The
area under the ROC curve results indicated that the anomaly detection approach (0.91) outperformed only the maximum
SUV (0.89). To build the LASSO regression, sets of covariates, including sex, weight, body mass index, blood glucose level,
triglyceride, total cholesterol, γ-glutamyl transpeptidase, total protein, creatinine, insulin, albumin, and cholinesterase, were
used to determine the SUV mean, whereas weight was used to determine the SUV standard deviation.
Conclusion The Z-score normalizes the mean and standard deviation. It is effective in ROC curve analysis and increases the
clarity of the abnormality. This normalization is a key technique for effective measurement of maximum glucose consumption
by tumors in the liver.
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Introduction

Medical imaging is subjectively or quantitatively evalu-
ated in clinical practice [1]. Positron emission tomography
(PET)/computed tomography (CT) is a widely used min-
imally invasive imaging modality for evaluating various
neoplasms and other diseases of the human body [2]. The
radioactive tracer 18F fluro-2- deoxy-D-glucose (18F-FDG)
is used in combination with PET for diagnostic purposes
to identify tissues with altered glucose metabolism [3].
Standardized uptake value (SUV) is a semi-quantitativemea-
surement of 18F-FDG tracer uptake in tissues [4]. The SUV is
influenced by several variables, including weight, sex, body
mass index (BMI), plasma glucose level, duration of uptake
phase, partial-volume effects, and recovery coefficient [1, 4].
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The liver is a useful organ for evaluating FDG uptake in
quality control [5], therapy assessment [6], and prognosis
[7]. Owing to its large size, it is clearly seen on FDG-PET
images. The liver may exhibit increased FDG uptake even in
the absence of malignancy. Various background SUVs can
contribute to the failure to detect liver tumors or cancer. In
addition, a genuine hepatic lesion with moderately elevated
uptake may be unnoticed. Several clinical variables have
been reported to have an impact on hepatic FDG absorption
[8]. Therefore, it is necessary to normalize them for easier
detection of tumors by physicians, for example, by simply
thresholding the “normalized” SUV at its maximum.

Clinical variables for the diagnosis and treatment of liver
disease are often obtained from blood tests, commonly
referred to as liver function tests. Abnormal blood test results
are often the first sign of liver diseases, such as cirrhosis,
and are sometimes used as a guide for PET/CT imaging
of the abdomen. Serum indicators, such as aspartate amino-
transferase (AST), alanine aminotransferase (ALT), alkaline
phosphatase (ALP), bilirubin, and albumin, are commonly
used to screen for liver abnormalities [9].Moreover, age [10],
blood glucose level [11], and BMI [12] have all been shown
to affect liver FDG absorption. Abdominal CT is the first
imaging modality used when imaging is necessary to exam-
ine anomalies [9]. We searched PubMed using the keywords
“Diagnosis of FDG/PET,” “blood test results,” and “Z-score.”
No previously published articles related to the objectives of
the present study were identified.

PET/CT-derivedSUVsof healthy background liver tissues
are often used as a reference to characterize anomalies and
assess a tumor’s response to treatment. Therefore, we aimed
to enhance the diagnostic ability of FDG-PETbynormalizing
the liver SUV in each patient.We estimated the average SUV
(and standard deviation) of the liver from various non-image-
derived variables usingmachine learning-basedmethods.We
also established a fully automatic method to create a person-
ally normalized Z-score map of the liver SUV. The Z-score
method is known as the standard score or standardized value
method. It is a statistical technique used to assess how far
a particular data point is from the mean of a dataset, and it
is measured in terms of statistical deviations. The Z-score
helps to understand how extreme or unusual a data point is
within a distribution. Moreover, we aimed to establish a least
absolute shrinkage and selection operator (LASSO)-based
estimation formula for normalizing individual hepatic SUV
maps. This regressionmethod is primarily used for predictive
modeling and regression analysis. The LASSO regression
is commonly used in situations where there are many fea-
tures but not all are important for the prediction. Moreover,
this model helps balance model complexity and predictive
accuracy by encouraging sparse models and automatically
selecting features in the presence of high-dimensional data.

Using the proposedmethod, the SUVmap can be replaced
with a normalized Z-scoremap for daily image interpretation
by physicians. Hopefully, this will help detect and diagnose
hepatic masses more accurately and in a more standardized
manner. We also analyzed the receiver operating characteris-
tic (ROC) curve results of subjects with and without hepatic
tumors and compared them with the ROC curve of normal
SUV.

Materials andmethods

Study design and dataset

This retrospective study was approved by our institutional
reviewboard.The studypopulationwasdefined as adultswho
visited our hospital for a whole-body medical screening pro-
gram between November 2006 and November 2017. All the
participants provided written explicit consent for the use of
their medical images, blood samples, and other demographic
data. For medical image screening, PET/CT was performed
using single-type scanners (Discovery ST Elite, GE Health-
care, Waukesha, WI, USA). CT images were obtained using
the following parameters: field of view (FOV), 500 mm;
matrix size, 512 × 512; voxel size, 0.98 mm × 0.98 mm
× 1.25 mm. PET images were obtained using the following
parameters: FOV, 700 mm; matrix size, 128 × 128; voxel
size, 5.47mm× 5.47mm× 3.25mm. In each instance, blood
tests were performed on the same day as the PET/CT scans.
All PET/CT images were reviewed twice throughout the
screening program. The final diagnosis was reached after dis-
cussions between two radiologists who independently read
identical PET/CT images. No intravenous contrast medium
was used for the CT.

Figure 1 shows the inclusion flowchart of the subjects.
The first time PET/CT scans were performed; there were
7,773 cases over the aforementioned time frame. Among
these, some imagesweremissing in 24 cases; therefore, these
cases were excluded. Consequently, 7,749 fully available
whole-body CT and FDG-PET volumes were obtained. A
total of 7744 cases were identified as normal, and five cases
were identified as abnormal. Local tumors and diffuse liver
diseases (e.g., cirrhosis) were not included in the abnormal
dataset. However, localized mass-like lesions were the focus
of this study. Since there were very few abnormal cases in
the first-time visit dataset, we decided to include additional
abnormal cases from our hospital dataset. Therefore, eight
more abnormal cases were included. Finally, we included
7744 normal and 13 abnormal cases in our analysis.

Wealso collected the followingvariables from the selected
(PET/CT) subjects: height, weight, BMI, age, amylase, high-
density lipoprotein (HDL) cholesterol, low-density lipopro-
tein (LDL) cholesterol, platelet count, total cholesterol,
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Fig. 1 Flowchart of study inclusion

total bilirubin, albumin, total protein, cholinesterase, ALP,
triglyceride, ALT, γ-glutamyl transpeptidase (γ-GTP), AST,
insulin, HbA1c, blood glucose, creatinine, and Brinkman
index (this index is defined as the number of cigarettes
smoked per day multiplied by years of smoking) [13]. All
tests, including blood tests, were performed on the same day
as the PET/CT examinations.

Image processing

We performed whole-abdominal CT image segmentation to
obtain the labels of each abdominal organ, particularly the
liver. We used a self-supervised pipeline for 3D segmenta-
tion, as described by NVIDIA. A detailed description of this
process has been provided in a previous study [14]. The CT
images were cropped to 512 × 512 × 400 voxels from the
center point. The PET images were resized to fit the voxel
size of the whole-body CT and cropped to 512 × 512 × 400
voxels using the same location information. Segmentation of
the liver region was performed using only the CT volume,
and not the PETvolume.Using the segmentationmap, theCT
value (mean of the liver segmentation map) from CT images,
and themean SUV (mean of the segmentationmap) and stan-
dard deviation (standard deviation of the segmentation map)
from PET images were calculated.

Statistical analysis

The summary statistics of the variables are presented as the
mean ± standard deviation. To compare between-group dif-
ferences between the training and test groups, we used the
Student’s t test or Mann–Whitney U test, as appropriate, for
continuous variables. Statistical significancewas defined as p
< 0.05. Correlations between variables were calculated using
Spearman’s correlation analysis.

We calculated a patient-wise normalized SUV (Z-score)
map using the estimated SUV mean and standard deviation

(estimated using blood-test-derived variables and demo-
graphic data).

We created a model using the LASSO regression of the
SUV mean and standard deviation with the selected covari-
ates using the training dataset.

TheLASSO regression drops off coefficients in the regres-
sion by forcing a penalty on the regularization term called
“the sum of the absolute value of the coefficients” [15]. The
objective function of the LASSO is expressed as:

minβ∈Rp

⎧
⎨

⎩
‖Y − Xβ‖22 + λ

p∑

j�1

∣
∣β j

∣
∣

⎫
⎬

⎭
(1)

where β is a vector whose nonzero elements represent the
selected variables, X is the data matrix (i.e., independent
variables), and Y is the vector of dependent variables (either
the estimatedmean or standard deviation of liver SUVs in this
study) of all training subjects. Here λ is a tuning parameter
that controls the strength of regularization. When the λ value
is large, more regression coefficients β drop off. To obtain
the best model, λ plays a key role. In this study, we decided
that the number of selected variables should not be too large
(approximately 10 variables), considering their usefulness in
daily clinical routines. Finally, we applied the model to the
test dataset and abnormal cases and calculated the estimated
SUV mean and standard deviation for each subject.

Therefore, we built a Z-score map using the following
equation:

Zi � yi − E(Y )√
Var (Y )

(2)

where i denotes each pixel, Zi indicates the Z-score of the
i-th pixel of the actual PET slice, E(Y ) is the estimated mean
SUV, and SD(Y ) is the estimated SUV standard deviation.
Therefore, the Z-score represents the difference in SUV from
the mean in units of the standard deviation. Abnormal FDG
uptake is indicated by a higher absolute Z-score. Note that
the SUV of most tumor lesions is higher than that of nor-
mal liver tissue. Therefore, in this study, we focused on focal
positive alterations in Z-score within each liver after per-
sonal normalization. Our LASSO regression model reflects
and normalizes the “background” liver SUV because it was
trained using only healthy subjects.Wehypothesized that this
model would identify abnormal tumor lesions in the liver.

To assess the ability of the patient-wise Z-score to distin-
guish between normal and abnormal tissues, we conducted
a ROC analysis. Abnormalities in the SUV and Z -score
were represented by the maximum SUV (SUVmax ) and Z -
score (Z-scoremax) within the automatically segmented liver
region of each subject. In this study, we hypothesized that a
tumor lesion in the liver would have a higher value/score than
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Table 1 Patient characteristics of demographic and blood sample data for all samples, training sets, and test sets, presented as mean and standard
deviation

Variables Training set (n � 3872) Test set (n � 3872) All (n � 7744) p-value

Age 55.53 (10.65) 55.92 (10.62) 55.73 (10.63) 0.11

Height 164.76 (8.72) 164.72 (9.17) 164.74 (8.95) 0.87

Weight 65.18 (13.14) 65.18 (13.14) 65.18 (13.14) 0.99

BMI 23.85 (3.54) 23.86 (3.6) 23.85 (3.57) 0.96

Brinkman index 323.42 (445.41) 328.26 (450.68) 325.84 (448.03) 0.63

SUV mean 2.06 (0.27) 2.06 (0.27) 2.06 (0.27) 0.34

SUV SD 0.42 (0.15) 0.42 (0.17) 0.42 (0.16) 0.87

Amylase 74.32 (31.25) 73.52 (33.43) 73.92 (32.36) 0.28

HDL cholesterol 61.69 (16.94) 61.7 (17.37) 61.69 (17.15) 0.98

LDL cholesterol 124.87 (31.56) 124.14 (31.83) 124.5 (31.7) 0.31

Total cholesterol 203.07 (34.32) 202.46 (34.37) 202.76 (34.34) 0.44

Total bilirubin 0.9 (0.33) 0.89 (0.32) 0.9 (0.33) 0.31

Total protein 6.89 (0.39) 6.89 (0.39) 6.89 (0.39) 0.75

Platelet 23.21 (5.42) 23.26 (5.63) 23.23 (5.53) 0.66

Albumin 4.14 (0.26) 4.13 (0.26) 4.14 (0.26) 0.53

Cholinesterase 333.6 (69.22) 334.43 (69.3) 334.02 (69.26) 0.60

Alkaline phosphate 190.93 (69.95) 189.94 (58.94) 190.44 (64.68) 0.50

Triglyceride 120.11 (90.9) 121.66 (95.12) 120.89 (93.03) 0.46

Alanine Transaminase 25.32 (25.23) 23.89 (17.87) 24.61 (21.88) 0.004*

Aspartate Aminotransferase 23.13 (14.97) 22.47 (11.4) 22.8 (13.3) 0.03*

γ-Glutamyl Transpeptidase 48.15 (62.17) 46.77 (59.91) 47.46 (61.05) 0.32

Insulin 5.81 (7.2) 5.61 (5.17) 5.71 (6.27) 0.16

HbA1C 5.8 (0.79) 5.79 (0.79) 5.8 (0.79) 0.87

Blood glucose 96.79 (17.8) 96.57 (18.46) 96.68 (18.14) 0.59

Creatinine 0.76 (0.24) 0.77 (0.29) 0.76 (0.27) 0.21

*True difference in mean was not equal to zero between the training and test datasets

the background (i.e., normal liver tissue). We compared the
tumor detection abilities of the SUVmax andZ-scoremax using
patient-wise ROC analysis. Either the SUVmax or Z-scoremax

was thresholded using various thresholds, and patient-wise
sensitivities and specificities were plotted as ROC curves.
Finally, the areas under the ROC curves (AUROCs) of both
SUVmax and Z-scoremax were calculated and compared. We
used twofold cross-validation in the LASSO regression.

All statistical analyses were performed using R software
version 4.2.1. To perform LASSO regression, we used the
glmnet package in the R software.

Results

A total of 7744 patients were selected for further analysis
from 7773 first time visited patients between the time dura-
tion of November 2006 and November 2017. We present the
selection procedure in Fig. 1. After selection of the sample,

we randomly divided the dataset into training set (n � 3872)
and test set (n � 3872). We calculated the mean and stan-
dard deviation as a basic statistical result of demographic
characteristics and blood test data of the training dataset, test
dataset, and total cases (n � 7744). For more details, see
Table 1. A true difference was found in mean result between
the training and test datasets. More specifically, ALT and
AST show a significant true difference in mean between the
training and test datasets.

We also investigated the focal lesions with local SUV ele-
vation in the abnormal cases. We present the pathologies of
all 13 abnormal cases in Table 2. These pathological diag-
noses were confirmed by a hospital physician. Among the
abnormal cases, hepatocellular carcinoma was found in 5
cases. In four cases, we found multiple number of tumors.
Besides this tabular pathological information, we show a pic-
torial representation (Fig. 2) of the Z-score maps obtained
using our anomaly-detection method. We present three cases
as an example out of 13 abnormal cases. In this figure,
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Table 2 List of abnormal cases
Case number Pathology Tumor

numbers

Case 1 Sigmoid colon cancer liver metastases 2

Case 2 Inflammatory pseudotumor, suspected 1

Case 3 Hepatocellular carcinoma 1

Case 4 Metastatic cancer of unknown origin 1

Case 5 Hepatocellular carcinoma 1

Case 6 Combined intrahepatic cholangiocarcinoma and hepatocellular
carcinoma

1

Case 7 Hepatocellular carcinoma 1

Case 8 Hepatocellular carcinoma 1

Case 9 Hepatocellular carcinoma > 2

Case 10 Mammary cancer liver metastases Multiple

Case 11 Gastric cancer liver metastases Multiple

Case 12 Pancreatic neuroendocrine tumor liver metastases Multiple

Case 13 Colon cancer liver metastases Multiple

Cases CT images SUV images Z-score map in liver SUV maximum intensity 

projection in liver

Z-score maximum 

intensity projection in 

liver

Case 2

Case 8

Case 9

Fig. 2 A visual representation of the standardized uptake value and Z-score in positron emission tomography/computed tomography images to
understand the differences between them. We present three cases as examples

the original images (PET/CT) are presented in the first and
second columns. The Z-score maps and SUV maximum
intensity projection figures are presented in the third and
fourth columns. And in the last column, Z-score maximum
intensity projection in liver was presented. This pictorial
presentation of Z-score and SUV itself result magnifies the

improved identification method of Z-score for abnormalities
detection comparing the SUV result.

We found almost the same scale and same number of bins
when we presented a histogram of SUV mean and estimated
mean Z-score for normal cases; see Fig. 3a and c. For abnor-
mal cases, the SUV mean and estimated mean Z-score gave
a right-skewed result; see Fig. 3b and d. We also present a
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Fig. 3 Summary plots of the mean standardized uptake value (SUV)
and estimated mean Z-score: (a) histogram of the mean SUV of normal
cases, (b) histogram of the mean SUV of abnormal cases, (c) histogram
of the estimatedmean Z-score by the least absolute shrinkage and selec-
tion operator (LASSO) regression of normal cases, (d) histogram of the

estimated mean Z-score by the LASSO regression of abnormal cases,
(e) scatterplot of normal cases using the mean SUV and estimatedmean
Z-score, (f) scatterplot of abnormal cases using the mean SUV and esti-
mated mean Z-score
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scatter plot of normal and abnormal cases in the same Figure.
For normal cases in scatterplot, we can explain a null rela-
tionship between the SUVmean and estimatedmean Z-score
(Fig. 3e). By contrast, the abnormal cases explain a positive
linear relationship between the two variables (Fig. 3f). More-
over, we presented the result of ROC curve of the maximum
Z-score versus the SUVmax in Fig. 4. In Fig. 4, the AUROC
value of the Z-scoremax was higher (0.917) than that of the
SUVmax (0.890). The Z-score map interpreted the anomaly
detection approach as being higher (0.91) than the SUVmax

(0.89). The p-value was 0.21 using Delong’s test for the two
correlated ROC curves.

Figure 5 presents the correlation plots of the variables
used in this study. BMI and weight were positively corre-
lated with the SUVmean. For example, the correlation value
of BMI and SUV mean was 0.45, while that of weight and
SUVmeanwas 0.4.Moreover, Triglyceride (0.32) and γGPT
(0.24) showed a small positive correlation among the other
biochemical markers.

Finally, Figure 6 shows the LASSO linear regression
model with all the selected covariates fitted to the data. We
selected the covariate lists and estimated the results using
the test dataset. In the model, for the threshold lambda
of 0.00046, the selected covariates with their slopes (in
parenthesis) are: sex (0.05), weight (0.0033), BMI (0.02),
blood glucose level (0.00006), triglyceride (0.0001), total
cholesterol (0.0002), GTP (0.00002), total protein (0.037),
creatinine (0.017), insulin (-3.202), albumin (0.025), and
cholinesterase (0.00004) for SUVmean. The intercept of the
model is 0.82. Moreover, the selected covariate with its slope
(in parenthesis) for SUV standard deviation in the model was

weight (0.0029) for a threshold lambda of 0.000079. The
intercept of the model was 0.228. The left panel of Fig. 6
shows the fitted model for the SUV mean, while the right
panel shows the fitted model for the SUV standard devia-
tion. Similarly, the top and middle rows show the models for
the training and test datasets of normal cases, respectively.
The bottom row shows the fitted model for abnormal cases.
For normal cases, we found a positive linear relationship in
the plots. Based on two-fold cross-validation, we randomly
divided the entire dataset into training and test datasets.

Discussion

This study aimed to evaluate the importance of FDG-PET
SUV in identifying the liver function associatedwith relevant
blood enzymes. Using 18FDG, PET/CT plays a crucial role
in the treatment of various malignancies, with applications
that include but are not limited to diagnosis, staging, response
assessment, restaging, and prognostication. The SUVmax of
a tumor is a crucial semi-quantitative metric used to dis-
tinguish between benign and malignant tumors. However,
another method called the Z-score is used to identify abnor-
malities in the human body. We used the Z-score map (Eq. 1)
and presented the anomaly results in Fig. 2. In Fig. 4, the
findings of the per-voxel ROC analysis indicate a superior
AUROC for the Z-score compared to only the SUVmax value
in the liver region. The main advantage of using the Z-score
is that it normalizes the mean and standard deviation. This
normalization is effective for the ROC. Our normalization
techniques increased the clarity of abnormalities. Therefore,
we believe that such normalization will be a key technique
for improving the diagnostic effectiveness of measuring the
maximum glucose consumption of tumors. In addition, we
plan to analyze the correlation between the maximum Z-
score and tumor pathologies (e.g., benign vs. malignant) in
a future study.

Considering the importance of the FDG-PET SUV and
after analyzing it in our study, we found a significant positive
correlation between the mean SUV and BMI, body weight,
triglyceride, cholinesterase, and total protein and a negative
correlation between the mean SUV and amylase and HDL
cholesterol. Body weight and BMI have been shown to affect
the transport of FDG into tissues and blood [1]. According
to this study, people with a higher BMI take up more normal
blood and tissue FDG than those with a lower BMI. This
is probably because fat does not store much FDG during
fasting; therefore, more FDG is taken up by non-fatty tissues.

In addition to Pearson correlation, we used the LASSO
regression, a well-known machine learning algorithm, to fil-
ter the variables. This finding is consistent with previous
studies that found a positive effect of blood glucose levels
on liver FDG uptake [1]. Moreover, this is the largest study
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Fig. 5 Correlation plot using heatmap

in which a large number of subjects were used to estimate
the regression formula using blood test variables.

As seen in this study and previous studies, increasing
blood glucose levels reduces tumor FDG absorption while
boosting normal blood and tissue uptake. In addition, we pre-
sented the standard deviation of SUV uptake to create each
personalized Z-score map. The covariate weight showed a
positive relationship of the model with a lambda value of
7.90e-5. Our results showed the diagnostic value of the train-
ing set in themodel; however, itwas not significantly different
from that of the testing set, which may be related to the sam-
ple size (Fig. 6).

This study has some limitations, as we did not investigate
all possible variables that could affect liver FDGuptake, such
as hepatic steatosis, diabetes status, abnormal lipid profile,
and liver function abnormalities. Moreover, the small num-
ber of patients with abnormal findings is a drawback of this

study. A few FDG-PET and blood test examinations were
performed on the same day. Furthermore, we estimated only
the mean and standard deviation of the entire liver, and not
the voxel-wise estimation of the SUV. However, the liver is a
homogenous organ; therefore, we considered the voxel-wise
estimation of the SUV to be redundant. Themethodwe intro-
duced here is very objective andmore suitable for comparing
regions andbackgrounds than subjectivemethods, such as the
Deauville score.

In conclusion, the AUROC for the Z-score is a better pre-
dictor of abnormalities than the SUVmax value in the liver
region. Covariates, such as sex, weight, BMI, blood glucose
level, triglycerides, total cholesterol, GTP, total protein, cre-
atinine, albumin, insulin, and cholinesterase are significant
predictors of FDG uptake in the liver. Our future studies will
include an evaluation of the predictive value of the Z-score
for tumor pathology estimation.
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Fig. 6 The fitted regression model is shown with the optimally selected
features, as determined by the least absolute shrinkage and selection
operator regression: (a) fitted model of the mean standardized uptake
value (SUV) in the training dataset, (b) fitted model of SUV standard

deviation in the training dataset, (c) fitted model of the mean SUV in
the test dataset, (d) fitted model of SUV standard deviation in the test
dataset, (e) fitted model of the mean SUV using the diffuse liver cases,
(f) fitted model of SUV standard deviation using the diffuse liver cases
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