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Abstract
Purpose Computer-assisted surgical systems provide support information to the surgeon, which can improve the execution
and overall outcome of the procedure. These systems are based on deep learning models that are trained on complex and
challenging-to-annotate data. Generating synthetic data can overcome these limitations, but it is necessary to reduce the
domain gap between real and synthetic data.
Methods We propose a method for image-to-image translation based on a Stable Diffusion model, which generates realistic
images starting from synthetic data. Compared to previous works, the proposed method is better suited for clinical application
as it requires a much smaller amount of input data and allows finer control over the generation of details by introducing
different variants of supporting control networks.
Results The proposed method is applied in the context of laparoscopic cholecystectomy, using synthetic and real data from
public datasets. It achieves a mean Intersection over Union of 69.76%, significantly improving the baseline results (69.76 vs.
42.21%).
Conclusions The proposed method for translating synthetic images into images with realistic characteristics will enable the
training of deep learning methods that can generalize optimally to real-world contexts, thereby improving computer-assisted
intervention guidance systems.

Keywords Diffusion models · Synthetic data generation · Surgical simulation

Introduction

Computer-assisted intervention (CAI) is a research field
focused on enhancing the safety, efficiency, and cost-
effectiveness of medical procedures by minimizing errors
and complications [15]. Within CAI, laparoscopic cholecys-
tectomy (LC) has gained significant attention as a widely
performed minimally invasive procedure for gallbladder
removal [19]. However, LCpresents technical challenges due
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to limited visibility and the use of laparoscopic instruments,
leading to potential complications like bile duct injury (BDI)
[31]. To address these complexities, CAI systems leveraging
deep learning (DL) methods have been proposed. These sys-
tems aim to identify safe dissection zones, locate anatomical
landmarks, and automatically assess critical safety criteria
[14, 31]. DL techniques, including action triplet recognition,
temporal modeling, tools segmentation, and segmentation of
anatomical structures, have been applied to LC [7, 19, 32,
35].

However, the availability of annotated data poses chal-
lenges for training DL models in this domain [22]. Limited
datasets, primarily derived from the Cholec80 dataset, exist
for LC, annotated with phases, tool presence, and action
triplets [18, 19, 32]. To overcome this limitation, generat-
ing synthetic data through virtual simulations along with
rich annotations has been explored [4, 22]. Yet, DL models
trained on synthetic data often struggle to perform well on
real data due to the domain gap [22]. Image-to-image trans-
lation techniques based on generative adversarial networks
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(GANs) have been proposed to mitigate this limitation [2].
However, these techniques still require a substantial amount
of annotated data.

Recently, latent diffusion models (LDMs) have shown
promise in generating highly detailed images while preserv-
ing semantic structure [9]. LDMs employ an iterative process
involving noise addition and reverse learning to recover orig-
inal data. In the medical field, LDMs have been extensively
utilized for tasks such as image translation, generation, pre-
processing, segmentation, and classification [9]. Compared
to other DL techniques like GANs, LDMs can be fine-tuned
effectively with smaller datasets and combined with support
methods for controlled generation. The widely used Stable
Diffusion (SD) LDM model offers efficient conditioning of
the generation process through text prompts [24].

In general, no existing work uses LDMs instead of GANs
for the translation of synthetic images into realistic images.
Therefore, our contributions are as follows: (1) We intro-
duce a novel application of the Stable Diffusion model to
generate synthetic surgical data in an unsupervised manner,
addressing the issue of limited data availability in clinical
environments, see Fig. 1. To the best of our knowledge, this
approach has not been previously published. (2) We evaluate
our approach using public datasets to demonstrate its effec-
tiveness in generating realistic synthetic data. The results
show that our approach outperforms the baseline method
in preserving tissue integrity, achieving a mean Intersection
over Union (mIoU) of 69.76% compared to 42.21% for the
CholecT80-style baseline. Additionally, ourmethod success-
fully captures the characteristic feature distribution of real
surgical data, either comparable to or enhanced compared to
the baseline dataset. (3)We provide public access to the code
and our realistic rendering of the publicly available IRCAD
dataset, which includes simulation frames, depth maps, seg-
mentation maps, edges, and normals at https://github.com/
SanoScience/sim2real_with_Stable_Diffusion.

Related work

Several approaches have been proposed for generating syn-
thetic data with realistic characteristics for specific surgical
procedures, e.g., [10]. In one study [4], Unity3D was used
to create a 3D liver and laparoscope environment, enabling
the generation of images for DL segmentation training.
Another study [16] employed a GAN approach to directly
generate images from segmentation maps, focusing on max-
imizing differences between instruments and anatomical
environments. The combination of synthetic images and real
segmentation maps has been extensively used to train GANs
for surgical tool segmentation, employing techniques like
consistency losses and student–teacher learning [26, 27].
GAN-based approaches have also been applied in other sur-

gical domains such as cardiac intervention, colonoscopy
examination, and sinus surgery [13, 20, 29].While numerous
other GAN-related works exist, they are beyond the scope of
this discussion [2].

Another relevant work [22] introduced an image-to-
image translation method for simplified 3D rendering of LC
anatomy based on real endoscopic images from theCholec80
dataset. This approach utilized GANs trained in an unpaired
manner and generated a dataset of 100,000 images with vari-
ous annotations. Although extended to video translation [23],
this work uses only simplified liver views. It lacks surgical
tools and the specific anatomy of interest (gallbladder), mak-
ing it not representative of LC procedures.

While GAN-based approaches have shown potential, they
have limitations, such as early convergence of discrimina-
tors and instability of the adversarial loss function, which
can lead to mode collapse and reduced diversity in generated
data. Diffusion models (DMs) have emerged as a promising
alternative, surpassing GANs in computer vision tasks [3].
In the medical domain, DMs have been widely utilized for
various applications, including generating MRI sequences,
synthesizing histological images, and generating thoracic X-
ray images based on text prompts [9, 17, 21]. The latter
employs the SD model, which uses text prompts as condi-
tioning and has been applied successfully in similar medical
tasks. Notably, this is the first work to utilize DMs for gen-
erating intra-operative endoscopic images, combining text
prompts with virtual simulator images for conditioning the
process.

Methods

Our method involves adding a concept to the SD model and
using it to generate realistic images from synthetic ones. We
begin by fine-tuning SD based on DreamBooth (DB) [25].
Then, the fine-tuned Laparoscopic Cholecystectomy Stable
Diffusion (LC-SD) model is employed to generate realistic
images. This is achieved by leveraging two versions of the
ControlNet support architecture, namely Tile and SoftEdge
control, to ensure consistency between label and generated
images. An overview of the proposed method is depicted in
Fig. 2.

Fine-tuning with DreamBooth

SD [24] is a LDM that implements a denoising technique in a
lower-dimensional latent space.One of the key features of SD
is its flexibility in conditioning the denoising step on various
modalities, such as text or images, achieved through a cross-
attention mechanism. Significant progress has been made in
the field of SD model few-shot fine-tuning and personal-
ized concept introduction through notable works, including
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Fig. 1 Examples of synthetic data translated with our fine-tuned model to the CholecT45 style are shown. Three random frames from the simulator
and their realistic translations are shown in the top and bottom rows, respectively
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Fig. 2 Overview of fine-tuning and inference: SD is fine-tuned using
DreamBooth, which binds a unique text identifier with a newly incor-
porated CholecT45 style. In the inference stage, the fine-tuned LC-SD
is conditioned with two ControlNet models. The textured input sample,

along with the ’cholecT45’ prompt, is passed to LC-SD. The Tile Con-
trolNet accepts a tiled version of the input sample, while the SoftEdge
ControlNet accepts edges detected by Pidinet from the input sample

Textual Inversion [5], Low-Rank Adaptation [8], Custom
Diffusion [11], and DB [25]. Among these, DB has been
selected as it utilizes afine-tuning approachwith a small set of
concept-specific images (3 to 5 for an object and 50 to 200 for
a style) and allows for the introduction of highly unconven-
tional concepts. During training, themodel is pairedwith text
prompts containing class names and unique text identifiers.
The model learns to associate the text identifier with the new
concept. By incorporating a class-specific prior preserva-
tion loss, DB encourages the generation of diverse instances
within the subject’s class, resulting in the synthesis of pho-
torealistic images.

DB has a tendency to overfit, and the appropriate num-
ber of training steps depends on several factors, including
the characteristics of the training data, learning rate, and
prior preservation. This number needs to be determined
experimentally. In our specific case, we did not use prior
preservation during fine-tuning because SD lacks a proper
prior for human tissue or surgical images. Additionally,
unlike the original work where the text encoder was frozen,
we fine-tuned both the text encoder and the U-Net.
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Inference with ControlNet

To generate realistic tissues based on simulation scenes, we
employ text-guided image-to-image inference. During the
inference stage, we utilize a unique text identifier that was
bound with the CholecT45 style during DB training.

ControlNet is an architecture designed to control pre-
trained large DMs by incorporating additional conditions,
such as sketches, key points, edge, and segmentation maps
[36]. It maintains two sets of U-Net weights copied from pre-
trained DM: a trainable copy and a locked copy. The locked
copy preserves the original weights from the pretrained DM
during training. The trainable copy is fine-tuned using task-
specific datasets to adapt to the additional conditions and
introduces control during inference. Neural network blocks
of pretrained DM and ControlNet model are connected with
the use of trainable “zero convolution” layers which param-
eters are optimized during ControlNet training. Explanation
of “zero convolution” layers function, block connection and
application of ControlNet to the original SD are described in
detail in [36].

Since our method operates in a limited real data setting,
training a custom ControlNet is not feasible as it would
require at least a few thousand diversified images along
with conditioning inputs. However, it is possible to directly
apply ControlNet trained on original SD to LC-SD and even
to combine multiple ControlNet models (each with desired
strength) to impose diversified control. To combine single
LC_SD block with corresponding blocks of N ControlNets,
we present the extended formula from [36] as:

yc = F(x; θ LC_SD) +

+
N∑

i=1

wiZ
(F (

x + Z (
ci ; θ Z1,i

) ; θC,i
) ; θ Z2,i

)
(1)

where x is an input feature map to the LC-SD block, ci is
a conditioning input feature map to the corresponding block
of the i th trained ControlNet, and yc is a conditioned output
feature map from the LC-SD block. We denote the weights
of the LC-SD block as θLC_SD and the trainable weights
for the block of the i th ControlNet as θC,i . The function
denoted as F(·; ·) transforms the input feature map into the
output feature map given a set of parameters. We denote the
“zero convolution” operation as Z(·; ·). Within the block of
the i th ControlNet, two “zero convolution” operations are
performed with optimized parameters {θ Z1,i , θ Z2,i }, respec-
tively. wi is the strength the i th ControlNet is applied with.
The first term on the right side of Eq. 1 represents the result
of applying LC-SD, while the second term relates to the con-
tribution of the different ControlNets.

Given the variety of available pretrainedControlNets [36],
we explored additional outputs from the simulator as poten-

tial control inputs. However, the Segmentation ControlNet
was not applicable since it requires a segmentationmap com-
pliant with ADE20K’s segmentation format, which does not
include any surgical-relevant class/label. We also conducted
preliminary tests on depth and normal ControlNets using
our inference IRCAD dataset, which is described in detail in
Sect. "Dataset and implementation details". While both con-
trol inputs helped maintain proper anatomical boundaries,
the depth details were not captured, and the overall visual
performance was unsatisfactory.

Instead, we focused on control methods that could be
robustly applied to completely new styles:SoftEdge v1.1 and
Tile v1.1. Both ControlNets contribute to generating con-
sistent shapes and boundaries, but they impose additional
constraints on different aspects of the output images. The
SoftEdge control utilizes edges generated with Pidinet [30]
orHED[34]models. It primarily preserves original edges and
tissue folds. On the other hand, Tile ControlNet exhibits con-
ceptual similarities with tile-based super-resolution models
but offers broader applications. It operates in twomodes: gen-
erating newdetailswhile ignoring existing ones, and ignoring
global prompts when local tile semantics and prompts do not
align, guiding the diffusion process with local context. In
the context of endoscopic image generation, Tile ControlNet
effectively adds tissue details and helps preserve accurate
tissue colors.

Experiments

Dataset and implementation details

To use the minimum amount of data while ensuring a suf-
ficient variability of visual properties and the presence of
all regions and instruments of interest, we trained three sep-
arate models, each based on two distinct videos from the
CholecT45 dataset [19]. We carefully select pairs of videos
that exhibit comparable visual characteristics and ensure that
all classes are represented within each training set. We train
each model with DB using a manually selected set of 85,
91, and 95 images, respectively. Despite the limited number
of images, it is crucial to choose representative and consis-
tent samples that cover various procedure stages and tissues
present in the synthetic dataset. Furthermore, to prevent the
models from introducing tool artifacts in each frame, it was
highly important to include images both with surgical tools
and with minimal or no presence of them. All models are
based on Stable Diffusion v1.5, and we train them with DB
using a learning rate of 1 × 10−6 and a batch size of 4 for
2,000 steps.

In the inference stage, we utilize fully labeled synthetic
data from the IRCAD 3D CT liver dataset, as previously
employed in [22]. The dataset contains 20,000 synthetic
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Fig. 3 Visual comparison between the raw image from the simulator (first from left) and image with enriched textures for two styles (second and
third from left)

images rendered from3Dscenes obtained from theCTdata of
10 different patients including models of the liver, gallblad-
der (only for 6 patients), insufflated abdominal wall, fat, and
connective tissue. In addition, tools, light sources, and endo-
scopic cameras have been added in random positions in the
scene. In the image-to-image approach, the prior information
significantly influences the resulting image. However, the
IRCAD dataset presents simplified anatomy, and as a result,
plain structures and distorted colors can lead to unrealistic
results. To address this issue, we enhance the raw simulation
images by incorporating texture information from example
samples. We extract small texture samples for each tissue
from the corresponding training set and blend them with
the raw simulation scenes, guided by segmentation maps,
as shown in Fig. 3.

For inference, we adjust the model checkpoint, denois-
ing strength, classifier-free guidance scale (CFG), noise
scheduler, and ControlNet strengths for each LC-SD model
separately. Although all LC-SD models are trained with the
same parameters, variations in the complexity and diver-
sity of the training sets resulted in differences in denoising
capabilities across themodels.We carefully balance the Con-

Table 1 Selected inference parameter values for eachmodel: denoising
strength, CFG, noise scheduler, SoftEdge, and Tile control strength. All
the models use noise scheduler DPM++ 2M Karras

Style Denoising CFG SoftEdge Tile

CholecT45 vid52 & vid56 0.45 4.5 0.5 0.3

CholecT45 vid25 & vid66 0.45 5.0 0.4 0.3

CholecT45 vid01 & vid49 0.5 5.0 0.55 0.3

trolNet strengths for each model separately. In addition to
tissue placement, we also consider overall image realism and
details, such as tissue folds. The lack of tissue foldswould not
necessarily degrade mIoU. To achieve the desired balance,
we use a stronger SoftEdge control in combination with a
weaker Tile control. Using only SoftEdge with high control
strength could compromise image quality by erasing valuable
details. To prevent Tile control from introducing excessive
detail based on the input sample, we use a smaller strength.
To generate data at a large scale while maintaining reason-
able inference time and acceptable image quality, we limit
the denoising steps to 20. The selected parameter values are
shown in Table 1.

Fig. 4 A visual comparison is made between the data processed using our fine-tuned Stable Diffusion model (first row), the raw image from the
simulator, and the data generated in [22] for random and Cholec80 styles (second row)
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Fig. 5 Visual comparison on example image generated with different
control types applied. Without any type of control, the overall image
consistency is degraded. With Tile control details are clearly rendered,

but tissue shapes do not correspond to the given labels. With only Soft-
Edge control color artifacts appeared

The data generation process is carried out on a single
NVIDIA A100 GPU. The generation time takes up to 3 s per
image, depending on the number of ControlNets utilized.

Evaluationmetrics

To evaluate the realism of the generated data, we employ
established evaluation metrics[9, 23]: Frechet Inception Dis-
tance (FID) [6] and Kernel Inception Distance (KID) [1].
These metrics assess the similarity between two sets of
images based on their feature representations extracted from
a pretrained Inception network. Following [12, 33, 38], we
employ Learned Perceptual Image Patch Similarity (LPIPS)
[37] to assess diversity of generated samples. LIPIS is an
image quality assessment method, it computes the average
distances between samples in AlexNet, VGG, or Squeezenet
feature space.

Moreover, to evaluate the LC-SD models’ ability to
preserve labels, we fine-tuned a variant of U-Net with a pre-
trained ResNet50 backbone using the CholecSeg8k dataset
[7] for five classes: abdominalwall, liver, fat, gallbladder, and
tool. These classes are present in both the CholecSeg8k and
IRCAD datasets. From the training data, we exclude videos
used to generate synthetic data. We use mean Intersection
over Union (mIoU) to calculate the average overlap between
predicted and ground truth segmentationmasks across multi-
ple classes which allows us to evaluate the models’ ability to

preserve labels. The mIoU for the real test data was 89.77%,
and we assessed the mIoU for 10,000 generated images.

Results

Avisual comparison revealed that our generated data achieve
similar perceptual realism to the baseline dataset [22], as
visible in the samples shown in Fig. 4. Table 2 presents
the quantitative results obtained from various methods and
styles, with the best scores highlighted in bold. The first row
represents raw simulation images with a mIoU of 24.73%,
FID of 305.00, KID of 0.3739 ± 0.0041, and LPIPS of
0.5820. The second and third rows, attributed to the method
presented in [28], demonstrate improvements in perfor-
mance. For the random style, the mIoU and LPIPS increase
to 45.28% and 0.5834, respectively, while the FID decreases
to 110.92 and the KID to 0.1243 ± 0.0035. When using the
Cholec80 style, the mIoU remains high at 42.21%, while the
FID and KID values drop to 67.13 and 0.0623 ± 0.0017,
respectively. The LPIPS obtains the highest result of 0.6407.
Subsequently, our method, denoted as “ours,” showcases fur-
ther enhancements.With the CholecT45 vid52&vid56 style,
we achieve an impressive mIoU of 66.85%, accompanied by
an FID of 68.35, a KID of 0.0658 ± 0.0015, and LPIPS
of 0.6245. Notably, the best performance is attained when
employing the CholecT45 vid25 & vid66 style, achieving a
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Table 2 Quantitative results are
presented for each style: the raw
simulator, baseline data, and our
generated data. We demonstrate
this using mIoU, FID, KID, and
LPIPS metrics

Method Style mIoU [%] ↑ FID ↓ KID ↓ LPIPSVGG ↑
N/A Raw simulation images 24.73 305.00 .3739 ±.0041 .5820

[22] Random 45.28 110.92 .1243 ±.0035 .5834

[22] Cholec80 42.21 67.13 .0623 ±.0017 .6407

Ours CholecT45 vid52 & vid56 66.85 68.35 .0658 ±.0015 .6245

Ours CholecT45 vid25 & vid66 69.76 63.07 .0582 ±.0012 .6262

Ours CholecT45 vid01 & vid49 67.20 57.47 .0513 ±.0011 .6175

Ours Mixed styles 67.89 54.57 .0473 ± .0011 .6281

The best-performing methods are in bold

Table 3 The mIoU [%] values
for different control types and
improvement compared to
no-control inference are
presented

Style No control Only SoftEgde Only tile SoftEdge + Tile

CholecT45 vid52 & vid56 61.52 65.26 (+ 6.1%) 64.20 (+4.4%) 66.85 (+8.7%)

CholecT45 vid25 & vid66 63.35 67.16 (+ 6.0%) 68.01 (+7.4%) 69.76 (+10.1%)

CholecT45 vid01 & vid49 54.29 63.26 (+ 16.5%) 62.08 (+14.3%) 67.20 (+23.8%)

Bold font indicates the best results

remarkable mIoU score of 69.76%, with an FID of 63.07, a
KID of 0.0582 ± 0.0012, and LPIPS of 0.6262. Additional
experiments demonstrate the effectiveness of our method
with different styles, such as CholecT45 vid01 & vid49,
resulting in a mIoU of 67.20%, an FID of 57.47, a KID of
0.0513 ± 0.0011, and LPIPS of 0.6175. Moreover, when
applying mixed styles, our approach attains a high mIoU of
67.89%, while achieving the best FID score of 54.57 and
KID score of 0.0473 ± 0.0011, while LPIPS is 0.6281. Our
method achieves significantly higher mIoU and, depending
on the style, either lower or comparable FID, KID, and com-
parable LPIPS.

Figure 5 and Table 3 provides an overview of the mIoU
values for different control types and their improvements
compared to no control inference. The table shows that the
combined control models yielded the best results overall,
with the highest improvement observed for the style vid01
& vid49 when inferred with the highest denoising value. For
the CholecT45 vid52 & vid56 style, the no-control inference
resulted in a mIoU of 61.52%. When applying only Soft-
Edge control, the mIoU increased to 65.26 (+6.1%), while
using only Tile control led to a mIoU of 64.20 (+4.4%). The
most significant improvement of 8.7% was achieved when
combining SoftEdge and Tile controls, resulting in mIoU of
66.85%. Similarly, for the CholecT45 vid25 & vid66 style,
the no-control inference yielded a mIoU of 63.35, which
increased to 67.16 (+6.0%) when using only SoftEdge con-
trol and to 68.01 (+7.4%) with only Tile control. However,
the best performance was obtained when both SoftEdge and
Tile controls were combined, resulting in mIoU of 69.76%,
representing a substantial improvement of 10.1%. Further-
more, for the CholecT45 vid01 & vid49 style, the no-control
inference achieved a mIoU of 54.29%. By employing only
SoftEdge control, the mIoU increased to 63.26 (+16.5%),

while using only Tile control resulted in a mIoU of 62.08
(+14.3%). Notably, the highest improvement of 23.8% was
attainedwhen combining SoftEdge andTile controls, leading
to a mIoU of 67.20%.

Discussion and conclusions

In thiswork,we have proposed an SD-based approach to gen-
erate realistic surgical images from virtual simulator images
and text prompts. The SD model was initially fine-tuned
using DB and then used for inference, supported by Tile and
SoftEdge ControlNets. The model can be trained using less
than 100 real images without manual annotations and man-
ages to generate realistic images that outperform the baseline
in all considered evaluation metrics.

We consider this work to be a significant addition to the
current foundation, offering researchers a valuable dataset
to facilitate the development of machine learning solutions
in image-guided and robotic surgery. This approach can
produce fully labeled training data for supervised machine
learning algorithms. Additionally, strict alignment of the
created data with its ground truth annotations extends its
potential for evaluation in various unsupervised and semi-
supervised applications.

Despite that, our method has several limitations. Firstly,
the use of a very limited training dataset makes image
selection critical, requiring careful consideration to ensure
representativeness and consistency. Secondly, our method
heavily relies on the input image features. We leave address-
ing this limitations for future work. Temporal consistency is
anothermajor limitation of our approach, whichwe could not
investigate in depth due to the lack of temporal coherence in
the simulated data. To address this, a more detailed synthetic
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dataset with enhanced textures and tool–tissue interactions,
along with extended annotations, would be necessary to sup-
port different tasks, such as surgical temporal modeling.

Overall, our proposed method represents a promising
direction for generating realistic surgical images and has the
potential to contribute to advancements in the field of image-
guided and robotic surgery.
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