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Abstract
Purpose In twin-to-twin transfusion syndrome (TTTS), abnormal vascular anastomoses in the monochorionic placenta can
produce uneven blood flow between the two fetuses. In the current practice, TTTS is treated surgically by closing abnormal
anastomoses using laser ablation. This surgery is minimally invasive and relies on fetoscopy. Limited field of view makes
anastomosis identification a challenging task for the surgeon.
Methods To tackle this challenge, we propose a learning-based framework for in vivo fetoscopy frame registration for field-
of-view expansion. The novelties of this framework rely on a learning-based keypoint proposal network and an encoding
strategy to filter (i) irrelevant keypoints based on fetoscopic semantic image segmentation and (ii) inconsistent homographies.
Results We validate our framework on a dataset of six intraoperative sequences from six TTTS surgeries from six different
women against the most recent state-of-the-art algorithm, which relies on the segmentation of placenta vessels.
Conclusion The proposed framework achieves higher performance compared to the state of the art, paving the way for robust
mosaicking to provide surgeons with context awareness during TTTS surgery.
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Introduction

Twin-to-twin transfusion syndrome (TTTS) is a rare com-
plication affecting 10–15% of monochorionic diamniotic
pregnancies. TTTS is characterized by the development of
unbalanced blood transfer from one twin (the donor) to
the other (the recipient), through placental communicat-
ing vessels called anastomoses [1]. This shared circulation
causes profound fetal hemodynamic unbalance and conse-
quently severe growth restriction, cardiovascular dysfunc-
tion, hypoxic brain damage anddeath of one or both twins [2].

The recognized elective treatment for TTTS is selec-
tive laser photocoagulation of anastomoses originating in
the donor’s placental territory. This treatment requires pre-
cise identification and laser ablation of placental vascular
anastomoses [3]. Despite recent advancements in instrumen-
tation and imaging for TTTS [4], residual anastomoses still
represent a major complication [5]. This may be explained
considering the challenges, from the surgeon’s side, of lim-
ited field of view (FoV) and constrained maneuverability of
the fetoscope, especially for anterior placenta.

In this complex scenario, computer-assisted intervention
(CAI) and surgical data science (SDS) methodologies [6]
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Fig. 1 Main challenges of TTTS frames: a occlusions, b, d, f lack of anatomical structures (e.g., vessels), c poor frame texture, e non-planar view
in case of anterior placenta

may be exploited to provide surgeons with mosaicking for
FoV expansion. In the last years,mosaicking in fetoscopy has
been widely investigated and several methods to tackle this
task have been exploited, as in depth discussed in “Related
work” section. Most of the work in the literature focuses
on handcrafted features or relies on the detection of sta-
ble regions or anatomical landmarks, like blood vessels.
However, none of the developed methodologies have been
translated into surgical practice, and several challenges are
still open. These challenges include poor visibility due to
amniotic fluid turbidity, low resolution of fetoscopic images,
occlusions by surgical tools and fetuses (Fig. 1a), lack of
anatomical structures (Fig. 1b, d, f) to be used as reference
for frame registration, poor frame texture (Fig. 1c) and distor-
tion introduced by non-planar views due to fetoscope camera
orientation, especially in case of anterior placenta (Fig. 1c,
e). [7]

With this work, we aim to contribute to the advancement
of the state of the art in FoV expansion for TTTS by inves-
tigating, with a comprehensive study with six videos (1450
frames) acquired during actual surgery [8], and the research
hypotheses are as follows:

• Hypothesis 1 (H1): Keypoint learning can tackle the
challenges typical of fetoscopic videos acquired during
TTTS surgery and provide robust keypoints for mosaick-
ing without relying on the segmentation of anatomical
structures in the FoV.

• Hypothesis 2 (H2): Mosaicking performance can be
boosted by filtering irrelevant keypoints using semantic
information and rejecting inconsistent homographies.

Contribution

In this paper, we propose a learning-based framework for the
robust detection of keypoints with the aim to register consec-
utive frames acquired during TTTS surgery and accomplish
mosaicking for FoV expansion in fetoscopy. Our framework
does not depend on anatomical landmark segmentation for
frame registration. However, when either fetuses or surgical
tools are present within the FoV, their segmentation is used

for irrelevant keypoints rejection. The contributions of this
work can be summarized as follows:

1. Development of a new framework for learning-based
FoVexpansion inTTTS fetoscopy videos,which features
a self-supervised training strategy for detecting robust
keypoints.

2. Development of a filtering strategy for (i) removing irrel-
evant keypoints by exploiting keypoints semantic from
surgical scene segmentation, and for (ii) filtering out
inconsistent homographies.

In this paper, we introduce a method that uses learned
keypoints and use segmentation to assign them semantic
labels that allow us to discriminate between useful and irrel-
evant keypoints for image registration. To the best of our
knowledge, this work is the first to investigate the poten-
tial of learned semantic keypoints to achieve mosaicking in
fetoscopy.We also conduct an extensive comparison with the
state of the art and present an ablation study to identify the
optimal configuration of our framework. The code is made
available1 for reproducibility.

Related work

Handcrafted local feature descriptors, such asSIFTandORB,
have been commonly used for image matching, also in med-
ical field, due to the associated low computational cost. For
example, the work in [9] uses SIFT descriptor to extract local
features, optimizing feature selection based on a Voronoi
diagram for retinal image mosaicking. SURF descriptors
are used for real-time bladder mosaicking in fluorescence
endoscopy in [10],while in [11], the authors use a SIFT-based
zone matching method specifically designed for endoscopic
images. Similarly, thework in [12] proposes an improved fea-
ture point algorithm for endoscopic image matching based
on the SIFT descriptor. First attempts to use local descrip-
tors for mosaicking in fetoscopy include [13, 14]. These
methods have only been validated on synthetic phantoms or

1 https://github.com/alessandrocasella/learningmosaicking.
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Fig. 2 Overview of the semantic keypoint proposal network. KH and
DH are the keypoint and keypoint descriptor head, respectively. Irrele-
vant keypoint rejection relies on semantic segmentation performed by

the U-Net with ResNet50 backbone from [8]. The overall output is a
set of keypoints, their descriptors and class

ex vivo placental sequences. However, when it comes to in
vivo images, researchers showed that traditional local feature
descriptors are not able to tackle the complexity of intraop-
erative images [7, 15].

The work in [16] followed a different approach by mini-
mizing the photometric consistency between frames, show-
ing promising results with in vivo fetoscopy data. However,
the computation time to process a frame pair is amajor bottle-
neck and may not be compatible with real-time mosaicking.

More recently, deep learning-based algorithms have been
proposed to try to improve the performance of fetoscopy
mosaicking while keeping the computational cost low.
In [17], stable regions identified by a convolutional neural
network (CNN) are used as a prior for frame registration. The
approach is tested on phantoms only. The work in [18] uses
HomographyNet to perform pair-wise homography estima-
tion. The validation is performedon a single in vivo sequence.
In [8], the authors show that placental vessels provide unique
landmarks to compute homography. While obtaining accu-
rate vessel segmentation might be considered an affordable
challenge [7], this approach fails whenever vessels are not
clearly visible. The work in [19] proposes to use pixels
flow field for homography estimation using FlowNet, thus
enabling mosaicking without relying on vessels. However,
FlowNet requires constant brightness and robust texture [20],
which cannot always be guaranteed in fetoscopic frames.

In the field of natural-image analysis, current researches
focus on learned keypoints and local descriptors, showing
promising results. The work in [21] proposes a siamese net-

work which relies on L2 distance between patches to select
those images that are challenging to match during training in
order to learn better descriptors. Similarly, the authors in [22]
propose a network named L2-Net that outperform traditional
descriptors. GeoDesc proposed in [23] enforces geometri-
cal consistency during training to learn stable descriptors in
images from multiple views.

Inspired by these researches,we decided to exploit learned
keypoints and local descriptors. This opens up new pos-
sibilities in translating these techniques to fetal surgery
as keypoints and descriptors are widely used in image-
based navigation systems [24]. However, learning keypoints
requires supervision [25, 26], which is not trivial to be gen-
erated in fetoscopy due to the complexity in the definition
of stable keypoints and, thus establishing the ground truth.
To address this issue, in our framework, we rely on self-
supervised learning as a solution [27] (Fig. 2).

Proposedmethod

Our proposed framework consists of two main modules, (i)
a semantic keypoint proposal network (KPN) (“SuperPoint:
the keypoint proposal network” section) for keypoints learn-
ing, (ii) an irrelevant keypoint rejection, and (iii) registration
for mosaicking (“Registration for mosaicking” section), for
estimating transformation, as homography, from the key-
points and filtering inconsistent homographies. The overall
framework is shown in Fig. 3.
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Fig. 3 Overview of the proposed mosaicking framework. The key-
point proposal network (KPN) computes keypoints that are then filtered,
according to their semantics, to reject irrelevant keypoints. Registration

for mosaicking is performed to register consecutive fetoscopy frames.
Warping and blending are performed for visual purposes

SuperPoint: the keypoint proposal network

The semantic keypoint proposal network (KPN) is a CNN
based on SuperPoint [25] (Fig. 2) and consists of keypoint
proposal computation (“Keypoint proposal computation”
section), trained following the strategy described in “KPN
training” section, and irrelevant keypoint rejection using
semantic information from segmentation (“Semantic key-
point rejection” section).

Keypoint proposal computation

KPN consists of a VGG-16 backbone for feature extraction,
followed by two heads, the keypoint head (KH) for the detec-
tion of candidate keypoints, and the descriptor head (DH) for
computing keypoint descriptors. KH outputs a dense point
map, with the same size as the input frame, where the value
of each pixel refers to the probability of that pixel of being a
keypoint. DH outputs a L2-normalized descriptor vector for
each candidate keypoint.

KPN training

We train the KPN in four steps. To account for the
lack of annotated TTTS frames, we initially trained KPN
without DH on the synthetic shapes dataset presented in
DeTone et al. [25]. Each pair consists of images with size
448× 448 pixels containing simple polygons and associated
keypoints.A robust keypoint should be covariantwith respect
to visual conditions and camera motion transformation, thus
to encode this property duringKPN training, we increase the
dataset by applying (i) perspective distortions (i.e., homo-

graphic augmentation) to model different camera views and
(ii) brightness and contrast (i.e., photometric augmentation).

As second step, we fine-tuneKPN on natural images from
MS-COCO 2014 dataset [28]. In this case, we follow a self-
supervised training strategy to account for the dataset lack
of keypoint annotation. We infer the KPN trained at the pre-
vious step to generate the pseudo-ground truth. We apply
homographic and photometric augmentation during training
to increase the variability of the dataset and implicitly filter
inconsistent keypoints.

In the third step, we generate the pseudo-ground truth on
a subset of our TTTS dataset with a leave-one out schema
(i.e., the patient used for testing is excluded from the training
set), using KPN from the second step and then we perform
the fine-tuning.

Performing several iterations of this procedure further
improve the KPN performance. In the last step, we still use
the TTTS subset from the third step to compute the pseudo-
ground truth. This pseudo-ground truth is used to train the
whole KPN. We limit the parameter range for homographic
augmentation to be consistent with the fetoscope camera
model.

For all the steps, we use the loss functionLKPI defined as:

LKPI = LK P + L′
K P + λLD(D, D′) (1)

where LK P is the cross-entropy loss computed over the key-
point map generated by KH and its groundtruth, and L′

K P is
the loss computed on the warped keypoint map generated by
KH after image warping with a random homography. In the
fourth step, DH is trained along with KPN, thus we added
the hinge loss between descriptors from the original image
and those from the warped image (LD(D, D′)) to the overall
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Table 1 Characteristics of the
extended fetoscopy placenta
dataset presented in [8]

Video ID Frame number Frame resolution Placenta position
[Pixels]

1 400 470 × 470 Posterior

2 300 540 × 540 Posterior

3 150 550 × 550 Anterior

4 200 640 × 640 Posterior

5 200 720 × 720 Anterior

6 200 720 × 720 Posterior

loss, weighted by the term λ. λ is initially set to 0.0001 and
then adjusted during training to balance the effectLD(D, D′)
term that, especially in the first training epochs, has largely
negative values.

Semantic keypoint rejection

We noticed experimentally that KPN finds keypoints on
structures, such as fetuses and surgical tools. These struc-
tures can move in the foreground, and their registration
could break the nearly planar assumption that we are con-
sidering in fetoscopic placenta images registration leading
to inconsistent camera movement estimation. To reject irrel-
evant keypoints, we filter out keypoint proposals according to
semantic segmentation masks removing all those keypoints
detected on fetus and surgical tool. The semantic segmen-
tation is obtained using the U-Net with ResNet50 backbone
model trained on the annotated data for segmentation from
the “FetReg2021 Challenge Dataset” [7].

Registration for mosaicking

In this section, the registration pipeline for mosaicking will
be described. Once the image-pair keypoints are computed,
the latest block of our framework will perform homography
estimation (“Homography estimation” section) and filtering
(“Inconsistent homography filtering” section).

Homography estimation

Assuming KPN to be robust, we design a simple frame-
pair registration pipeline to achieve fast registration at low
computational cost. The KPN identifies all potential key-
points within a frame. If multiple keypoints are detected in
a small neighborhood (4 × 4 window), only those with the
highest probability are kept, thanks to non-maximum sup-
pression (NMS). The subsequent semantic segmentation step
filters out irrelevant keypoints. The keypoints that remain
are ranked by probability, and only the top 1000 are used
formatching and homography computation.We approximate
registration as affine transformations, following the consider-

ations in Bano et al. [8]. The homography of two consecutive
frames is estimated using RANSAC and least squares opti-
mization.

Inconsistent homography filtering

We can assume that homographies should not reflect large
displacement, rotation or scaling (i.e., displacement ±8 pix-
els, rotation ±15 degrees and scaling ±5%), as we register
consecutive frames.We take inspiration fromBano et al. [18]
to filter out any homography that does not reflect this assump-
tion. We perform singular value decomposition on each
estimated homography to extract rotation, scale and trans-
lation parameters. When one of these parameters exceeds
a threshold defined experimentally, the second frame in the
pair to be registered is discarded, and the registration with
the next frame is attempted. This procedure is reiterated for
five frames and, in case of failure, mosaicking computation
ends.

Experimental setup

Dataset

We trained and validated our framework using a leave-one
out schema at patient level on the extended version of the
“Fetoscopy Placenta Dataset” published in [8] for fair com-
parison with the literature. The overall dataset consists of
1450 frame from six different in vivo TTTS fetoscopy pro-
cedures. Main characteristics of the dataset are summarized
in Table 4.

Videos differ in terms of resolution, intraoperative envi-
ronment, artifacts and lighting conditions. Two videos
present the anterior placenta. While in posterior placenta, the
scene can be considered nearly planar, the use of 30-degrees
fetoscope for anterior placenta introduces non-planar view
and more challenges to mosaicking [29, 30].
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Table 2 Ablation
study—summary

KPN Irrelevant keypoint Inconsistent homography
rejection filtering

E0 X∗

E1 X

E2 X X

Proposed X X X

KPN keypoint proposal network (“Keypoint proposal computation” section). ∗For E0, we test SuperPoint
trained on MS-COCO 2014 dataset without any fine-tuning on fetoscopy data

Table 3 Quantitative results for
the six tested in vivo fetoscopy
videos

Video 1 Video 2 Video 3

SIFT 0.662 ± 0.115 0.732 ± 0.120 0.749 ± 0.279

Bano et al. [8] 0.757 ± 0.081 0.788 ± 0.050 0.839 ± 0.208

Pre-trained SuperPoint (E0) 0.528 ± 0.247 0.202 ± 0.264 0.219 ± 0.266

Vanilla SuperPoint (E1) 0.731 ± 0.116 0.740 ± 0.079 0.809 ± 0.174

Semantic K PN (E2) 0.730 ± 0.112 0.743 ± 0.071 0.813 ± 0.172

Proposed 0.750 ± 0.081 0.766 ± 0.048 0.884 ± 0.075

Video 4 Video 5 Video 6

SIFT 0.660 ± 0.347 0.5164 ± 0.402 0.485 ± 0.389

Bano et al. [8] 0.745 ± 0.257 0.890 ± 0.070 0.861 ± 0.205

Pre-trained SuperPoint (E0) 0.322 ± 0.362 0.341 ± 0.284 0.209 ± 0.336

Vanilla SuperPoint (E1) 0.801 ± 0.111 0.829 ± 0.091 0.817 ± 0.076

Semantic K PN (E2) 0.818 ± 0.111 0.832 ± 0.090 0.817 ± 0.073

Proposed 0.870 ± 0.125 0.897 ± 0.012 0.909 ± 0.021

The s with n = 5 frames is reported in terms of mean ± standard deviation
Higher value of s for each video are highlighted in bold

Implementation details

Our framework is implemented in TensorFlow 1.15 and
trained on two NVIDIA A100 40GB, using ADAM opti-
mizer and a learning rate of 10−3. For training the semantic
KPN following the strategy described in “KPN training” sec-
tion, in the first three training steps, we set a batch size of
64, while a batch size of 8 is used for the last step. For the 4
steps, we set a number of iteration equal to 180,000, 60,000,
20,000 and 12,000, respectively (Table 1).

Performancemetrics

We measure the performance of our framework using the
structural similarity index measure (SSIM) over a number
(n) of frames, with n ∈ [1, 5], for fair comparison with
Bano et al. [8]. We call this metric s.

Given a source (Ii ) and a target (Ii+n) frame, and a homog-
raphy transformation (Hi→i+n) between Ii and Ii+n , for
every i-th frame in the TTTS sequence s is defined as:

si→i+n = sim
(
w

(
Ĩi , Hi→i+n

)
, Ĩi+n

)
(2)

where sim() is the standard formula for SSIM,w is the warp-
ing operator, and Ĩ and Ĩi+n are smoothed versions of I
and Ii+n , respectively. Ĩ and Ĩi+n are obtained by apply-
ing 9 × 9 Gaussian filtering with standard deviation of 1.5.
This makes s robust even in the presence of amniotic fluid
particles and fetoscopy-imagenoise.Whenexploring thevas-
cular network, the fetoscopemainlymakes small movements
with consecutive frames almost completely overlapped. In
this scenario, similarity metrics on low texture images are
not useful for identifying errors between registration meth-
ods. We computed s with n larger than 1 to consider a wider
frame interval and thus, make s more sensitive to registration
errors. In case a frame is discarded, the metric will be com-
puted considering an identity transformation. As additional
performance metric, we also provide the root-mean-square
error (RMSE) computed between each frame and its geo-
metrically augmented version, using the same settings from
homographic adaptation, to compute a synthetic groundtruth.
We used the formulation of 4-point homography as described
in [8], hence the RMSE is given by:

eR =
√
1

4
�4
i=1

(
[(�ui − �ûi )2 + (�vi − �v̂i )2

)
(3)
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Fig. 4 Boxplots of s over n frames (with n in range [1–5]) obtained with (blue) SIFT, (red) [8] and (orange) the proposed framework

where �u and �v are the groundtruth displacements of the
four corners, and�û and�v̂ are the estimateddisplacements.

For qualitative evaluation, the registered frames are
blended together using the Mertens–Kautz–Van Reeth expo-
sure fusion algorithm [31] to tackle the non-uniform light
exposure of the FoV along the fetoscopic video sequence.

Comparison with the literature and ablation study

We compared our framework with SIFT, which is a standard
feature extractor used for mosaicking [13, 14]. We further
compared our framework with Bano et al. [8], which relies
on deep learning for mosaicking and is the best performing
methods in the state of the art. For all our competitors, we
replace any discarded homography with an identity matrix to
preserve the frame numerical consistency across the meth-
ods. The ablation study characteristics are summarized in
Table 2.

As ablation study, we considered the following experi-
ments:

• Experiment 0 (E0): SuperPoint pre-trained on MS-
COCO2014dataset,without anyfine-tuningon fetoscopy
data.

• Experiment 1 (E1): Vanilla KPN, as described in “Key-
point proposal computation” section. Here, both irrel-
evant keypoint rejection and inconsistent homography
filtering are excluded.

• Experiment 2 (E2): Semantic KPN, as described in
“SuperPoint: the keypoint proposal network” section.
Only inconsistent homographyfiltering is hence excluded.

ForE2,we further investigate the performanceobtainedon
an extended version of the dataset presented in “Dataset” sec-
tion. This extended version consists of the same six videos,
but each video has an extended length (avg sequence length
= 546 ± 237 frames). This allows us to evaluate the ben-
efits of introducing homography filtering for longer video
sequences.
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Fig. 5 Plot of s with n = 5 computed for all video length. The curves refer to (red) [8] and (orange) the proposed framework

Results

The average s values with n equal to 5 obtained with SIFT,
the work in [8] and the proposed framework are reported in
Table 3. SIFT shows the lowest performance, as it fails in
retrieving keypoints for mosaicking for several frames in all
the six videos. This is in agreement with similar findings in
the SDS/CAI field reported by Liu et al. [32].

For Video 1 and Video 2, where vessels are clearly vis-
ible and lens distortion is small, we obtained s with n=5
equal to 0.750 ± 0.050 and 0.766 ± 0.048, respectively.
These results are comparable to that of Bano et al. [8]
(0.757± 0.081 and 0.788± 0.050, respectively). Hence, the
work in Bano et al. [8] slightly outperforms the proposed
framework for Video 1 and Video 2 by only 0.007 and 0.022,
respectively. This was not true when considering the other
videos, where the average s was the highest for the proposed
framework, which also granted the lowest standard devia-
tion. The proposed framework overcomes Bano et al. [8] by
at least 0.007 (video 5), with the highest difference for video
6 (0.045) and video 4 (0.125).

These findings are also confirmed by eR , where Bano
et al. [8] and the proposed method have comparable median
values on video 1 (0.108 and 0.112, respectively, video 2
(0.123 and 0.120, respectively) and video 3 (0.101 and 0.094,
respectively). The proposed method achieved lower eR in
videos 4 to 6 (eR (0.099, 0.092 and 0.097) compared to
Bano et al. [8] (eR (0.145, 0.122 and 0.171).

Figure 4 reports the value of s at different n obtained with
SIFT, the work in Bano et al. [8] and the proposed framework
for the six tested videos. The proposed framework consis-
tently outperformed the competitors for every n for videos
from3 to 6. In the first two videos, the performance of the pro-
posed framework were comparable to that of Bano et al. [8].

Figure 5 shows the trend of s with n = 5 in time for the
proposed method and Bano et al. [8]. The trend of s for
Bano et al. [8] in videos from 3 to 6 shows drops in corre-
spondence of wrong homography estimation. This happens
to a lesser extent also for the proposed framework, but only
in videos 3 and 4.

The quantitative analysis presented in Fig. 5 may also
be appreciated from the qualitative examples shown in
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Fig. 6 Mosaics obtained from the six TTTS videos using the method from Bano et al. [8] and the proposed framework. Results refer to the dataset
presented in “Dataset” section

Table 4 Quantitative results for the extended dataset with longer
fetoscopy sequences

Video 1 Video 2 Video 3

E2 0.735 ± 0.154 0.710 ± 0.014 0.811 ± 0.210

Proposed 0.751 ± 0.098 0.771 ± 0.072 0.886 ± 0.091

Video 4 Video 5 Video 6

E2 0.810 ± 0.140 0.802 ± 0.320 0.791 ± 0.164

Proposed 0.872 ± 0.132 0.896 ± 0.022 0.901 ± 0.051

Fig. 6, where the proposed framework achieves good-quality
mosaicking for all the tested videos also when vessels are not
visible.

The pre-trained SuperPoint (E0) achieves s over n = 5
frame of 0.331, showing lower performance than also SIFT.
E1, which aims at assessing the performance of vanilla KPN
alone, hence excluding both inconsistent keypoint rejection
and homography filtering. In this experiment, we achieve an
average s of 0.788, with a lost of 0.058 over the proposed
framework.

With our ablation study E2, which aims at evaluating the
benefit of introducing inconsistent keypoint rejection after
the KPN, we achieve an average s with n = 5 of 0.848.
Despite the relatively small difference (0.064) in the per-
formance achieved by our framework over E2, inconsistent
homography filtering allows us to lower the drift in the
mosaic and mitigate tracking loss in challenging videos,
where images are strongly underexposed or whether noisy

keypoints are computed (e.g., due to particles). However,
when processing the extended version of this dataset with
longer sequences, our results improve by 3% when adding
homography filtering, as shown in Table 4.

Discussion and conclusion

In this work, we proposed a mosaicking framework to
perform FoV expansion in fetoscopy videos using learning-
based keypoints. Going beyond the current state of the art,
our framework does not rely on any prior vessel segmentation
and instead uses a self-supervised keypoints detector which
makes it robust when registering frames where vessels are
not clearly visible or their segmentation is not accurate. We
instead use semantic information from segmentation to filter
out irrelevant keypoints and propose a simple yet effective
strategy to discard inconsistent homographies.

To test our first research hypothesis (H1), we applied our
proposed framework on six clinical videos from TTTS surg-
eries. We also compared the proposed framework with state-
of-the-art approaches for fetoscopic mosaicking (Table 4),
showing that our method performs well when others fail.
From our experiments (Fig. 7), SIFT was not always able
to find a sufficient number of keypoints to compute homog-
raphy. This can be explained considering that SIFT is not
robust in case of images with low contrast and texture, as in
vivo fetoscopic images.
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Fig. 7 Visual comparison of
keypoint computation from
(left) SIFT, (middle) E0 and
(right) proposed framework

For comparison with Bano et al. [8], the absence of pla-
centa vessels in a number of consecutive frames (Video 3,
4 and 5) hampered the registration process, while this not
happened with our framework. Moreover, from Video 3 to
Video 6, the placenta surface is not perfectly planar, and the
lens distortions is more evident and camera moves along dif-
ferent planes to scan it entirely. Nonetheless, the proposed
framework did not fail in providing good-qualitymosaicking.

Our second research hypothesis (H2) was focused on
assessing the benefits of including irrelevant keypoint rejec-
tion using semantics and inconsistent homography filtering.
When analyzing s over the entire sequences (Fig. 5), our
framework showed a lower number of drops in s than
Bano et al. [8]. However, small drops were present in Video 3
and Video 4. This may be due to underexposed frames where
keypoint estimation is particularly challenging. However, as
the amount of underexposed frames was reasonably small,
the inconsistent homographyfilterwas able to tackle the chal-
lenge.

The benefit of adding semantic information for inconsis-
tent homography filtering was specifically useful in long-
range videos, as shown in the supplementary materials.
We explain this improvement considering that the extended
dataset includes further challenges (i.e., field-of-view occlu-
sions, faster fetoscope movements and extreme change in
illumination).

Quantitative and visual evaluations suggest that the pro-
posed framework may provide computer-assisted interven-
tional support for TTTS procedures by providing a robust
method to increase the FoV facilitating the localization of
abnormal placental vascular anastomoses. We also identi-
fied several additional advantages of the proposed approach.
KPN does not require annotations and thus performance can
be improved with additional data in the future at very lim-
ited cost. The use of keypoints and descriptors enables the
integration with localization and mapping frameworks (e.g.,
SLAM), paving the way for the design and implementation

of a navigation system for fetal surgery. Furthermore, the low
computational cost and the close to real-time performance of
our framework would ease its clinical translation. This may
have a positive impact, by reducing surgeons’ mental work-
load and, as a consequence, potentially reducing patients’
risks and lowering surgery duration.

Possible limitations of the proposed framework may be
encountered during sudden changes in illumination or in
images with extreme exposure. In these circumstances, it
may not be possible to detect enough keypoints to com-
pute homography. In such case, the inconsistent homography
filter may mitigate the failure of mosaicking only if this
happen within a few frames. Another possible limitation of
this framework is the absence of maternal breath handling.
Although this does not compromise the usability of the gener-
ated mosaic, it may introduce someminor distortions. Future
investigations will explore the performance of this frame-
work with more patients and would extend this framework to
deformable registration and integration with refinement and
localization strategies [33] to achieve a complete navigation
framework for fetal surgery. Additionally, we identified that
determining a reliable metric to evaluate when a mosaic is
good is non-trivial. The problem of finding proper metrics
for machine learning task in medicine has recently garnered
significant attention within the surgical data science com-
munity [34, 35], and we plan to foster this topic in future
investigations.
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tary material available at https://doi.org/10.1007/s11548-023-03025-
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