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Abstract
Purpose Deep neural networks need to be able to indicate error likelihood via reliable estimates of their predictive uncertainty
when used in high-risk scenarios, such as medical decision support. This work contributes a systematic overview of state-
of-the-art approaches for decomposing predictive uncertainty into aleatoric and epistemic components, and a comprehensive
comparison for Bayesian neural networks (BNNs) between mutual information decomposition and the explicit modelling of
both uncertainty types via an additional loss-attenuating neuron.
Methods Experiments are performed in the context of liver segmentation in CT scans. The quality of the uncertainty decom-
position in the resulting uncertainty maps is qualitatively evaluated, and quantitative behaviour of decomposed uncertainties
is systematically compared for different experiment settings with varying training set sizes, label noise, and distribution shifts.
Results Our results show the mutual information decomposition to robustly yield meaningful aleatoric and epistemic uncer-
tainty estimates, while the activation of the loss-attenuating neuron appears noisier with non-trivial convergence properties.We
found that the addition of a heteroscedastic neuron does not significantly improve segmentation performance or calibration,
while slightly improving the quality of uncertainty estimates.
Conclusions Mutual information decomposition is simple to implement, has mathematically pleasing properties, and yields
meaningful uncertainty estimates that behave as expected under controlled changes to our data set. The additional extension
of BNNs with loss-attenuating neurons provides no improvement in terms of segmentation performance or calibration in our
setting, but marginal benefits regarding the quality of decomposed uncertainties.

Keywords Image segmentation · Uncertainty · Bayesian neural networks

Introduction

Segmentation is a cornerstone of automated medical image
analysis. In this area of research, deep neural networks have
pushed the limits and made even difficult applications fea-
sible. However, many approaches have been shown to give
overconfident predictions or to fail silently. At the same time,
even humans cannot unambiguously decide for every single
point in a medical image to which structure it belongs. This
might be due to motion (e. g. breathing or cardiac motion),
low contrast, noise, partial volume effects, or semantic ambi-
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guities. Finally, by definition, patients do not only show
normal anatomy, but medical imagingmust copewith excep-
tions.

Most medical applications come with various degrees of
risks and require robust and trustworthy algorithms, which
motivates the search for reliable models that provide well-
calibrated uncertainty estimates. This may help to prevent
bad decisions based on erroneous results and might more
generally increase trust in AI models. Finally, development
itself can also benefit fromuncertainty estimates,when active
learning is used to focus the costly annotation on samples that
most benefit the trained models.

Predictive uncertainty can be subdivided into two sub-
types: Aleatoric uncertainty captures the noise or stochastic-
ity inherent to the underlying process which generates the
training data. Epistemic uncertainty represents the uncer-
tainty of the model itself. The former is irreducible, while the
latter can be explained away, e.g. by training on more data.
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This distinction increases the interpretability of uncertainty
estimates, which is particularly desirable for human-in-the-
loop scenarios. Moreover, uncertainty sampling in active
learning can profit from high-quality epistemic estimates [1],
while aleatoric uncertainty can be used to automatically
detect annotation inconsistencies [2].

Thisworkfirstly aims at providing an overviewof state-of-
the-art uncertainty decomposition approacheswith a focus on
BNNs and loss attenuation.We then investigate how the qual-
ity of uncertainty decomposition compares between a plain
BNN with mutual information measures and the combina-
tion of a BNN with an additional loss-attenuating neuron. In
order to evaluate the quality of the decomposed uncertain-
ties, we conduct experiments with varying training set sizes,
artificial label noise, and distribution shifts.

Related work

Probabilistic classifier neural networks (NNs) output cate-
gorical predictive distributions, which can be interpreted as
capturing learnt aleatoric uncertainty, while measuring epis-
temic uncertainty would theoretically require a confidence
estimate for the output probabilities [3]. However, the maxi-
mumsoftmax score has been shown to be a viable baseline for
detecting misclassified as well as out-of-distribution (OOD)
samples [4]. Cross-entropy loss—a proper scoring rule—
promotes calibrated predictions, whereas Dice loss improves
segmentation performance at the expense of reliability [5, 6].
A popular and successful approach to post-hoc calibrate NNs
is to optimise a scalar temperature T by which all logits are
scaled before the softmax operation [5].

BNNs andMC dropout

In order to model epistemic, or model, uncertainty, net-
work weights might be modelled as distributions p(w | D).
Bayesian inference then computes the posterior probability
distribution over the weights w given a data set D where the
likelihood p(D | w) quantifies how well the observed data
can be explained.

The final posterior distribution allows to make predictions
via Bayesian model averaging. Since marginalising over all
possible weights is intractable, the predictive distribution is
usually approximated via MC integration.

The same intractability arises during training. A popular
and straightforward approach for approximating the poste-
rior p(w | D) is MC dropout [7], where multiple forward
passes are interpreted as samples of the predictive distribu-
tion.MCdropout retains the computational efficiency ofNNs
at training timewithout architecturemodifications and is thus
a popular choice for approximating BNNs [8–10].

Given the predictive distribution, various measures for
computing the model’s uncertainty have been proposed [11–
13], such as the predictive entropy, the predictive variance,
or the mutual information (MI) between the weights and the
prediction. Nair et al [14] compare the performance of these
three measures as well as the heteroscedastic uncertainty
neuron (cf."Learnt loss attenuation" Section) for lesion seg-
mentation on MRI sequences and found no differences apart
from predictive variance estimates having lower magnitude.

Learnt loss attenuation

While epistemic uncertainty can be modelled via weight
uncertainty, aleatoric uncertainty can be implicitly learnt dur-
ing training. If the model is able to gauge the input-specific
amount of aleatoric uncertainty, it benefits from attenuating
the loss for label-noisy samples.

DeVries and Taylor [15], for instance, propose to learn
an additional confidence estimate regulating the amount
of ground truth hints provided to the model at training
time. Meanwhile, Thulasidasan et al [2] incorporate a learnt
abstention class alongside the prediction, whose score lowers
the loss directly and reliably indicates artificial label noise.

Analogously to regression uncertainty, Kendall and Gal
[12] capture a classifier’s uncertainty via additional het-
eroscedastic uncertainty neurons (HUNs). The output of
these neurons controls loss attenuation by placing Gaussian
noise over the logits, resulting in a final model prediction
p = z + σ ∗ ε based on the logit vector z and a diago-
nal covariance matrix σ defined by the output of the HUN,
ε ∼ N(0, I).

Meanwhile,Neumannet al [16] implement a heteroscedas-
tic neuron outputting a confidence score α that scales the
logits before the softmax operation. This approach has been
termed “relaxed softmax” and canbe interpreted as learnt het-
eroscedastic logit smoothing; we thus refer to the additional
neuron as heteroscedastic logit smoothing neuron (HLSN) in
the following.

The model’s confidence can also be used to smooth the
targets, instead of the logits. McKinley et al [17] have shown
label smoothing to improve classifier calibration and to also
be directly learnable by the model.

Decomposition of uncertainties

Kendall and Gal

Kendall and Gal [12] decompose a model’s predictive uncer-
tainty into aleatoric and epistemic components by combining
a BNN with additional heteroscedastic uncertainty neurons,
as described in Sect. "Learnt loss attenuation". Aleatoric
uncertainty as seen in the training data lends itself to being
captured by loss attenuation. Their setup jointly models both
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uncertainty types by explicitly using two mechanisms inside
a single model. The authors found that modelling epistemic,
aleatoric, as well as overall uncertainty improves segmen-
tation performance over a vanilla NN baseline. The authors
have also shown that for varying training set sizes and OOD
inference the decomposed uncertainties quantitatively align
with their definitions: Aleatoric uncertainty highlights seg-
mentation boundaries, while epistemic uncertainty shows up
in visually challenging pixels and instances of rare classes.

Variance decomposition

Decomposing the predictive distribution of a BNN simpli-
fies the architecture and has the theoretical advantage that
the relationship between aleatoric and epistemic uncertainty
can be modelled. Kwon et al [18] derive both aleatoric
and epistemic uncertainty estimates from the variance of
the predictive distribution: Var p(y|x)(y) = Ep(y|x){y⊗2} −
Ep(y|x){y}⊗2 with y⊗2 = yyT . The aleatoric term computes
the variance of individual predictions, while epistemic uncer-
tainty corresponds to the variability of the network weights.

The authors compare their approach to that of Kendall
and Gal [12], employing the heteroscedastic neuron activa-
tion as aleatoric estimate, for a stroke lesion segmentation
task. Their resulting uncertainty maps for Kendall and Gal’s
approach show next to no aleatoric uncertainty, and epis-
temic uncertainty only appears diffusely in the background.
Meanwhile, their proposed aleatoric and epistemic estimates
highlight segmentation borders and incorrectly segmented
regions, the latter having lower magnitude overall. Further-
more, the authors find increased epistemic uncertainty in
models trained on smaller data subsets, while aleatoric uncer-
tainty stays constant.

Mutual information decomposition

Similar to the variance-based approach,MI[yi ,W | xi ,D] ≈
H[yi | xi ,D]−E[H[yi | xi ,W ]] gives the reduction in uncer-
tainty for theweightsW given a sample xi and the target label
yi . The predictive entropy (minuend) represents the overall
uncertainty, and the subtrahend eliminates weight uncer-
tainty by conditioning on W . In practice, this translates to
computing the average entropy of the individual predictions,
which corresponds to measuring aleatoric uncertainty. Thus,
epistemic uncertainty is computed by subtracting aleatoric
uncertainty from the predictive entropy [19]. In Mobiny et al
[11], the resulting uncertainty maps for three different seg-
mentation tasks show clear correlations between epistemic
uncertainty and segmentation boundaries, class label fre-
quency, and visual ambiguity of objects.

Materials andmethods

We employ a subset of the LiTS data set [20], a collec-
tion of abdominal CT scans with annotated liver and tumour
tissue collected from seven source institutions. Since this
work’s intent is not to participate in that challenge, we opti-
mise for faster trainings, resampling to a uniform voxel
size of (2.5mm)3 and transversal view direction and cast-
ing tumour annotations to liver, binarising the labels. Out
of 131 annotated CT scans, we exclude 59 with question-
able annotations, then use 32 volumes as default training set
(“LiTS-32” below), another 33 cases as test set (LiTS-test),
and 7 cases for validation.

Model architecture and training

We train and evaluate two architectures: a plain BNN,
approximated via MC dropout, and one extended with an
HLSN. In both cases, the base architecture is a fully convolu-
tional, 5-level, 3D, anisotropic u-net [21], a variant of the very
popular u-net architecture. We employ decoder-only dropout
with rate 0.2 [12] and draw 20 samples per prediction. Train-
ing and inference are performed on image patches of size
236 × 236 × 156 voxels with “valid” mode convolutions.
During training, patches containing foreground were sam-
pled more often in order to stabilise the training, increasing
their frequency from 33 to 80%. Training employs the Adam
optimiser, a batch size of 2, and is stopped once the valida-
tion Jaccard performance has not improved for 40 epochs.
We optimise the cross-entropy loss as usual for uncertainty
quantification [11, 12, 16, 18], but also examine the influence
of Dice loss on the decomposed uncertainties.

Heteroscedastic logit smoothing

Heteroscedastic uncertainty neurons [12] induce loss atten-
uation by sampling Gaussians through the softmax, which
asymmetrically squashes the sampled logits, so that a large
variance brings the resulting prediction closer to a uni-
form distribution. The more recently published HLSNs [16]
achieve a similar smoothing of the output scores by explic-
itly scaling the logits with a learnt α. We analysed the two
approachesmathematically and experimentally and conclude
that they perform similarly. Hence, we combine BNNs with
HLSNs in this work, which do not require sampling. A sig-
moid activation for α is employed to allow only for the
(smoothing) downscaling of logits.

Reminiscent of custom training regimes employed for
other loss attenuation approaches, we let models enter train-
ing with high confidence by initialising incoming weights
to w ∼ N (1, 0.6). In preliminary experiments, this lets the
HLSNs converge more robustly towards meaningful uncer-
tainty estimates.
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Aleatoric uncertainty from loss-attenuating neurons

Intuitively, the activation of loss-attenuating neurons con-
stitutes an uncertainty estimate, since the model learns to
produce high activations for difficult, ambiguous samples.
Notably, many works reproducing Kendall and Gal’s HUN
use this straightforward interpretation [14, 15, 18]. How-
ever, the raw neuron activation does not correspond to any
well-defined measure, and the degree of loss attenuation it
induces also depends on the logits’ magnitudes. Moreover,
the logits themselves inherently contain aleatoric uncertainty.
Therefore, one should not directly interpret the uncertainty
neuron’s activation, so we primarily present aleatoric uncer-
tainty as measured via the average entropy component inMI,
which is based on the smoothed output distribution, but will
also present the HLSN activation for comparison.

Experiments

In every experimental setting, we train three models and
average the resulting per-case uncertainties. We assess dif-
ferences via Wilcoxon signed-rank testing.

Varying training set size

Reducing the training data constrains a model’s knowledge
and should increase epistemic uncertainty, while aleatoric
uncertainty is expected to stay the same, since the amount of
label noise does not change. The different training sets used
are the full LiTS-32 and random subsets of six (LiTS-6) and
of two cases (LiTS-2), with LiTS-2i ⊂ LiTS-6i ⊂ LiTS-32
for i ∈ 1, 2, 3. Different subsets i are employed for each run
to minimise the influence of subset-specific patterns.

Artificial label noise

We also compare models trained with LiTS-32 and models
trained on a variant LiTS-noisy derived by adding label noise
to one half of the label masks. This artificial noise is created
by dilating the liver masks with a 7×7×1 kernel, mimicking
annotations produced via different annotation regimes.Mod-
els trained on LiTS-noisy are expected to produce higher
aleatoric uncertainty around the border of the liver, while
epistemic uncertainty should stay similar.

Out-of-distribution (OOD) inference

Ideally, medical image segmentation models should indicate
whether a given sample is OOD via raised epistemic uncer-
tainty. In a clinical setting, varying imaging protocols, patient
characteristics, or pathologies may cause images to diverge
from those seen during training. Hence, all models trained
on LiTS-32 are tested on 33 test cases that were rotated 180

degrees (LiTS-rot). In addition, we perform tests on a CT
scan taken from an internal data set, which displays a severe
form of ascites not encountered to this extent in LiTS.

Results and discussion

Before we present the quantitative evaluation of our experi-
ments,webrieflydescribe qualitative observations.As shown
in Fig. 2, aleatoric estimates consistently highlight segmen-
tation boundaries. Epistemic uncertainty frequently appears
similar, though less focal and only partially highlighting
segmentation borders, as well as having vastly lower mag-
nitude. Our binary classification setting might explain the
latter observation, since neither rare classes nor visually
particularly difficult pixels are common. These findings are
consistent with other works [11, 12, 14, 18].

Moreover, aleatoric uncertainty derived viaMI (from both
architectures) appears more crisp than the HLSN activation,
which sometimes also dimly highlights the borders of back-
ground structures. Similar behaviour has been reported for
Kendall and Gal’s HUN activation [14, 18].

On models trained with Dice loss, we observe reversed
results; epistemic estimates appear at class boundaries while
aleatoric estimates are reduced to a faint border, which aligns
well with Dice loss’ known tendency to promote overconfi-
dent predictions [6].We also find that loss attenuation neither
rectifies this miscalibration nor restores uncertainty decom-
posability.

For all experiment settings, segmentation performance (as
measured viaDice index) andmodel calibration (asmeasured
via NLL) do not significantly differ between plain and loss-
attenuated BNNs.

Varying training set size

Training on fewer data results in significantly higher epis-
temic uncertainty for both model architectures (p-values
� 0.01), as shown in Fig. 1. This increase in epistemic uncer-
tainty is statistically significantly higher for loss-attenuated
BNNs than for plain BNNs on LiTS-6 (p-values � 0.01),
and comparable on LiTS-2. Epistemic estimates occur at
segmentation boundaries, as well as occasionally highlight-
ing the spleen or kidney, demonstrating the model’s lack of
knowledge regarding features that differentiate the liver from
organs with similar radiodensity. The overall behaviour of
epistemic uncertainty thus conforms to its definition.

Aleatoric uncertainty estimates of both architectures
marginally increase when training on smaller data sets, as
shown in Fig. 1. This can be explained by aleatoric uncer-
tainty bordering false negative liver lesions, whose number
increases with decreasing training set sizes.
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Fig. 1 Mean per-case uncertainty estimates of plain and loss-attenuated BNN
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Fig. 2 Input with ground-truth liver mask, segmentation, and uncertainty maps for models trained on LiTS-32

Artificial label noise

In line with their definition, introducing artificial label noise
substantially increases aleatoric uncertainty estimates for
both architectures when derived viaMI (p-values< 0.0001),
as shown in Fig. 1 (LiTS-noisy vs. LiTS-32). The increase
in aleatoric uncertainty is statistically significantly higher
for loss-attenuated BNNs than for plain BNNs (p-values
� 0.01). Figure3 reveals broadened estimates around the

segmented region. Themagnitude of theHLSNactivation, on
the other hand, varies visibly across the three trained models.
This lack of robustness results in amean decrease of aleatoric
uncertainty, as shown in Fig. 1.

Epistemic uncertainty is quantitatively slightly increased,
blurred and outlines both the undilated liver and its broad-
ened outline. Considering that the models were essentially
trained with two segmentation variants, observing epistemic
uncertainty around both learnt contours appears reasonable.
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Fig. 3 Uncertainty maps for
models trained on LiTS-32 vs.
LiTS-noisy
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OOD inference

On LiTS-rot, aleatoric and epistemic uncertainty for plain
and loss-attenuated BNNs both highlight regions of the
segmented liver, with aleatoric uncertainty also outlin-
ing the confidently segmented spleen. Figure1 shows that
mean aleatoric uncertainty of both model architectures is
slightly decreased while epistemic uncertainty is consider-
ably increased (p < 0.05). Since LiTS-rot and LiTS-test
contain the same amount of label noise by construction,
the decrease in aleatoric uncertainty has to be explained
by the model’s failed segmentation. The increase in epis-
temic uncertainty is statistically significantly higher for
loss-attenuated BNNs than for plain BNNs (p-values <

0.01).
Both architectures perform meaningful liver segmenta-

tions on the ascites case, only mistaking parts of intraperi-
toneal fluid as liver. This aligns with the case’s arguably
smaller shift in distribution. Figure4 shows that uncertainty
estimates not only highlight the boundary of the segmented
liver region, but also the false positive areas, successfully
indicating the distribution shift.

Aleatoric uncertainty from loss-attenuating neurons

Theobservedqualitative differences between the twoaleatoric
uncertainty estimates derived from loss-attenuated BNNs are
in line with prior work, in which the HUN activation was
found to highlight the borders of the segmented objects as
well as those of other structures [14].Moreover, the quantita-
tive evaluation of the behaviour of both aleatoric uncertainty
measures shows that MI-based estimates correspond pre-
cisely to their definition while the HLSN activation is less

cleanly interpretable. Furthermore, we found the logits of
loss-attenuated BNNs to convey a visible amount of uncer-
tainty, suggesting that the calibration lever introduced by
the HLSN is used in addition to and not as a replacement
for logit-inherent uncertainty. These findings corroborate the
theoretical discussion in Sect. "Materials and Methods" on
“aleatoric uncertainty from loss-attenuating neurons”, moti-
vating the use of comprehensive MI-based measures.

Conclusion and outlook

This work thoroughly compares the explicitly separate mod-
elling of epistemic and aleatoric uncertainty in a BNN with
a loss-attenuating neuron and the decomposition of the pre-
dictive uncertainty of a BNN via MI on the task of liver
segmentation in CT. BNNs in this work are implemented
via MC dropout and loss attenuation via heteroscedastic
logit smoothing neurons. The results show that the over-
all behaviour of both aleatoric and epistemic uncertainties
derived from both model architectures via MI is consistent
with their respective definitions for varying training set sizes,
label noise, and distribution shifts.

Meanwhile, we found the HLSN activation to be noisier
and less robust in capturing uncertainty than aleatoric esti-
mates derived viaMI. This leads us to the conclusion that MI
appears suited for uncertainty decomposition of BNNs with
and without loss-attenuating neurons, the addition of which
slightly improved the quality of decomposed uncertainties,
but did not provide statistically significant benefits in our
example context in terms of liver segmentation performance
or reliability while requiring some architectural extension
and careful initialisation.
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Fig. 4 Uncertainty maps derived from plain and loss-attenuated BNN models trained on LiTS-32 and inferring on an OOD case with ascites

In the future,we hope that our conclusions on decomposed
uncertainty estimation can be confirmed on more diverse
multi-class data sets.
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