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Abstract
Purpose Fetoscopic laser photocoagulation of placental anastomoses is the most effective treatment for twin-to-twin trans-
fusion syndrome (TTTS). A robust mosaic of placenta and its vascular network could support surgeons’ exploration of the
placenta by enlarging the fetoscope field-of-view. In this work, we propose a learning-based framework for field-of-view
expansion from intra-operative video frames.
Methods While current state of the art for fetoscopic mosaicking builds upon the registration of anatomical landmarks which
may not always be visible, our framework relies on learning-based features and keypoints, as well as robust transformer-based
image-feature matching, without requiring any anatomical priors. We further address the problem of occlusion recovery and
frame relocalization, relying on the computed features and their descriptors.
Results Experiments were conducted on 10 in-vivo TTTS videos from two different fetal surgery centers. The proposed
framework was compared with several state-of-the-art approaches, achieving higher SSIM5 on 7 out of 10 videos and a
success rate of 93.25% in occlusion recovery.
Conclusion This work introduces a learning-based framework for placental mosaicking with occlusion recovery from intra-
operative videos using a keypoint-based strategy and features. The proposed framework can compute the placental panorama
and recover even in case of camera tracking loss where other methods fail. The results suggest that the proposed framework has
large potential to pave the way to creating a surgical navigation system for TTTS by providing robust field-of-view expansion.
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Introduction

Twin-to-twin transfusion syndrome (TTTS) is a rare com-
plication affecting 10–15% of monochorionic diamniotic
pregnancies where twins are affected by unbalanced and
chronic blood transfer through placental anastomoses [1]
treated with selective laser photocoagulation [2] performed
in fetoscopy. The procedure is particularly challenging due to
the limited field-of-view (FoV), poor visibility due to amni-
otic fluid turbidity, and variability in illumination that can
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negatively impact on surgery duration and lead to residual
anastomoses, resulting in persistent TTTS. In the context of
fetoscopy for TTTS, surgical data science (SDS) methodolo-
gies have been exploited to provide surgeons with context
awareness and decision support with anatomical structure
segmentation [3–7] and mosaicking.

Most of the work in the literature for mosaicking focuses
on handcrafted features or requires accurate anatomical
structure segmentation which can compromise registration
robustness [8]. To tackle this problem, an alternative solu-
tion is to rely on stable keypoints. Previous work highlighted
that classical algorithms for keypoint detection (i.e., SIFT,
ORB) cannot tackle the challenges of intra-operative feto-
scopic images [9]. Exploiting learning-based methods for
detecting keypoints can be a solution.

Furthermore, in fetoscopy videos many events (e.g., fetal
movements, maternal pulses, loss of focus) could compro-
mise the frame tracking hampering mosaicking reconstruc-
tion.While this problem has not been addressed in fetoscopy,
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in closer fields researchers are exploring simultaneous local-
ization and mapping (SLAM) approaches [10–12].

On this basis, in this work we propose an integrated
learning-based navigation framework for frame registration
from intra-operative fetoscopic videos that canprovide robust
mosaicking with occlusion recovery. We can summarize our
contributions as follows:

• We propose a framework inspired by Visual SLAM [13]
which does not rely on any anatomical priors formosaick-
ing.

• We show that keypoints and features extracted with the
proposed framework pretrained on non-medical data can
tackle the lack of annotated data for feature extraction in
fetoscopy.

• We experimentally validate our approach on 10 in-vivo
TTTS video sequences, 4 provided by Istituto Giannina
Gaslini (Genoa, Italy), and 6 from the extended version
of the dataset presented in [9] for fair comparison with
the literature.

Related work

In the last years, mosaicking has been investigated with
the purpose of supporting fetal surgeons by providing FoV
expansion. The first attempts to obtain panoramic placen-
tal images were based on traditional keypoints extracted
from fetoscopic images and matched to estimate the relative
transformations, as described in [8]. Currently, researchers
are exploring deep-learning strategies. In [14], a convolu-
tional neural network (CNN) is trained to detect stable image
regions around large veins, and the corners of their bounding
boxes are aligned to achieve registration. Despite the promis-
ing results, CNN is trained with phantom images which
cannot encode properly the real challenges of intra-operative
images.

The work in [15] proposed a CNN trained with controlled
data augmentation for pairwise homography estimation.
However, texture paucity and the high image variabilitymake
homography estimation challenging and this may translate in
drift or even failure of mosaicking.

The work in [9] relied on vessel segmentation map from
consecutive frames obtained by a CNN and then registered
by Lucas–Kanade (LK) algorithm. Registration performance
is highwhen vessels are clearly visible. However, vessels can
be challenging to see or non-visible at all. Furthermore, the
time required for frame registration is unsuitable for real-time
applications.

More recently, [16] proposes a method based on opti-
cal flow for homography estimation and thus not requiring
vessel map for mosaicking. However, optical flow assumes
brightness constancy and strong texture [17], which cannot
be always guaranteed in fetoscopic frames.

Despite several methods for mosaicking have been pro-
posed, few work has been done to tackle occlusion recovery
and frame relocalization in TTTS. Thework in [18] proposed
an offline occlusion recovery based on the cosine distance
between VGG16 features of each frame. Despite the promis-
ing results, the computational time to process a frame pair is
not compatible with real-time application.

Researchers in close fields are exploiting SLAM for
endoscopy, introducing the use of CNN for extracting fea-
tures. The use of learned features was shown to provide
better mapping and relocalization accuracy [19]. Although
the wide variety of applications of SLAM techniques, its use
in endoscopy is still very limited and a full navigation frame-
work for fetoscopy has not been explored yet. Therefore,
our aim is to investigate if learning-based keypoints and fea-
tures can tackle fetoscopic images challenges and thus lay the
foundation for a SLAM framework in fetoscopy to provide
support for navigation during fetal surgery.

Method

The workflow of our proposed framework is shown in Fig. 1.
The first block is the feature extraction and matching block,
described in Sect. “Feature Extraction andMatching”, which
processes pairs of consecutive frames (A, B) and outputs
features (F A

c , FB
c ), matching keypoints (KptsA, KptsB) and

descriptors (DescA, DescB). The keypoints are used to esti-
mate the homography (HB

A ) between A and B formosaicking
reconstruction, as described in Sect. “Mosaicking recon-
struction”. Combining features and matching descriptors
allows us to achieve occlusion recovery, as described in Sect.
“Occlusion recovery”.

Feature extraction andmatching

The proposed method for feature extraction and match-
ing is inspired on local feature matching with transformers
(LoFTR) [20].

Multi-scale features (F A
c , FB

c , F A
f , F

B
f ) are extracted from

ResNet FPN. F A
c and FB

c are features at coarser level that
can be processed efficiently but lose spatial information; thus,
prior positional encoding by the transformer module is per-
formed.

Features from the transformer module (F A
E , FB

E ) are
matched using the confidence matrix (Pc) as:

Pc(i, j) = softmax(S(i, ·)) j × softmax(S(·, i)) j (1)
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Fig. 1 Overview of the proposed framework for fetoscopic images
mosaicking. During the feature extraction phase, features from dif-
ferent pyramid levels are extracted from the input frames (A, B) and
transformed by self-attention and cross-attention (F A

c and FB
c ). FA

f and

FB
f indicate fine features, while FA

c and FB
c coarse features. A matching

module performs coarse matches and a further refinement, producing
keypoints (KptsA and KptsB) and descriptors (DescrA and DescrB).
Descriptors are used for keyframe extraction, keypoints for homogra-
phy estimation and then panorama reconstruction. Coarse features are
necessary to perform recovery on the global panorama through a com-
parison with the keyframes found

where i and j are the i − th and j − th coarse matches, while
S indicates the score matrix between the features:

S(i, j) = 1

τ
×

〈
FA
E (i),FB

E ( j)
〉

(2)

Since the score matrix is computed for coarse features the
temperature (τ ) takes into account its uncertainty. The feature
matching is then performed through mutual nearest neighbor
(MNN). Matches (Mc) are identified as:

Mc = {(i, j)|∀(i, j) ∈ MNN(Pc, Pc(i, j) ≥ θc)} (3)

where Pc is the feature matching confidence matrix. Matches
with confidence lower than a predefined threshold (θc) are
discarded, to avoid noisy results due to incorrect matches.
Different experiments were conducted to select the best
threshold value. Low values of θc increase noisy matches,
negatively impacting algorithm performances. High values
of θc lead to the identification of a high number of close
keyframes, slowing the computation. For this reason, the best
value was identified as 50%.

Finally, the coarse-to-fine module performs a final refine-
ment by computing the expectation over the probability
distribution between encoded features at coarse and fine
level.

Mosaicking reconstruction

The set of matching keypoints computed with the method
described in Sect. “Feature Extraction and Matching” is
used to estimate the relative homography (HB

A ) between two
consecutive frames through robust RANSAC. Each relative

homography is then computed with respect to the global ref-
erence frame, i.e., a blank canvas where the final mosaic
is contained. Finally, each new frame is warped and post-
processed with exposure fusion algorithm.

Due to the intrinsic characteristics of the placental envi-
ronment and its relative position with respect to the camera,
fetoscopic images are not homogeneous in illumination: the
central part, directly hit by endoscopic light, is brighter, while
toward the border the illumination level decreases. Thus,
when images are stitched together, darker circular shadows
can be seen in correspondence of the borders, worsening the
visual quality of the reconstruction. In order to get uniform
scene exposure and, as a result, softer shadows, we used an
algorithm based on exposure blending by [21].

Occlusion recovery

Due to the challenges associated with fetoscopic images,
which are outlined in Sect. “Introduction”, keypoint track-
ing could be lost during placenta examination, leading to the
failure of the mosaicking reconstruction. In order to address
this issue, we design a recovery strategy which resumes the
mosaic as soon as valid keypoints have been identified. The
recovery algorithm is divided in two steps: (i) keyframes
extraction (Sect. “Keyframes extraction”) and (ii) frame relo-
calization (Sect. “Relocalization”).

Keyframes extraction

The idea of keyframe extraction comes from the observation
that in a video sequence, especially when cameramovements
are limited, close frames carry very similar semantic infor-
mation. Thus, considering all the input frames for recovery
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Fig. 2 Graphical overview of
the keyframe extraction
algorithm, described in Sect.
"Keyframes extraction".
Keyframes are highlighted in red
(i.e., KF0,KF1), while the small
colored dots are the keypoints,
the arrows highlight keypoints
matched between frames

would be redundant. A graphical schema of the follow-
ing algorithm is shown in Fig. 2. In our method, the first
frame of the sequence is considered as the first keyframe.
From the first keyframe, we keep the descriptors (Descr),
obtained as described in Sect. “Feature extraction andmatch-
ing”, and compute the number of matched descriptors with
the following frame. We continue this process until the
number of matching descriptors falls below a threshold
(Tdiscard = 10%), whose value is set experimentally. When
this threshold is reached, the next frame is selected as a new
keyframe. Descriptors matching, as for the mosaicking task
(Sect. “Mosaicking reconstruction”), is performed through
a MNN algorithm.

It could still happen that two frames really close in the
sequence are both selected as keyframes. To avoid this
redundancy, if the computed Euclidean distance between the
features of consecutive keyframe-pair is lower than a thresh-
old (TKF, experimentally set at 1300), only the first added
keyframe is kept, while the other is discarded.

Relocalization

The aim of the relocalization task is to correctly register a
frame on the final mosaic by recovering the loss of track-
ing when the camera tracking fails. Relevant global features
are extracted from each keyframe, and the Euclidean distance
between all the keyframes and the frame to relocalize is com-
puted. This procedure allows to identify the nearest keyframe
candidates achieving a quick recovery compatible with clin-
ical requirements. Matching keypoints are used to estimate
the relative transformation to register the frame with respect
to the mosaic already generated. Once the registration has
been recovered, the mosaicking reconstruction described in
Sect. “Mosaicking reconstruction” restarts.

Experimental protocol

The dataset used in this work is the combination of the
extended fetoscopic dataset presented in [6] and a prop-
erty dataset from Istituto Giannina Gaslini (Genoa, Italy).
The dataset includes a total of 10 videos and 2344 frames.
Examples of dataset frames are represented in the sup-

plementary materials. This multi-center dataset allows us
to develop robust solutions considering most challenges in
intra-operative fetoscopic image analysis, such as turbidity
of the amniotic fluid, high variability of illumination, occlu-
sions, texture paucity and poor image quality.

In our experiments, we compared our framework to the
state of the art for the two tasks, mosaicking and occlusion
recovery, independently.

We compared our framework for feature extraction and
matching (Sect. “Feature extraction and matching”) and
mosaicking reconstruction (Sect. “Mosaicking reconstruc-
tion”) to Bano et al. [9], which is the most recent and similar
work to ours, and with approaches based on classical key-
points:

• Experiment M1 (EM1): Bano et al. [9]
• Experiment M2 (EM2): SIFT+RANSAC [22, 23]
• Experiment M3 (EM3): ORB+RANSAC [24]
• Experiment M4 (EM4): Proposed framework

For fair comparison with [9], mosaicking performances
were evaluated in terms of Structural Similarity Index Mea-
sure (SSIM) [25].

According to the findings in Bano et al. [9], SSIM is
almost constant in case of very small displacements as typi-
cally observed in fetoscopy. For this reason, using a 5-frame
SSIM (SSIM5) is better suitable for validation.Wilcoxon test
was used to evaluate the statistical differences between the
implemented methods.

We then compared our occlusion recovery strategy
(Sect. “Occlusion recovery”) to:

• Experiment R1 (ER1): the recovery approach used in [18]
using VGG16

• Experiment R2 (ER2): the recovery approach used in [18]
using ResNet50

• Experiment R3 (ER3): SIFT with the occlusion recovery
presented in [26]

• Experiment R4 (ER4): ORB with the occlusion recovery
presented in [26]

From this set of experiments, we excluded Bano et al. [9]
because it does not embed any recovery strategy. To assess
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Fig. 3 Performance comparison in terms of SSIM5 between (in order from left to right) Bano et al. [9] (EM1), SIFT (EM2), ORB (EM3) and the
proposed method (EM4). Wilcoxon statistical tests have been performed to assess statistical differences (∗ p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001)

the robustness of the recovery algorithm, different tests were
performed. For every video sequence, a random frame was
selected while ensuring it was not a keyframe. At this point,
the algorithm described in Sect. “Occlusion recovery” was
applied to relocalize the randomly extracted frame. The same
procedure was applied to a transformed version of the same
frame, which was performed to assess the robustness of the
method applying corruptions and affine distortions to images.
The recovery performance was evaluated using the Success
Rate metric, defined as:

Success Rate = #correct recoveries

#total recoveries
× 100 (4)

Results and discussion

Figure 1 illustrates the performance comparison of mosaick-
ing reconstruction between the proposedmethod and the state
of the art, with respect to Y. Meanwhile, Table 1 presents the
average (SSIM5) and standard deviation for Y. Examples of
the generated mosaics for all the tested methods can be seen
inFig. 4. From the boxplot in Fig. 3, it can be seen that the pro-
posed framework (EM4) outperforms traditional approaches
like SIFT (EM2) and ORB (EM3), and achieves compara-
ble or superior performance in terms of SSIM5 compared to
Bano et al. [9] (EM1). Result of Wilcoxon test for SSIM5

highlight the significant difference in performances of the
proposed method compared to the other tested methods.

All the methods achieved good performance on Video 1,
in particular EM1 achieved the highest SSIM5 (0.8556), as
expected, due to the good placental vessel visibility and neg-
ligible lens distortions. The proposedmethod achieved lower

but still comparable results (SSIM5 = 0.8257), while tradi-
tional methods (EM2 and EM3) still struggled in computing
the right homography, as highlighted by the outliers in the
boxplot, resulting in important drift in the final mosaic.

In Video 2, vessels are well visible and EM1 still achieved
higher SSIM5 (0.8714) compared to EM4 (0.8497), but the
view in Video 2 is not planar for the entire sequence. Bano et
al. tended to produce flat-looking mosaic, instead learning-
basedmethodswere able to dealwith different orientations of
the placenta providing better consistency in the final mosaic.
EM2 and EM3, as can be seen in Fig. 4, are not able to
correctly generate the final mosaic. EM2 strongly underesti-
mated the homography, leading to the positioning of all the
frames on top of the first one, which explains the low SD
0.0563. Conversely, the high SD of EM3 (0.3585) suggests
homography overestimation.

FromVideo 3 toVideo 6,EM4 achieved comparable value
of SSIM5 with EM1, while EM2 and EM3 failed. In par-
ticular, for EM2 some boxplots are not shown because the
algorithm failed on the entire sequence. Analyzing in details
these results, EM1 cannot keep continuous frame tracking
thus corrupting the final mosaic. This can be explained due
to poor visual conditions that hinder CNN vessel segmenta-
tion, such thin or absent vessels, non-planarity of the scene
and major lens distortions. Furthermore in videos 7 to 10,
the presence of the laser pointer and low illumination com-
promise visibility and texture quality negatively affecting
classical descriptor-based methods as well, while EM4 was
able to successfully compute a decent mosaic.

The poor performances of traditional descriptor-based
methods were in fact expected due to fetoscopic images
challenges introduced in Sect. "Introduction". The use of
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Table 1 Mosaicking
performance in terms of mean ±
standard deviation of SSIM5 for
all the videos in the dataset
between Bano et al. (EM1),
SIFT (EM2), ORB (EM3) and
the proposed framework without
occlusion recovery (EM4)

Video # EM1 EM2 EM3 EM4

1 0.8556 ± 0.0809 0.8241 ± 0.1512 0.8098 ± 0.1170 0.8257 ± 0.0834

2 0.8714 ± 0.0666 0.8441 ± 0.0563 0.6353 ± 0.3585 0.8497 ± 0.0553

3 0.8670 ± 0.1079 0.7658 ± 0.3060 0.5713 ± 0.4197 0.8946 ± 0.0440

4 0.7457 ± 0.1921 – 0.4526 ± 0.4134 0.7526 ± 0.1773

5 0.9445 ± 0.8720 0.5415 ± 0.4021 0.4911 ± 0.4339 0.9406 ± 0.0316

6 0.8720 ± 0.0646 – 0.0309 ± 0.1358 0.8750 ± 0.0610

7 0.8133 ± 0.2429 0.8974 ± 0.0333 0.8999 ± 0.0295 0.8455 ± 0.1200

8 0.7603 ± 0.2623 0.8740 ± 0.0710 0.7961 ± 0.2560 0.8463 ± 0.0808

9 0.7947 ± 0.1506 – 0.5777 ± 0.4129 0.9195 ± 0.0598

10 0.8155 ± 0.1649 – 0.8209 ± 0.2749 0.9239 ± 0.0653

The highest average values are shown in bold. The values in italic represent mosaics that were discarded after
visual inspection due to errors in reconstruction

learning-based keypoints in EM4, on the other hand, was
able to better address these challenges and provide more
robust mosaicking capability. A graphical comparison of the
described feature extraction and matching methods can be
found in the supplementary materials. Tracking was never
lost during our tests. However, some minor distortions are
still present especially in presence of very fast movements,
loss of focus or presence of noisy texture-less regions.

In addition to the limitations reported in Sect. “Related
work”, the LK registration of EM4 require around 1s for
image pair. Instead, EM4 can process an average of 10 image
pairs per second, with average performances of 17.26±3.01
ms for feature extraction and 18.78±2.36ms onA100 40GB
GPU with 64 GB RAM and 8 CPUs. Even though the real-
time requirements are not fulfilled yet, this can be considered
a promising step in that direction.

The fetal environment is highly dynamic, as introduced
in Sect. “Introduction”. An effective method for occlusion
recovery and frame relocalization is needed to achieve robust
mosaicking algorithm to support clinicians during the pro-
cedure. Furthermore, such framework can be used along
to identify loop-closures for global optimization algorithms
[27]. Qualitative results for the recovery task are shown
in supplementary materials. ER2 reaches the best outcome
among feature basedmethods, with a success rate of 83.13%.
The ResNet50 feature extraction from ER2 resulted more
effective than VGG from ER1, which obtained a recovery
success rate of 26.25%.

Classical descriptors, like ER3 (Success Rate = 20.00%)
and ER4, suffered from large particles and illumination
variability, failing to detect robust keypoints and strong
descriptors to correctly relocalize a frame for both tasks.
As a consequence, the number of keypoints and descriptors
found by such methods is low, leading to high probability
of mosaicking and relocalization failure. The learning-based
descriptors used in the proposed method demonstrated to be

Fig. 4 Mosaicking comparison between Bano et al. (EM1), SIFT
(EM2), ORB (EM3) and the proposed method (EM4) on four dataset
videos. Outcomes show a large variability between different methods
and between different videos

also effective for occlusion recovery, achieving the highest
Success Rate (93.75%).

Inspecting the relocalization results (in supplementary
materials), we can note that for Video 1 all methods success-
fully identified the keyframe from which the mosaic should
be recovered. However, except for the proposed method, all
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the other methods were not able to correctly register the new
frame with the keyframe.

In Video 8, ER1 and ER2 poorly performed, probably due
to the constant presence of the laser which compromised the
extraction of unique frame features for occlusion recovery.
On the other hand, ER4 and the proposed method detected
multiple keyframe candidates. However, in this sequence,
classical descriptors were not so robust, leading to wrong
relocalizations.

In Video 10, the dim illumination and low visibility of
vascular structures impacted descriptor-based methods. ER3
couldn’t recover from occlusion and found no keyframe
candidate, whereas ER4 identified an incorrect keyframe.
Among the feature-based methods, ER1 also failed to cor-
rectly identify the right keyframe.However, bothER2 and the
proposed method accurately identified the closest keyframe.

Focusing on the results achieved by ER3 and ER4, it
is reasonable to conclude that their low recovery perfor-
mances were caused by the descriptors characteristics, which
were not suited to deal with fetoscopic data, confirming
results from the literature [9]. VGG features can success-
fully handle occlusions and recovery when images are rich
in texture but fail in case of challenging visual conditions
where there are low or no textures. Not surprisingly more
complex features extraction backbones, such as ResNet50,
achieve overall better performance. However, ResNet50 can
struggle in discriminating very similar keyframes or when
disturbing factors are present such as the laser pointer. In the
proposed framework, the use of learning-based descriptors
can be seen as a hybrid method that combines the advantages
of descriptors and features.

Conclusion

This paper proposed a learning-based framework for pla-
cental mosaicking with occlusion recovery based solely on
intra-operative videos. To the best of our knowledge, this
is the first attempt to manage occlusions in a fetoscopic
mosaicking pipeline. The proposed method follows state-
of-the-art assumption of rigid scenes [9]. However, this
assumption may not hold in all intra-operative videos, where
maternal breathing, pulses, or fetal movements could cause
drift accumulation in the registration. In order to address
this challenge, future works should exploit the problem of
deformable registration. The results achieved suggest that
this new framework is able to reliably reconstruct the placen-
tal panorama even when the tracking from fetoscopic camera
is lost, as the recovery task allows to relocalize the frame
in correspondence of which the stitching algorithm failed.
This is a promising solution to assist surgeons during TTTS
surgery, which currently suffers with the issue of very lim-
ited FoV. A broader view of the placenta could decrease the

duration of the surgical intervention by facilitating the iden-
tification of pathological anastomoses and the verification of
their proper treatment.
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