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Abstract
Purpose Automated distinct bone segmentation from CT scans is widely used in planning and navigation workflows. U-Net
variants are known to provide excellent results in supervised semantic segmentation. However, in distinct bone segmentation
from upper-body CTs a large field of view and a computationally taxing 3D architecture are required. This leads to low-
resolution results lacking detail or localisation errors due to missing spatial context when using high-resolution inputs.
Methods We propose to solve this problem by using end-to-end trainable segmentation networks that combine several 3D
U-Nets working at different resolutions. Our approach, which extends and generalizes HookNet and MRN, captures spatial
information at a lower resolution and skips the encoded information to the target network, which operates on smaller high-
resolution inputs. We evaluated our proposed architecture against single-resolution networks and performed an ablation study
on information concatenation and the number of context networks.
Results Our proposed best network achieves a median DSC of 0.86 taken over all 125 segmented bone classes and reduces
the confusion among similar-looking bones in different locations. These results outperform our previously published 3D
U-Net baseline results on the task and distinct bone segmentation results reported by other groups.
Conclusion The presented multi-resolution 3D U-Nets address current shortcomings in bone segmentation from upper-body
CT scans by allowing for capturing a larger field of view while avoiding the cubic growth of the input pixels and intermediate
computations that quickly outgrow the computational capacities in 3D. The approach thus improves the accuracy and efficiency
of distinct bone segmentation from upper-body CT.
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Introduction

Segmentation of bones is used in bone disease diagnosis, in
image-based assessment of fracture risks [1], bone-density
[2], for planning and navigation of interventions [3], and for
post-treatment assessment.

Bone tissue segmentation from CT has been shown to
work well using slice-wise 2D CNN-based segmentation
algorithms [4–6]. The tasks and solutions become more var-
ied when moving from bone tissue segmentation to distinct
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bone segmentation (our task)wherewedistinguish individual
bones. Vertebrae segmentation has gained much attention,
with many of the algorithms using multi-stage approaches
and leveraging the sequential structure of the spine [7]. Rib
segmentation has been tackled by [8], who use a point cloud
approach targeted at leveraging their dataset’s spatial spar-
sity. Carpal bone segmentation is performed from X-rays of
hands that were placed on a flat surface [9].

Simultaneous segmentation of distinct bones of multiple
groups is still relatively little studied. A cascade of a bone tis-
sue segmentation and a distinct bone segmentation network
have been used by [10] to segment eight upper and lower limb
bones from whole-body CT. Fu et al. [11] segment 62 differ-
ent bones fromupper-bodyCTusing an atlas-based approach
and kinematic joint models. Lindgren Belal et al. [12] use
a multi-stage approach with a localisation network, shape
models, and a segmentation network to segment 49 distinct
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bones of the upper body. Segmentation of bones of differ-
ent groups in one shot can be used as a starting point for
more fine-grained atlas segmentations [11], or as a guide
for a follow-up inner organ segmentation [13]. Segment-
ing multiple structures at once can also be beneficial for the
segmentation accuracy [14], found their network trained on
multiple bone classes to outperform the one-class networks.

The region of interest in upper-body or full-bodyCT scans
is typically larger than the possible input sizes of 3D convo-
lutional neural networks (CNNs). As a result, the input needs
to be sampled as patches, restricting the input field of view
to the patch size. This problem exacerbates with the develop-
ment of CT scanners that produce ever more highly resolved
images. While a higher resolution allows for capturing more
fine-grained details, it covers smaller body areas within a
fixed-size input patch.

In order to extend the field of view, larger input patches
can be sampled. Using bigger patches, i.e. more input pixels
does not increase the number of trainable parameters in a
fully connected network, but it does increase the number
of necessary intermediate computations. Doubling the patch
size in all three dimensions leads to at least eight times more
forward- and backward computations, which are taxing for
the generally scarceGPUmemory. Countermeasures fall into
two categories. (A) keeping the resolution and input pixel size
high, but reducing the computational load elsewhere. Those
measures include reducing the batch size (not to be confused
with the patch size), using a simpler model, or reducing the
output size. All of those means potentially hamper training
and inference. (B) Keeping a large field of view by using
a small patch size of down-sampled inputs. This approach
allows for a wider field of view for a constant input size
while losing detail information.

To decide upon the better of the two approaches presented
above, the requirements for the task at hand need to be con-
sidered. A suitable network for our task of complete distinct
bone segmentation from upper-body CT scans (see 1) should
provide the following: Its field of view should be sufficiently
big to distinguish similar bones at different body locations,
e.g. left from right humerus or the fourth from the eighth rib
while keeping the computational burden in a feasible area.

The merits of high-resolution inputs—accurate details—
and low-resolution inputs—a larger field of view—can be
combined in many ways. Cascaded U-Nets consist of two
or more individual U-Nets that are trained consecutively. A
first model is trained on down-sampled input. Its one-hot
encoded segmentation results are then upsampled, poten-
tially cropped and used as additional input channels for the
following model at higher resolution [15]. These approaches
all have the downside of requiring the training and sequen-
tial inference of multiple models. Instead of this, we focus
on end-to-end trainable models here.

Table 1 Upper-body CT dataset spatial properties

Dataset Mean size (px) Resolution (mm)

In-plane Out-plane

Original 512 × 512× [656–1001] 0.83−0.98 1.0−1.5

Isotropic 237 × 237×403 2.0 2.0

End-to-end trained multi-resolution architectures have
been proposed in histopathology whole-slide segmentation.
For example,MRN [16] combines a 2D target U-Net and one
context encoder with drop-skip connections crossing over at
every level. MRN does not contain a context decoder or con-
text loss and is studied on a binary segmentation problem.
Another such architecture is HookNet [17], which contains
both a target and a context 2D U-Net and two individual
losses, but only uses skip connections in the bottleneck layer.

The purpose of our work is to address common segmen-
tation errors that originate from a lack of global context
while using 3D U-Nets for distinct bone segmentation. We
propose to use a multi-resolution approach and present
SneakyNet, an expansion and generalization of the MRN
and HookNet architectures. We compare the segmentation
accuracy, complexity, and run-time of baseline 3D U-Nets
with the SneakyNet. We ablate the model components and
find that the use of our generalized architecture improves
the results over the HookNet and MRN variants. We will
use our bone segmentation in conjunction with 3D render-
ing of anatomical images in augmented- and virtual reality
applications, where segmentations can be used on top or in
conjunction with existing transfer functions [18, 19].

Materials andmethods

To assess the performance of SneakyNet on upper-body
distinct bone segmentation, we train it on our in-house
upper-body CT dataset. We make ablation studies on the
combination of context and target information and on the
optimal number of context networks.

Upper-body CT dataset

The CT images have been acquired post-mortem from body
donours aged 44–103 years, 7 female and 9 male. The acqui-
sition of the scans and the manual target segmentations have
been done by specialists of the anatomical department of the
University of Basel. All CT scans were taken with the body
donours lying on their backs, and arms placed in front of the
body. The arms are bent to various degrees, and the hands
overlap in some instances.
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Fig. 1 Task overview: We segment 125 distinct bones from upper-body CT scans using SneakyNet, a multi-encoder–decoder network which
incorporates inputs at various resolutions. The example here features one context network, but multiple are possible

Prior to using them for training and for inference, we
resampled all scans to 2 mm isotropic resolution, see also
Table 1. We used the same dataset, also resampled to 2 mm,
in our previous publication [20].

SneakyNet architecture

In general, SneakyNet consists of one target network and
one or more context networks. The target network operates
on high-resolution data and eventually produces the desired
segmentation maps. The context networks operate on lower
resolution inputs spanning a larger field of view. Information
is propagated from the context networks to the target network
using crop-skip connections presented in section “Crop-skip
connections”. We present a detailed visual overview of the
architecture with one context network in Fig. 1.

In our previouswork [21], we have explored the suitability
of different 2D and 3D network architectures and parameter
configurations for upper-body distinct bone segmentation.
We found that there is little leeway in architectural choices
due to the tasks large required field of view and the many
classes that are segmented in parallel. A lean 3D U-Net
variant was found to work best [21]. We use this variant’s
architecture for our target and context U-Nets here. In our
baseline computations, where we have only a target net-
work and omit the context networks, we select the number of
channels in order for our variants and the baselines to have
approximately the same number of trainable parameters, to
ensure that improvements not only originate from an increase
in the number of trainable parameters. We use a sequence of
60, 120, 240, 480, 960 channels for our baseline 3D U-Net

and 30, 60, 120, 240, 480 channels for all other networks,
including the slim 3D U-Net used on patches of size 1283,
because the full network would otherwise exceed the avail-
able GPU memory. Inputs to the network are required to be
multiples of 2M−1, where M denotes the number of levels
of the U-Net. We use the basic architecture of M = 5 and
therefore need multiples of 16 pixels in every dimension as
input.

For the target network, we use inputs of size (Sx, Sy, Sz)
at full resolution. For each of the context networks, we use
that input plus its surrounding area, which together span a
field of view of 2κ · (Sx, Sy, Sz). We display the case of
κ = 1 in Fig. 1, but also use context networks with κ = 2
and κ = 3 in our ablation studies. The context network inputs
are down-sampled to reduce their size to (Sx, Sy, Sz). We
perform the down-sampling using (2κ × 2κ × 2κ) average-
pooling with a stride of 2κ . Both target and context network
inputs eventually have a size of (Sx, Sy, Sz), but at different
resolutions and fields of view.

Crop-skip connections

We use crop-skip connections to transfer information from
the context to the target branch. We crop the encoder output
at the desired level m such that in every dimension only the
central 1/2κ part remains. This centre cube is now spatially
aligned to the input of the target branch. We concatenate
the centre cube to the corresponding lower level m + κ of
the target decoder to match the spatial size. We refer to the
central cropping and subsequent concatenation into a lower
level of the target branch as crop-skip-connection. A detailed
schematic of the crop-skip connection is depicted in Fig. 2.
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Fig. 2 Detailed view of the architecture with the first context network
(κ = 1). Displayed are only two out of five levels of the U-Nets. Left:
the context U-Net working on half-resolution (1/2κ ) data with a field of
view that is double (2κ ) in every dimension. Right: The U-Net working
with the central cropped high-resolution data. After all encoder convo-

lutions of level m, a cropped copy of the output is skipped to the target
decoder at level m + κ . The decoder receives skip connections from
its own encoder and the context network[s]. The intermediate results of
the decoder and all skip connections are concatenated along the channel
axis before undergoing further convolutions

Fig. 3 Schematic of the four network configurations used in our ablation study.A shows a base U-Net, whileB,C, andD show different possibilities
of how to insert information into the target network, see also Sect. “Crop-skip connections” for a written description

We explore three network configurations which differ in
their number of crop-skip connections and their use of a
context loss, and compare it to a baseline U-Net. A visual
comparison of the architectures is given in Fig. 3 and the
parameters are provided in Table 2.

• A—Baseline: 3DU-Netwith optimal configuration found
for the task [21].

• B—HookNet: One context network with a single crop-
skip connection is added to the target network. The crop-
skip connection enters the target network at its bottleneck
layer. This configuration is used in [17].

• C—MRN: Crop-skip connections connect the context
encoder and the target decoder at every level. There is
neither a context decoder nor a context loss function.
This configuration was used in [16].

• D—ProposedSneakyNet:Crop-skip connections connect
all levels of the context and target networks. The context
network has a decoder with its own loss function.

Training and inference

Our dataset is split into 11 scans for training, 2 for vali-
dation, and 3 for testing. We use fivefold cross-validation,

ensuring that every scan appears in precisely one of the cross-
validation folds in the test set.

The only data augmentation we use is the patchwise sam-
pling which doubles as random-cropping augmentation. We
do not use rotation, scaling, addition of noise, or other data-
augmentation steps, since these have shown to have little
influence in the past for our specific problem [21]. We use a
batch size of 1, combined with instance normalization. The
loss is composed of an unweighted combination of the tar-
get network’s loss and the losses of the K context networks.
For both networks, we use the sum of the cross-entropy loss
LX-Ent and Dice-Loss LDSC [22]. As in [21], we sum the
Dice-Loss for every class separately and normalize by the
number of classes. We optimized the network weights using
the Adam optimizer with an initial learning rate of 0.001.We
trained our networks for 100000 iterations until convergence
was observed.

Our input images are padded by (S− Starget)/2 all-around
using edge value padding. The padding step ensures that we
can sample high-resolution patch centres right to the image’s
border. During inference we sample patches such that the
target patches overlap by 30% in every dimension to stitch the
centre of the patches together.We do not apply any additional
post-processing or inference-time data augmentation.
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Table 2 Comparison of architectures with different field of view (FOV) of their target and context network(s)

Config Target network
FOV

Context network(s)
FOV

Trainable param
·107

Input pixels ·104 Training time per
iteration(s)

A 3D U-Net 323 – 5.8 3.3 0.44

643 – 26.2 0.57

3D U-Net slim* 1283 – 1.5 209.7 4.24

B HookNet 323 643 3.7 6.6 0.41

643 1283 52.4 0.72

C MRN 323 643 4.7 6.6 0.43

643 1283 52.4 1.27

D SneakyNet (ours) 323 643 4.9 6.6 0.45

643 − 1283 5.8 9.9 0.70

643 − 1283 − 2563 6.2 13.1 3.16

643 1283 4.9 52.4 1.28

1283 − 2563 5.8 78.6 3.11

*Operating the full 3D U-Net on patches of size 1283 exceeds the available GPU memory

Table 3 Ablation results in DSC for different model configurations

Target patch size 32 64

DSC Median σ −σ Nonzero DSC (%) Median σ −σ Nonzero DSC (%)

A 3D U-Net 0.64 +0.19 −0.34 94.5 0.83 +0.09 −0.27 94.5

B HookNet 0.66 +0.17 −0.34 94.1 0.85 +0.09 −0.32 95.3

C MRN 0.69 +0.16 −0.37 95.1 0.84 +0.09 −0.31 96.0

D SneakyNet (ours) 0.75 +0.14 −0.33 95.3 0.86 +0.08 −0.28 96.7

Table 4 Ablation results for the number of context networks in the SneakyNet architecture (D). Zero context networks correspond to the baseline
3D U-Nets (A) with different input patch sizes

Config Target FOV per dim Context FOV(s) per dim DSC

Median σ −σ Nonzero DSC (%)

A 32 – 0.64 +0.19 −0.34 94.5

D 32 64 0.75 +0.14 −0.33 95.3

D 32 64–128 0.79 +0.11 −0.33 94.4

D 32 64–128–256 0.79 +0.11 −0.33 95.9

A 64 – 0.83 +0.09 −0.27 95.6

D 64 128 0.86 +0.08 −0.28 96.7

D 64 128–256 0.85 +0.09 −0.28 96.1

A 128 – 0.82 +0.11 −0.30 94.3

We implemented and trained our networks using Tensor-
flow Keras 2.5.0. All training and inference were conducted
on NVidia Quadro RTX 6000 GPUs of 24 GB RAM size.

Evaluation

We evaluate the performance of our models using a class-
wise Dice Score Coefficient (DSC). To indicate the per-

formance over all classes, we give the median and the 16
and 84 quantiles (1σ ) over all classes c. To not give a dis-
torted impression of the distribution, we exclude classes
where no true positives of c have been detected and therefore
DSCc = 0. We present the percentage of classes included as
‘nonzeroDSC’ in Tables 3 and 4 tomake up for the omission.
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Fig. 4 Confusion matrix among the long bones of the arms and legs. With our method, there is considerably less confusion between the left and
right sides of the body and between arm and leg bones

Results and discussion

Our experiments show how automated distinct bone segmen-
tation can be improved using amulti-resolution approach.We
evaluate our results onmultiple target resolutions with differ-
ent numbers of context networks and field of view sizes and
perform an ablation study to determine the most beneficial
way to combine context and target network information.

We evaluated some of themost common errorswhen using
a baseline segmentation method. We found that the missing
context information leads to similar-looking bones in dif-
ferent body regions being mistaken for one another. In the
confusion matrix presented in Fig. 4, we observe that when
using a baseline 3D U-Net, humerus pixels were predicted
as femur, and the left and right humerus were confused for
one another (right confusion matrix). When using context
information, these errors are reduced almost entirely (left
confusion matrix).

Weperformedan ablation study to see howdifferent strate-
gies of combining the context and target information within
the network perform. In Table 3, we present the quantitative
results. For both target patch sizes, 32 and 64, all strate-
gies (B-D) improve upon the baseline 3D U-Net (A). The
observed effect is substantially biggerwhen using the smaller
target patch size of 323, where the median DCS rises from
0.64 to0.75.TheDSCstill increases from0.83 to0.86median
DSC on the bigger target patches.

The combination of skip connections at every level and a
context loss function in our proposed architecture increases

the accuracy further, as compared to the HookNet [17] and
the MRN [16].

In Table 4, we ablate the influence of different numbers of
context networks and input patch sizes.Qualitative results are
depicted in Fig. 5. Comparing the baseline 3D U-Nets with
the SneakyNet results, we see that adding context networks
to very small target patches of 323 pixels almost reaches
the performance of our baseline networks operating on 643

patches. Going up, the SneakyNet operating on patch size
643 even outperforms the baseline 3D U-Net of patchsize
1283. We recall that we had to reduce the number of chan-
nels in the baseline 1283 network, due to memory restraints.
Our ablation results suggest that the addition of context net-
works ismore valuable in adding performancewhen reaching
memory limits. When considering the different FOV of the
context networks, we observe the best results when including
context FOVs of 1283. This covers roughly half of the L-R
and A-P dimensions of the scans and seems to contain the
necessary information to correctly locate bones, see, e.g. the
purple lumbar vertebra in Fig. 5, which is correctly located
in cases where the context FOV reaches 1283.

We provide a comparison to other results published on
distinct bone segmentation in Table 5.While a direct compar-
ison is difficult due to different datasets, our results compare
favourably to both the convolutional neural networks and
shape model approach by [12], and to the hierarchical atlas
segmentation by [11]. In terms of robustness, the other works
are likely to cover more variation since they use larger train-
ing datasets. So far, our trained models have been evaluated
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Fig. 5 Qualitative prediction results from our ablation study compar-
ing different numbers of context networks at various resolutions. The
first four results from the left were obtained using a target patch size
of 32px per dimension (turquoise), and the remaining three scans with

target patch sizes of 64px per dimension (light blue). The grey areas
indicate the field of view of the context networks. The sizes of the
squares are proportional to the prediction sizes

Table 5 Comparison of our
best-performing SneakyNet (D,
target patch size of 643 and one
context network with a FOV of
1283 pixels) to other work on
distinct bone segmentation from
upper-body CT. Results are in
DSC

Ours (median) [12] (median) [11] (mean)

L3 0.91 0.85 0.91

Sacrum 0.93 0.88

Right 7th rib 0.78 0.84

Clavicula 0.96 0.87

Right femur 0.97 0.92

Pelvic bones 0.96 0.86

Hamate 0.86

Inference time per scan (min) ∼ 3 ∼ 20

Scans in training dataset (#) 11 100 19

Classes (#) 125 49 62

only on data from one CT scanner and with the arm pose
customary to our dataset. The use of other scanners or dif-
ferent poses would likely need retraining of at least parts of
the model. A more in-depth analysis of how bones of dif-
ferent groups have performed can be found in Table 6. The
segmentation performance of individual bones is affected by
their size, with the small distal bonesmost likely to bemissed
or poorly segmented. For the larger, but still small carpal and
metacarpal bones the segmentation performance is close to
the one observed in the vertebrae.

Conclusion

This work presents improvements in distinct bone segmen-
tation from upper-body CT. The proposed multi-resolution
networks use additional inputs at a lower resolution but with
a larger field of view to provide the necessary context infor-
mation to assign the proper bone classes. We compared three
different ways of combining the context and target infor-
mation and evaluated the results using zero to three context
networks. Using context networks improves the segmenta-
tion results on all target patch sizes.
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Table 6 Performance of our best-performing SneakyNet (D, target
patch size of 643 and one context network with a FOV of 1283 pixels)
on various bones and groups thereof. We first provide the four best and
worst performing bones (according to their DSC values) and then the
median results for all bones within given bone groups. Missed denotes

the percentage of bones without any true positive pixelsWe first provide
the four best and worst performing bones (according to their DSC val-
ues) and then the median results for all bones within given bone groups.
Missed denotes the percentage of bones without any true positive pixels

Name Size [# voxels] DSC Sensitivity Precision Missed (%)

Humerus, right 18397 0.97 0.96 0.98 0.0

Humerus, left 24061 0.97 0.96 0.98 0.0

Femur, right 26249 0.97 0.96 0.97 0.0

Pelvis, right 44601 0.96 0.96 0.97 0.0

...

Phalanx IV, distal 38 0.33 0.28 0.52 18.8

Phalanx II, distal 36 0.24 0.18 0.56 25.0

Phalanx V, distal 26 0.18 0.10 0.50 25.0

Phalanx V, distal 18 0.15 0.13 0.32 37.5

Ribs 2688 0.80 0.76 0.87 0.0

Spine 3222 0.89 0.89 0.90 0.3

Fingers 115 0.60 0.53 0.79 11.0

Carpals and metacarpals 320 0.87 0.88 0.90 2.4

Limbs and skull 14153 0.95 0.94 0.97 0.0
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