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Abstract
Purpose Intraoperative infrared thermography is an emerging technique for image-guided neurosurgery, whereby physio-
logical and pathological processes result in temperature changes over space and time. However, motion during data collection
leads to downstream artifacts in thermography analyses. We develop a fast, robust technique for motion estimation and
correction as a preprocessing step for brain surface thermography recordings.
Methods A motion correction technique for thermography was developed which approximates the deformation field asso-
ciated with motion as a grid of two-dimensional bilinear splines (Bispline registration), and a regularization function was
designed to constrainmotion to biomechanically feasible solutions.Theperformanceof the proposedBispline registration tech-
nique was compared to phase correlation, a band-stop filter, demons registration, and the Horn–Schunck and Lucas–Kanade
optical flow techniques.
Results All methods were analyzed using thermography data from ten patients undergoing awake craniotomy for brain tumor
resection, and performance was compared using image quality metrics. The proposed method had the lowest mean-squared
error and the highest peak-signal-to-noise ratio of all methods tested and performed slightly worse than phase correlation
and Demons registration on the structural similarity index metric (p < 0.01, Wilcoxon signed-rank test). Band-stop filtering
and the Lucas–Kanade method were not strong attenuators of motion, while the Horn–Schunck method was well-performing
initially but weakened over time.
Conclusion Bispline registration had the most consistently strong performance out of all the techniques tested. It is relatively
fast for a nonrigid motion correction technique, capable of processing ten frames per second, and could be a viable option for
real-time use. Constraining the deformation cost function through regularization and interpolation appears sufficient for fast,
monomodal motion correction of thermal data during awake craniotomy.

Keywords Infrared thermography · Image-guided neurosurgery · Image processing ·Motion correction ·Awake craniotomy ·
SSIM

Introduction

Infrared thermography (IRT) is a noncontact technique for
measuring the surface temperature of an object [1]. Temper-
ature has a strong relationship with a variety of physiological
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and pathological processes in the brain [2]. These pro-
cesses create spatial or temporal temperature gradients on
the brain surface which are observable via craniotomy dur-
ing neurosurgery [3]. For example, brain tumors modify the
local vasculature leading to significantly different average
temperature than adjacent cortex (spatial gradients) [4, 5].
The patency of a cerebral bypass may be monitored intra-
operatively by observing the subsequent warming of the
surrounding tissue (temporal gradients) [6, 7]. Intraopera-
tive functional brain mapping may be performed using IRT
by measuring the areas where temperature increases when
a stimulatory task is performed (spatial and temporal gra-
dients) [8, 9] There is currently potential to construct a
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neurosurgical diagnostic or monitoring tool based on IRT
which addresses one or more of these application areas [10].

Despite these promising early results, an IRT-based device
has yet to break into the mainstream neurosurgical arsenal.
One of the primary limitations facing IRT is its sensitiv-
ity to motion, of which there are several sources. First, the
exposed brain exhibits a periodic pulsation which is strong
enough to be visible with the naked eye, which originates
from the patient’s cardiac and respiratory cycles [11]. Sec-
ond, intraoperative brain shifting phenomena may slowly
change the shape of the brain surface even during craniotomy
[12, 13]. Third, patient motion, particularly in awake cases,
may move the operating table relative to the camera’s field
of view. Motion is problematic because IRT applications
often rely on measuring temperature gradients over time and
space, rather than absolute temperature [14].Motion disrupts
the spatiotemporal correspondence between pixels which is
essential for typical IRT analyses; therefore, motion artifacts
can reduce the efficacy of the IRT-based applications men-
tioned previously [15].

Related work

Several approaches have been developed for motion correc-
tion of infrared thermography data for craniotomy images
[15–24]. Selected works are discussed in more detail here.

In Senger et. al., thermal images are preprocessed to
enhance the intensity of contours andbreathing artifacts, after
which a cepstrum-based technique calculates the motion of
individual 10 × 10 pixel blocks [18]. The motion across
pixel blocks are then combined to estimate motion across the
entire image. In Moshaei-Nezhad et. al., the image is again
divided into 10× 10 pixel blocks and motion is corrected in
two steps: a phase correlation technique to estimate large
displacements, followed by an optical flow technique for
subpixel motion [21]. This outperforms the power cepstrum
method in both speed and minimizing the root mean-squared
error; however, the resulting pixel time series appear flat and
it is unclear how much signal information remains intact for
downstream analyses.

In Chen et. al., white-light images are collected con-
currently with infrared thermal images for the purposes of
motion correction [15, 22]. White-light images are coregis-
tered using a combination of feature matching and b-spline
approaches. This enablesmotion correctionwithout affecting
the underlying thermal signals. This approach was refined
further by Moshaei-Nezhad et. al. by employing Demons
registration for faster registration, and this method is likely
the current state of the art [23]. Although it is highly accu-
rate, it requires specialized imaging hardware for concurrent
collection of white-light and thermal images. Furthermore,
this approach has a processing time of about six seconds per
image, which is too slow for real-time settings.

Paper contribution

In this work we present and validate a fast motion correc-
tion technique for thermal video data using single-modality
intensity-based image registration. The proposed technique
models the motion field using a two-dimensional bilinear
spline function, defined over a regular grid of control points.
The control point positions are adjusted to minimize a cost
function which balances similarity to the reference image
with biomechanical restraints of brain motion. The paper is
organized as follows: first the algorithm design is outlined
and optimization approaches are discussed. Lastly, the per-
formance is compared to other algorithms on five minutes of
data from ten human patients. Our goal is to create a fast and
robust technique that limits the data overfitting effects found
in other single-modality images, yielding a practical, near-
real-time motion correction solution for the neurosurgical
operating room that does not require multimodal imaging.

Methods

Proposedmethod

A motion correction technique for thermal video is pro-
posed based on bilinear interpolation of a two-dimensional
spline function (Bispline registration). Consider two thermal
images of the same object, one which is a target image and
one which is a moved image, which is to be aligned to the
target image. Motion can be defined as the vector field which
maps each point in the target image to its corresponding point
in themoved image. By estimating this field for each frame in
a video relative to the initial target frame, amotion correction
approach is realized.

Bispline registration estimates the motion vector field
using a regular grid of control points. Given a set of motion
vectors, one for each control point, the motion vector for
each pixel is calculated using bilinear interpolation between
the control points. A motion corrected image is generated by
applying the inverse of the estimated motion transformation
to the moved image. The final motion-corrected pixel values
are then computed using bilinear interpolation using the four
neighboring pixels. A pixel-wise least squares error metric
is calculated by summing the squares of residuals between
the target andmotion-corrected images.Minimizing the least
squares error yields a deformation field which estimates the
motion between frames. A complete derivation of the Bis-
pline registration technique is supplied in Appendix A.

Not all vector fields offered as solutions to the least-
squares optimization problem described above are physically
plausible. The brain is a contiguous and firm physical object,
so the order of the pixel positions must be monotonically
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preserved before and after the transformation is applied. Fur-
thermore, the brain motion being modeled here is relatively
smooth over both time and space, so simpler vector field
solutions are typically preferred over more complex solu-
tions despite the effect on the least-squares cost function. We
address this by adding and weighting a regularization cost
function to the objective least-squares cost function. Con-
sider that the regular control point grid is initially composed
ofmany adjacent squareswhich are perturbed duringmotion.
The sum of squared side lengths of each square is an indi-
cator for the magnitude and nature (stretching, compression)
of this perturbation. We therefore define our regularization
function as the sum of squared changes in the sum of squared
side lengths for each square in the grid (see Appendix A for
more detail). The magnitude of this regularization function
versus the objective cost function is scaled by a linear con-
stant alpha.

Motionmodel optimization

Motion correcting an image therefore constitutes finding a
motion vector for each control point which minimizes the
overall least-squares error metric. Due to the high framerate
of thermal video (30Hz) relative to the expected frequency of
the motion (< 1 Hz), we assume that the amount of frame-to-
framemotion is relatively small. Althoughmotion correction
is a constrained optimization problem to avoid computing
deformation fields with overlaps, it is more efficient in prac-
tice to treat the problem as unconstrained, and verify that the
solutions are feasible. Motion corrected frames with infeasi-
ble solutions may be repeated with increased regularization
constants until a feasible solution is realized. Objective func-
tion minimization is achieved using Newton’s method. The
gradient and a sparse Hessian are estimated analytically at
each step, specifying a system of linear equations which are
solved using the conjugate gradient squared method to spec-
ify the subsequent optimization step. The number of Newton
steps is treated as a hyperparameter, and the process for
selecting it is discussed below.

Data collection

Ten patients undergoing an awake craniotomy were imaged
using infrared thermography. All were recruited from
patients undergoing routine surgical resection of gliomas.
No changes were made to the routine clinical procedures as a
result of participation in the study, including craniotomy size
or specific exposure of clinically irrelevant functional areas.
All patients were strong candidates for awake functional
mapping with direct electrical stimulation, and therefore did
not have any significant functional, psychological, or behav-
ioral impairments. All study protocols were reviewed and
approved by the institutional review board, and informed

consent was obtained for all patients prior to study entry.
Patients underwent thermography mapping for at least five
minutes, during which a variety of motor or language tasks
were performed. During this time the surgical site was not
obstructed by surgical instruments, and irrigation of the brain
surface by saline solution was withheld. If placement of an
absorptive pad was clinically indicated to stop bleeding, the
pad was maintained on the brain surface during data col-
lection. If the patients underwent stimulation mapping with
direct electrical stimulation prior to thermal data collection,
a series of small paper labels indicating positive stimulation
sites may also be present on the brain surface during data
collection.

Infrared imaging was performed using a FLIR T1020sc
thermal camera (resolution 1024 × 768, framerate 30 Hz,
NETD < 20 mK). The infrared camera was extended over
the craniotomy from a tripod base using a horizontal camera
arm (see Fig. 1). The tripod was protected from contact as to
not introduce any large camera shake events into the recorded
data. For each patient, the camera’s field of viewwas selected
to be in-planewith the craniotomy tomaximize the number of
pixels measuring craniotomy temperature while respecting a
target distance of about 20 cm from the surface. The camera
and tripod were wrapped in a sterile surgical polyethylene
cover, with a rubber band holding the cover taut over the
thermal camera lens.

Model validation

Validation of motion correction algorithms using operating
room data can be challenging as the exact pattern of underly-
ing motion is unknown. We use image quality metrics as an
estimate for correct motion estimation. Five minutes of data
were collected in each subject, which were downsampled
from 30 to 6 Hz for analysis. All data were included in anal-
ysis except for the last thirty seconds from patient 9, which
exhibited large, fast global motion events and was deemed
an outlier.

We compare our algorithm on these ten cases to five
other techniques: a phase correlationmethod, a band-stop fil-
ter, Demons algorithm [25], the Horn–Schunck optical flow
method, and theLucas–Kanade optical flowmethod. Inspired
by the study in [26], the applied IIRband-stopfilter attenuates
frequency bands of 0.5–3 Hz. As these methods are designed
for localmotion estimation, the phase correlationmethodwas
also used as a preprocessing step for these methods. Phase
correlation was not applied prior to the proposed method in
the initial testing; however, the effect of adding or removing
phase correlation is presented below in the analysis of model
performance over time. Lastly, it was found during initial
testing that the optical flow algorithms performed poorly on
longer data intervals, likely due to conflict between thermal
data properties and optical flow assumptions. However, the
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Fig. 1 Data collection and craniotomy. Left: The infrared camera setup
is shown. The patient’s head is underneath the blue draping, with the
lens pointing at the craniotomy site which is surrounded by beige sur-
gical mesh. Right: An example greyscale thermography image of the

craniotomy is shown (see temperature colorbar on the right). The cran-
iotomy is the warm, well-focused region in the center in the image.
Warm lines correspond to blood vessels within cerebral sulci

results improved considerably if the optical flow algorithm
was applied again to the same data, and in each repeat the
results iteratively improved. We treat the number of opti-
cal flow repeats as a hyperparameter and discuss its choice
alongside all hyperparameters from all the tested methods in
Appendix C.

We evaluate the motion correction performance using
three metrics of image quality between each frame and the
reference image: the mean-squared error (MSE), the peak
signal-to-noise ratio (PSNR), and the structural similarity
index measure (SSIM) [27]. The formulas for the PSNR and
the SSIM are given below:

PSNR = 10log10

(
k2

MSE

)

SSIM(x , y) =
(
2μxμy + C1

)(
2σxy + C2

)
(
μ2
x + μ2

y + C1

)(
σ 2
x + σ 2

y + C2

)

For PSNR, k is the largest possible value in the image
data type. For SSIM, μx and μy are the local image means,
and σ 2

x , σ 2
y , σxy are the local variances and covariances for

two images x and y. To limit the effect of non-craniotomy
pixels on image quality calculation, a craniotomy mask was
manually generated for each patient. Each post-registration
frame was masked prior to calculating each metric. These
craniotomy masks were not used during the motion correc-
tion process.

Results

Method comparison on clinical data

Several methods were tested on all ten patients: phase
correlation, band-stop filtering, Demons registration,
Horn–Schunck optical flow, Lucas–Kanade optical flow, and
lastly Bispline registration (the proposed method). Hyperpa-
rameters were optimized for each method using a grid-based
search (see Appendix C for complete description), while
trying to keep the processing time for each method around
or below one second per frame. Phase correlation used a
Gaussian filter with standard deviation of sixteen pixels
for signal whitening. The band-stop filter parameters have
been set in prior work, so no changes were made. Demons
registration used a field smoothing parameter of four pixels,
two pyramid levels, and twenty iterations. The smoothing
parameter for the Horn–Schunck optical flow method was
set to one, and the algorithm was repeated four times.
The Lucas–Kanade optical flow noise threshold was set to
0.0625, and the number of repeats was set to three.

The MSE, PSNR, and SSIM were calculated for each
frame relative to the initial reference frame. The median
results for each patient, technique, and metric are displayed
in Tables 1, 2 and 3. All methods were compared to the raw
data and to each other on a frame-by-frame basis using a one-
sidedWilcoxon signed-rank test for eachmetric. Allmethods
significantly increased the image quality compared to the raw
data across all three metrics (p < 0.01). Bispline registration
had the highest median MSE and PSNR overall, and across
all patients except patient 9, where Demons registration per-
formed best on both metrics. No method had a significantly
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Table 1 Median MSEs by patient
and technique Patient RD PC BS DR HS LK BR

1 0.082 0.064 0.064 0.021 0.079 0.160 0.019

2 0.121 0.081 0.081 0.046 0.071 0.085 0.028

3 0.245 0.123 0.123 0.038 0.151 0.125 0.018

4 0.220 0.215 0.215 0.087 0.156 0.228 0.062

5 0.462 0.378 0.378 0.306 0.318 0.473 0.196

6 0.346 0.346 0.346 0.282 0.302 0.346 0.167

7 0.209 0.174 0.174 0.088 0.151 0.189 0.035

8 0.121 0.105 0.105 0.035 0.076 0.170 0.024

9 0.509 0.159 0.159 0.065 0.135 0.257 0.312

10 0.775 0.071 0.071 0.039 0.062 0.082 0.033

Median 0.212 0.125 0.125 0.054 0.116 0.166 0.036

The MSE between each frame post-motion correction and the initial reference frame was calculated for
the raw data (RD, no registration), phase correlation (PC), band-stop filter (BS), demons registration (DR),
Horn–Schunck optical flow (HS), Lucas–Kanade optical flow (LK), and Bispline registration (BR, proposed
method). The median MSE by technique and by patient, as well as the overall median across all patients, are
shown. The minimum value in each row is bolded

Table 2 Median PSNRs by
patient and technique Patient RD PC BS DR HS LK BR

1 10.84 11.95 11.95 16.78 11.04 7.96 17.12

2 9.17 10.89 10.89 13.38 11.47 10.71 15.58

3 6.10 9.09 9.09 14.19 8.20 9.02 17.46

4 6.57 6.68 6.68 10.60 8.07 6.43 12.08

5 3.36 4.22 4.22 5.14 4.98 3.26 7.07

6 4.60 4.61 4.61 5.49 5.20 4.61 7.76

7 6.81 7.60 7.60 10.54 8.21 7.24 14.59

8 9.17 9.78 9.78 14.52 11.17 7.70 16.14

9 2.93 7.98 7.98 11.88 8.68 5.91 5.06

10 1.11 11.47 11.47 14.11 12.07 10.85 14.84

Median 6.74 9.05 9.05 12.70 9.35 7.80 14.43

The PSNR between each frame post-motion correction and the initial reference frame was calculated for
the raw data (RD, no registration), phase correlation (PC), band-stop filter (BS), demons registration (DR),
Horn–Schunck optical flow (HS), Lucas–Kanade optical flow (LK), and Bispline registration (BR, proposed
method). The median PSNRs by technique and by patient, as well as the overall median across all patients,
are shown. The maximum value in each row is bolded

higher MSE or PSNR as compared to Bispline registra-
tion (p < 0.01). The Demons registration, Phase correlation,
and Band-pass methods significantly outperformed Bispline
registration on the SSIM (p < 0.01). Although statistically
significant differences are present, the absolute difference in
overall median IMMSE and PSNR values is relatively small
between Demons and Bispline registration, and the overall
median SSIM was fairly close for Phase Correlation, band-
stop filtering, and demons registration methods. There was
no significant difference between the band-pass filter and the
phase correlationmethods on anymetric.Neither optical flow
technique performed particularly well overall on any of the
metrics.

Method comparison

Motion estimation is more challenging as time goes on due
to the cumulative effects of motion and thermal drift. Pre-
processing the data with the phase correlation algorithm
addresses this by rigidly aligning all frames in the thermal
video. We examine the sensitivity of the motion correction
methods to time through two analyses. First, the median
MSE, PSNR, and SSIM values were calculated across all
patients as a function of time. Second, this analysis was
repeated but without the phase correlation as a preprocessing
step—all methods were tested directly on the raw data. The
results of these analyses are shown in Fig. 2.
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Table 3 Median SSIMs by
patient and technique Patient RD PC BS DR HS LK BR

1 0.848 0.883 0.883 0.895 0.761 0.793 0.890

2 0.760 0.852 0.852 0.844 0.833 0.836 0.845

3 0.709 0.837 0.837 0.906 0.692 0.831 0.915

4 0.856 0.880 0.880 0.818 0.848 0.825 0.799

5 0.662 0.831 0.831 0.754 0.613 0.687 0.657

6 0.885 0.899 0.899 0.858 0.880 0.897 0.850

7 0.825 0.875 0.875 0.883 0.846 0.850 0.873

8 0.810 0.853 0.853 0.858 0.815 0.740 0.846

9 0.663 0.848 0.848 0.859 0.849 0.787 0.783

10 0.561 0.832 0.832 0.804 0.716 0.734 0.794

Median 0.788 0.861 0.861 0.858 0.811 0.814 0.846

The SSIM between each frame post-motion correction and the initial reference frame was calculated for
the raw data (RD, no registration), phase correlation (PC), band-stop filter (BS), demons registration (DR),
Horn–Schunck optical flow (HS), Lucas–Kanade optical flow (LK), and Bispline registration (BR, proposed
method). The median SSIMs by technique and by patient, as well as the overall median across all patients,
are shown. The maximum value in each row is bolded

Fig. 2 Method performance over time. The median MSE (left column),
PSNR (center column), and SSIM (right column) values are plotted
for each method with phase correlation preprocessing (upper row) and
without phase correlation preprocessing (bottom row). The phase cor-
relation and raw data are provided as reference in all plots. Due to the

minimal effects of band-pass filtering on the image quality estimates,
the band-pass line overlaps the phase correlation line in the upper row
and the raw data line in the bottom row. The data are smoothed with a
10 s moving average filter for visibility
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Overall post-correction image quality decreased over time
for all metrics and all methods. This decrease is typically ini-
tially sharp over the first thirty seconds and then flattens out.
With phase correlation applied, Bispline and Demons regis-
tration had the lowestMSE and the highest PSNR values, and
the difference versus the other methods is greatly magnified
over time. For the SSIM with phase correlation, all methods
except for Lucas–Kanade optical flow perform similarly, up
until about two minutes at which point the Horn–Schunck
method SSIM begins to sharply decrease. Removing phase
correlation preprocessed had a large impact on the overall
data. All methods except for Bispline registration performed
significantly worse on all metrics (p < 0.01) when phase cor-
relation preprocessingwas removed.When phase correlation
preprocessing was added to Bispline registration, it did not
improve the MSE or PSNR but did significantly improve the
SSIM (p < 0.01, median overall SSIM 0.854 vs 0.846).

Computation time

Balancing the quality of motion corrected images with time
it takes to process the data is important in the surgical set-
ting. The processing time per patient per method is shown
in Table 4. Average total processing times were 0.825 s per
frame for phase correlation, 0.826 s per frame for band-stop
filtering. 1.763 s per frame for Demons registration, 1.167 s
per frame for Horn–Schunck optical flow, 1.006 s per frame
for Lucas–Kanade optical flow, and 0.103 s per frame for Bis-
pline registration. Bispline registration was by far the fastest
technique overall, largely but not exclusively due to its lack
of dependence on phase correlation preprocessing, which is
slower than most methods on their own. When comparing
individual method processing time, Bispline registration is
approximately at least twice as fast than any other method
other than band-stop filtering.

Discussion

We have proposed and validated a new Bispline registration
technique for motion correction of thermal brain images dur-
ing awake craniotomy.Wecompared theBispline registration
algorithm to other motion correction algorithms on data from
ten awake human patients. As compared to prior work, our
comparison is significant for longer data collection inter-
vals, a larger number of frames per patient, and using data
from awake patients performing motor or cognitive tasks,
all of which may lead to more cumulative motion and ther-
mal drifts over time. While these aspects of our dataset make
motion correctionmore difficult, it represents real challenges
in preprocessing neurosurgical thermal data and highlights
methods which are relatively robust.

Our analysis suggests that the proposed Bispline registra-
tion technique is capable of relatively fast and high-quality
motion correction. Each of the other methods tested had
weaknesses in one or more areas. Demons registration was
competitive with Bispline registration from an image qual-
ity standpoint; however, the small increase in SSIM does
not justify its use in time-sensitive settings. Phase corre-
lation performed surprisingly well for a global registration
technique, producing the best SSIM values across all meth-
ods. Phase correlation benefits from highly accurate subpixel
global alignment and attenuates some thermal drift through
signal whitening. Its strong SSIM performance suggests that
correction of localmotion in the presence of artifacts can lead
to loss of image structure on larger scales. Band-pass filter-
ing the data was not impactful in changing image quality,
indicating that there are significant sources of image quality
deterioration which lie outside of the 0.5–3 Hz band. These
may include patient breathing (~ 0.2 Hz), task-related global
motion events (< 0.1 Hz), or turbulent cooling effects of air
currents on the brain surface (> 3 Hz).

Although the Horn–Schunck method was not as high-
performing at the aggregate patient level, the time analysis
in Fig. 2 demonstrates relatively strong performance early
on, particularly for the image SSIM. The challenging fea-
tures of our dataset mentioned previously are destructive for
the assumptions of optical flow algorithms, which require
small frame-to-frame motion and are intolerant to changes
in object brightness. As our patients are awake and engaged
in research, the brain surface temperature is inherently unsta-
ble due to the impact of functional activation on local blood
flow [8]. It is plausible that with correct parameters the
Horn–Schunck method could be a viable option for appli-
cations with shorter recording times that do not need to be
fused together in aggregate. As another optical flow tech-
nique, we may form a similar conclusion to performance of
the Lucas–Kanade method.

Bispline registration achieves robustness by leveraging
known properties of intraoperative motion to constrain the
search space for brain motion. The use of control point grids
lowers the number of parameters that need to be fit per frame
of data.While fewer parameters constrains the complexity of
motion that can be estimated, the combination of spatial and
grid downsampling effectively creates 16× 16 image patches
onwhichmotion is evaluated. This is opposite of demons reg-
istration and optical flow techniques which consider motion
on a pixel-by-pixel level. Our approach is similar in this sense
to the prior work by Senger et. al. and Moshaei-Nezhad et.
al. which analyze motion within 10 × 10 pixel patches and
combine the results for global motion estimation [18, 21].
In our work, the synthesis of patch information is performed
by the regularization functions, which guide the algorithm
toward biomechanically plausible solutions. These regular-
ization functions in conjunction with large pixel patches may
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Table 4 Processing time
statistics by patient and technique Method PC BS DR HS LK BR

Average 0.825 0.002 0.938 0.342 0.181 0.103

MAD (%) 1.50% 5.52% 2.08% 0.76% 2.09% 3.43%

Max (%) 3.36% 13.01% 6.04% 2.51% 4.43% 3.68%

Total 0.825 0.826 1.763 1.167 1.006 0.103

The processing time was measured for the phase correlation (PC), band-stop filter (BS), demons registration
(DR), Horn–Schunck optical flow (HS), Lucas–Kanade optical flow (LK), and Bispline registration (BR,
proposedmethod) algorithms. The average time per framewas calculated per patient, and then averaged across
patients. The median absolute deviation and maximum times are shown as percentage increase versus the
average time. Finally, for methods where the phase correlation technique was necessary, the phase correlation
time is added to the individual method’s average time to yield the total processing time

decrease sensitivity to textureless regions by extrapolating
motion from strongly-textured areas.

Limitations and future work

While constraining the estimated brain motion leads to
improved robustness, it simultaneously requires the user to
understand the nature and extent of brain motion in the data.
Repeating the parameterization approach as in Appendix
B may be necessary before applying the algorithm to new
datasets. Additional limitations of our approach may include
large amounts of camera shake in which the algorithm may
be slow to find the solution and return an under-corrected
image. This was seen in Patient 9, which had large amounts
of globalmotion as demonstrated by the relatively strong per-
formance of the phase correlation technique and relatively
weak performance of Bispline registration. If this becomes
problematic it may be desirable to pre-align the data frames
with a phase correlation method before progressing to non-
rigid registration, as performed for the other methods and in
Moshaei-Nezhad et. al. [21].

A further limitation is the high patient-level variance,
as seen in Tables 1, 2 and 3. Patients three, six, and nine
had some of the lowest initial image quality, but this only
improved in patients three and nine. On inspection, patient
six had one of the largest craniotomies in the dataset and the
camera was positioned closer to the brain than in other cases.
Although this case demonstrated clearly visible motion, the
cooling effects of air currents were sharply visible on the
cortex and may have limited the performance of motion cor-
rection approaches. While other patients had gauze pads in
the field of view which experience high frequency cooling
and reheating in thermography video, these did not seem to
substantially alter algorithm performance. The final thirty
seconds from Patient 9 were omitted from analysis due to
especially high motion. This patient was unique in that sub-
sequent testing was performed using electrocorticography,
and movement of operating room equipment and personnel

in anticipation of this experiment were a likely cause for the
increased motion.

Surgical applications of intraoperative thermography
would benefit from real-time processing.While the presented
technique is fast, capable of processing about 10 frames
per second, additional speedups are required to reach the
native camera sampling rate of 30 Hz. Parallelization tech-
niques and faster computer hardware would both increase
the number of frames processed per second. In addition, the
number of optimization steps needed for Bispline registra-
tion may decrease as the distance between frames decreases.
Finally, our technique uses spatially downsampled images,
and decreasing or eliminating downsampling would increase
registration quality. The balance between speed and quality
will ultimately depend on the analysis following motion cor-
rection, and studying these downstream impacts is a clear
next step for comparison of motion correction algorithms.

Conclusion

Motion correction of intraoperative thermography data is
a vital preprocessing step to attenuate the effects of arti-
facts which limit data quality. The primary contribution of
our work is a fast, registration-based technique based on
estimation of motion fields between video frames using
a two-dimensional spline function. Motion correction of
thermography data is challenging without the use of addi-
tional imagingmodalities. Thermal noise canmake detection
of anatomical landmarks challenging, while intensity-based
algorithms are liable to degrade physiological signals in favor
of matching pixel values. Our work demonstrates that it is
possible to overcome these limitations using additional soft
constraints on the motion field.
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