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Abstract
Purpose The acquisition conditions of medical imaging are often precisely defined, leading to a high homogeneity among
different data sets. Nonetheless, outliers or artefacts still appear and need to be reliably detected to ensure a reliable diagnosis.
Thus, the algorithms need to handle small sample sizes especially, when working with domain specific imaging modalities.
Methods In thiswork,we suggest a pipeline for the detection and segmentation of light pollution in near-infrared fluorescence
optical imaging (NIR-FOI), based on a small sample size. NIR-FOI produces spatio-temporal data with two spatial and one
temporal dimension. To calculate a two-dimensional light pollutionmap for the entire image stack, we combine region growing
and k-nearest neighbours (kNN), which classifies pixels into fore- and background by its entire temporal component. Thus,
decision-making on reduced data is omitted.
Results We achieved a F1 score of 0.99 for classifying a data set as light polluted or pollution-free. Additionally, we reached
a total F1 score of 0.90 for detecting regions of interest within the polluted data sets. Finally, an average Dice’s coefficient
measuring the segmentation performance over all polluted data sets of 0.80 was accomplished.
Conclusions A Dice’s coefficient of 0.80 for the area segmentation does not seem perfect. However, there are two main
factors, besides true prediction errors, lowering the score: Segmentation mistakes on small areas lead to a rapid decrease in
the score and labelling errors due to complex data. However, in combination with the light-polluted data set and pollution
area detection, these results can be considered successful and play a key role in our general goal: Exploiting NIR-FOI for the
early detection of arthritis within hand joints.

Keywords Feature vector based segmentation · Computer vision · Seeded region growing · K-nearest neighbour · Near
infrared fluorescence optical imaging

Introduction

Specializedor domain specific imagingmodalities inmedicine
often suffer from a lack of data, let alone annotated data. For
these imaging modalities, computer vision tasks, including
classification, segmentation or other data analytics need to
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handle small sample sizes, often restricting the use of highly
customized neural networks, the state of the art in computer
based decision-making.

In this work, we present a segmentation algorithm for
spatio-temporal (two spatial dimensions x and y and one
temporal dimension t) image stacks, for the use case of iden-
tifying light pollution in near infrared fluorescence optical
imaging (NIR-FOI). The goal of the present work is to iden-
tify a two-dimensional map per data set, defining all regions
for the whole image stack in which light pollution occurs.

Our general research goal is to exploit NIR-FOI to detect
arthritis in all joints located in the hands. Based on the distri-
bution process of a colour agent, predictions about the health
status (inflamed vs. not inflamed) of an investigated joint
are made. Thus, the data analysis of the temporal compo-
nent focuses on the illumination process rather than object
motion. Therefore, the correct localization of ambient light is
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Fig. 1 Two samples of
light-polluted data sets

of utmost importance to separate between colour agent-based
and ambient light-based illumination.

The development of a robust segmentation algorithm faces
several challenges. In our case, the number of data sets with
light pollution is very small (18), and the temporal com-
ponents among different data sets and the phenotypes of
different light pollutions are very heterogeneous. Due to the
heterogeneity, an approach not only adapting to the data set
but also to each light pollution area is necessary to correctly
segment the areas of interest. Additionally, in many cases,
the core of the polluted area is well visible and easier to
detect than the pixels towards the edges. Thus, a data reduc-
tion, based on a pre-set of parameters, along the temporal
component followed by a segmentation step often leads to
unsatisfying results, either over-segmenting or leaving out
less dominant areas towards the edges of the polluted areas.
The low performance of this two-step approach is caused
by the mentioned parameter definitions, which might lead to
satisfying results in some cases however, fails for other cases
not meeting the assumptions baked into the parameter defini-
tions. The poor segmentation of this two-step approach was
observed independently of the reductionmethod, for example
feature value extraction, PCR analysis, Fourier analysis etc.
Therefore, a segmentation pipeline based on none reduced
temporal data in the t dimension is necessary. Two samples
of light-polluted data sets are shown in Fig. 1.

In order to address all these conditions, we developed a
segmentation pipeline based on two well-known algorithms:
seeded region growing [1] and k-nearest neighbours (kNN)
[2]. The general idea is to use the seeded region growing algo-
rithm to test whether the next pixel belong to the current area.
However, instead of pre-defining an inclusion criterion, the
decision is made by a pre-trained machine-learning model
(kNN). Our approach combines the benefits of a classical
segmentation algorithm,which does not require training data,
and a lightweightmachine-learning algorithmhighly adapted
to its’ training data. This combination leads to a minimum
of pre-defined parameters, is highly adaptive to each pol-

luted area, and does not require multiple data sets for model
training.

The usage and dimensions of the NIR-FOI data lead to a
unique set of requirements for the data analysis, including the
image segmentation for ambient light-polluted areas. Thus,
to aid in comprehensibility of theRelatedwork chapter, espe-
cially the comparison of the work at hand to previous work,
the Data chapter is located before the Related work chapter.

Data

NIR-FOI is an imaging modality, in which the colour agent
indocyanine green (ICG) is administered intravenously. Dur-
ing the following six minutes, 360 images of the colour
agent’s distribution are taken leading to the three dimensions
mentioned in the “Introduction” section, in which the spatial
dimensions x and y refer to each slice’s pixels and t to the
consecutive image acquisition.

Each data set consists of three periods separated by two
distinguishable points in time: Prior signal, signal starting
point (SSP), signal increasing time, time point of full illumi-
nation (TPFI) and signal decreasing time. Figure 2 displays
the average count value (measured pixel value) of each slice,
visualizing these phases and points in time. Phase one refers
to the period prior to the ICG reaching the hands (No colour
agent (NoCA) phase). Then, the ICG reaches the hands (SSP)
and the second phase, in which the colour agent distributes
throughout the blood vessels, starts (illumination phase). In
the third phase, after reaching the TPFI, the ICG is flushed
out of the microcirculation in the hands, which leads to a
decrease in pixel count (flush-out phase). The starting points
and length of each phase vary among different data sets. This
definition of phases and distinguishable points in time was
already introduced in [3].

The used data for this work were acquired during four
independent studies, each of which fulfilled Good Clini-
cal Practice Guidelines in accordance with the Declaration
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Fig. 2 Five exemplary timelines ([3] adjusted design)

of Helsinki and were approved by the ethics committee of
the University Hospital Frankfurt a. Main, Germany (No.:
127/13, No.: 128/13, No.: 433/18, No.: 454/17). All partici-
pants provided signed informed consent for inclusion in the
studies and agreed to the usage of their data for research pur-
poses. All participants were fully capable of giving informed
consent for participation in a study.

Light pollution

Generally, the image acquisition room should be darkened
as much as possible. However, in some cases, doors or win-
dows are not covered or the room lights are not switched off,
leading to ambient light being measured by the experimental
setup. Therefore, the light pollution is affected by the sur-
rounding conditions, which can lead to diverse phenotypes
of light pollution. It can be all gradation from a statically

increased area to a highly fluctuating signal. Figure3a shows
the comparison between a statically affected pixel and an
unpolluted pixel. Figure3b displays two pixels of the same
light-polluted area, in which during the acquisition period
the signal starts to fluctuate. Furthermore, the timeline of an
unpolluted pixel is added.

Related work

As mentioned in the “Introduction” Section, the goal of the
present work is a two-dimensional map per data set, localiz-
ing all pixels, which have been polluted at some point during
the 360 images. This correlates with a dimension reduction
from a three-dimensional data set (x , y and t) to a two-
dimensional (x and y) segmentation map.

In many cases, a segmentation of all dimensions is
required. For a three-dimensional volume (three spatial
dimensions), a three-dimensional segmentation defines the
three-dimensional shape of an object. A survey about that
topic is given in [4]. For spatio-temporal data, a slice-
wise segmentation localizes moving or distorted objects at
every given point in time, again a segmentation in all three
dimensions. A survey about spatio-temporal data in today’s
medicine is given in [5]. However, in this work we interpret
the time series per pixel as feature vector, which is closer to
texture-based segmentation approaches. Nonetheless, these
approaches apply wavelet-filter through convoluting filters
with images [6]. Due to the high heterogeneity among differ-
ent data sets aswell as different polluted areas, global filtering
did not lead to satisfying results. Thus, the main difference

Fig. 3 Examples of data affected by light pollution
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to previous work is the individually trained kNN classifiers
for each polluted area to achieve maximal adaptation.

To our knowledge, there is no other research using the
result of a machine-learning classifier as inclusion crite-
ria in a seeded region growing algorithm. There have been
approaches to increasing the performance of region growing
by combining it with other techniques such as edge detection
[7], graph based methods [8], advanced thresholding [9, 10],
increasing the region growing’s adaptiveness [11] and others.
However, none of these methods builds their segmentation
decision on a multidimensional input vector.

The only work we found, suggesting a higher dimension
decision-making for a lower dimension segmentation result
is [12], in which a multistep process is suggested for the
segmentation and merging of related areas. In the work at
hand, a multistep process, extracting a feature map, which is
then used for the segmentation, leads to unsatisfying results.

To our knowledge, there is no other research investigating
the ambient light pollution in NIR-FOI and its possible influ-
ence on the medical decision-making. The presented work is
a first into this direction.

Method

All described methods were implemented using Python,
with extensively using the following modules: NumPy [13],
OpenCV [14] and scikit-learn [15].

The main focus of this work is the combination of the
seeded region growing algorithm with the kNN classifier.
However, as in most machine based decision-making, the
definition and preparation of training data and parame-
ters through empirical testing or classic data analysis steps
(hyperparameter tuning) is a major part of the process. In
the work at hand, “Determining ambient light pollution”
and “Defining area seeds and trainings data” describe these
pre-processing steps. The complete segmentation pipeline
contains the following three main steps:

1. Determine whether the current data set is polluted by
ambient light

2. If ambient light was detected, defining the seeds of and
training data for the seeded region growing and kNN
classifier

3. Perform the segmentation for each detected region

If a pixel is classified as light polluted at any given time point,
it is removed from any calculation for the entire image stack.

Determining ambient light pollution

Asmentioned in “Data”, the data is composed of three phases
(see Fig. 2). Since the requirements and conditions differ for

Fig. 4 Calculation pipeline to extract an image emphasising light-
polluted areas. This graphic was created with the tool TikZ [16]

these phases, the ambient light detection is performed indi-
vidually for each phase. However, the signal characteristic
of the illumination phase is a rapidly changing signal, which
can be misinterpreted as ambient light pollution. To avoid
misclassification, no ambient light detection is carried out
in this phase. Furthermore, in none of the data sets, a pollu-
tion area solely appearing in phase 2 has been observed by a
qualified human observer.

Even though the high heterogeneity among different data
sets encourages the usage of relative thresholds to perform
adapted decision-making, the classification into ambient
light-polluted and clean data sets require an absolute state-
ment valid for all data sets. For the two phases, individual
transformations and different absolute conditions (numerical
thresholds) are defined through intensive testing and fine-
tuning.

The results, after applying transformations and general
thresholding, are binary light pollution maps defining fore-
ground and background (Figs. 5b and 8). However, these are
not precise segmentation masks, but rather identify the core
regions of the light pollution areas. These are used for the
seed and training data definition in “Defining area seeds and
trainings data”.

NoCA phase

The temporal component of the no colour agent phase is
usually 15 to 150 images long, in which only black noisy
images are expected. However, due to the high heterogeneity,
defininghard threshold values, classifying toobright pixels as
ambient light, leads to misclassification. Therefore, multiple
steps are carried out to incorporate these diverse conditions.

Firstly, an image, which emphasises light-polluted pixels,
is calculated. The whole process is visualized in Fig. 4. In a
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Fig. 5 Results of the flush-out
phase

first step, the timelines of all x · y = n pixels are transformed
into the frequency space using the one-dimensional Fourier
transformation. Since this transformation yields complex
numbers, the absolute values are calculated to obtain a real
value result. Additionally, only half of the Fourier values per
pixel are kept, due to the mirror characteristic of the results
of a Fourier transformation (Fig. 4a to b). Then, the z-score
for each Fourier component among all n pixels is calculated
(Fig. 4b to c). Themathematical foundation of the normaliza-
tion process is given inEq.1, inwhichpxli, j refers to the pixel
value in the Fourier stack with image index i and component
index j . pi, j describes the likelihood of the appearance of

pxli, j (pi, j = # of appearance pxli, j
n ).

μ j = 1

n

n−1∑

i=0

pxli, j , j ∈ {0, 1, ...,m − 1}

σ 2
j =

n−1∑

i=0

(
pxli, j − μ j

) · pi, j , j ∈ {0, 1, ...,m − 1}

pxlnormi, j = pxli, j − μ j

σ j
,

i ∈ {0, 1, ..., n − 1} , j ∈ {0, 1, ...,m − 1}
(1)

After each value in the Fourier stack is normalized, the sum
along the component axis of every pixel is calculated (Fig. 4c
to d).

PXLi =
m−1∑

j=0

pxlnormi, j , i ∈ {0, 1, ..., n − 1} (2)

m refers to the number of Fourier components and PXLi to
the pixel value of the calculated image (Fig. 4d).One example
of such an image is visualized in Fig. 5a.

With this component-wise normalization, two things are
achieved. Firstly, each pixel lies in the same numerical range,
independent of the original amplitudeof the image stack. Sec-
ondly, Fourier components with lower original amplitudes,

usually high frequencies, increase relatively in comparison
with components with higher amplitudes, usually low fre-
quencies. Since high frequencies represent detailed image
information, in the data at hand bright stack pixels, the areas
of interest, are emphasised. These two properties enable
a general thresholding to classify each pixel into ambient
light-polluted or clean data. A result of the NoCA phase is
visualized in Fig. 5b.

Flush-out phase

Extracting a light pollution map for this phase has different
requirements in comparison with the NoCA phase. The main
difference is the existing signal from the ICG and thus, the
necessity to separate signal and ambient light pollution. As
mentioned in the “Method” section, every pixel, which was
classified as light polluted during the NoCA phase, is dis-
carded from the entire image stack. Therefore, in this phase
the focus lies on rapid unexpected signal changes and not
on statically increased signals, since these will have been
detected during the NoCA phase. The flush-out phase spans
from TPFI (see Fig. 2) to the end of the data set.

Each image in the defined flush-out phase image stack is
filtered by a Gaussian high-pass filter, which is performed by
transforming each image in the spatial frequency space via a
two-dimensional discrete Fourier transformation. This high-
pass filter emphasises details in the images, for example light-
polluted areas, and decreases general image information such
as low-resolution hand parts (an example is given in Fig. 6).

To achieve a two-dimensional light pollution map, the
temporal component has to be removed. Therefore, the stan-
dard deviation along the temporal component for each pixel
is calculated. The standard deviation increases numerically,
when the values are distributed over a wider range. However,
as seen in Fig. 2 the data sets tend to decrease in signal ampli-
tude after the TPFI has been passed. This leads to a decrease
in impact for numerically smaller values when calculating
the standard deviation. To account for this phenomenon,
the standard deviation along the temporal component of the
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Fig. 6 High-pass filter pipeline
for one example image

Fig. 7 Visualization of the interval-wise standard deviation calculation

high-pass-filtered image stack is calculated consecutively for
intervals of the image stack. These intervals are shown in
Fig. 7a. After the standard deviation image is calculated for
one interval, it is normed into

{
x ∈ R | 0 ≤ x ≤ 1

}
over all

pixels.
Repeating this process for all intervals flattens the decreas-

ing signal, puts values across all pixels into relation, and
transforms all values into the same numerical scale (an exam-
ple is given in Fig. 7a). After all normed interval standard
deviation images are calculated, the sum among all these
images is calculated and the image rescaled into the range{
x ∈ N| 0 ≤ x ≤ 255

}
(unsigned integer with bit size 8).

A summation image is shown in Fig. 8a. The data from dif-
ferent data sets is comparable after this process and general
thresholds can be applied. A final result of the flush-out phase
is visualized in Fig. 8b.

Defining area seeds and trainings data

Preparing the data and defining the seeds are done separately
for the result masks of the NoCA and flush-out phase. How-

ever, the process is identical and therefore only described
once.

As mentioned before, the suggested segmentation method
combines seeded region growing and a kNN classifier. Thus,
the seeds and the training data need to be defined.

Seed definition

The seeds’ definition is straight forward, after receiving the
result mask (e.g. Figs. 5b or 8b). For each detected area, the
seed is defined by calculating the average pixel indices of
both dimensions x and y, including all pixels in the area.

seed j,d =
⌊
1

n j

n j∑

i=0

pnt j,i,d

⌋

∀ j ∈ N : 0 ≤ j < Q , d ∈ {x, y} (3)
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Fig. 8 Results of the flush-out
phase

Fig. 9 Visualization of the kNN
trainings data

Q describes the number of detected foreground areas, pnt j,i
describes the i th point in the j th foreground area and d ∈
{x, y} symbolize the respective dimension.

Defining the trainings data

It is assumed that pixels belonging to the same foreground
area have a similar light pollution (e.g. the fluctuation is simi-
lar). However, other foreground areas might show a different
temporal behaviour. Thus, similar to the seeds’ definition,
the kNN training data needs to be defined individually for
each foreground mask. Additionally, as mentioned in “Intro-
duction”, the inclusion of a pixel during the region growing
process should be based on the entire pixel’s timeline of the
current phase. Therefore, the timelines of all pixels labelled
as foreground of one individual area are defined as the train-
ing samples for one class. This is Class1 and describes the
foreground.

The second class Class0 describes the background. Pix-
els and their timelines are randomly picked from the rest of
the image and labelled as Class0. However, some restrictions
apply to the randomly picked indices. Firstly, all defined fore-
ground areas and a larger surrounding region are prohibited
to be picked for background pixels. Additionally, each picked
pixel gets a restricted area assigned, from which no further
pixel can be selected. This avoids too closely located pixels

to be picked as training data, to get a more diverse Class0
training data set. The number of Class0 samples is set to
the number of Class1 samples to avoid class imbalance. An
example is shown in Fig. 9.

Calculating the light-polluted areas

After the training data for one region of interest is defined,
it is used to train the kNN classifier. Starting from the cal-
culated seed, the eight surrounding pixels are classified and
added to the region of interest, should the classifier predict the
currently tested pixel as Class1. Otherwise, it is not included.
Pixels included into the region of interested will be used as
the next core pixels, from which yet untested pixels will be
tested. This process is repeated until no further core pixel
is included into the foreground (region growing). Especially
in the beginning, many pixels used as Class1 training data
are tested. However, if reaching a pixel, which was used as
Class1 trainings pixel, the timeline is not classified but simply
accepted as a Class1 pixel. In comparison, pixels of Class0
are not automatically classified as Class0. In some cases, the
region of interest grows beyond the predefined restricted area
around the core region and thus, Class0 pixels can be reached
and possibly classified as Class1.

The hyperparameter k of the kNN classifier, defining how
many votes are included into the majority vote, is set to 3.
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Results

In order to evaluate the performance of the segmenta-
tion pipeline, three different metrics are calculated: Dice’s
coefficient χ [17] for the pixel wise light pollution area
segmentation per data set, F1 score ψ for the general area
detection and the F1 score τ classifying data sets into light
polluted and free of pollution. Dice’s coefficient is a measure
to estimate the similarity between two sets. For two binary
data sets, Dice’s coefficient and F1 are the same and defined
as:

F1 = 2 · TP
2TP + FP + FN

(4)

wherein the number of true positive (TP), false positive (FP)
and false negative (FN) of the respective classification are
used. In case of χ , the evaluation of the segmentation per-
formance, TP describes the pixels correctly segmented, FP
pixels labelled as background but segmented as foreground
and FN pixels labelled as foreground but segmented as back-
ground. For ψ , the evaluation of the area detection, a region
is defined as detected, if at least one pixel of a labelled area
matches a segmented pixel.

As mentioned in the “Data” section, 18 samples contain
light pollution. Furthermore, the pipeline was tested on 57
additional data sets not containing any light pollution. Out of
these 57 data sets, 56 are identified as pollution-free and one
as polluted. All 18 polluted data sets were correctly detected.
This leads to:

τ = 2 ·
TP=74︷ ︸︸ ︷

(18 + 56)

2 · 74︸︷︷︸
TP

+ 1︸︷︷︸
FP

+ 0︸︷︷︸
FN

= 0.99. (5)

The results for χ and ψ are summarized in Table 1. An aver-
age Dice’s coefficient of χ = 0.8 and a total F1 score of
ψtot = 0.899 for area detection were achieved. The seg-
mentation result of patient 1 is shown as an example in
Fig. 10a. Furthermore, to define a correct segmentation label
for patient number 12 seems impossible, since the patient’s
hands seem to be covered in a fluorescent substance. A deci-
sion, whether a pixel belongs to the fore- or background,
is nearly impossible. Thus, it is excluded from the calcula-
tions for χ and ψtot . However, labelling this sample as light
polluted is possible, and therefore it is included into the τ cal-
culation (seeEq.5). The segmentation result for this excluded
sample is visualized in Fig. 10b.

Table 1 Summarized results of the segmentation pipeline

Patient Dice’s χ Area evaluation

TP FN FP Dice’s ψ

1 0.71 2 0 0 1.00

2 0.82 2 0 2 0.67

3 0.62 1 0 0 1.00

4 0.67 1 0 0 1.00

5 0.73 3 1 0 0.86

6 0.67 5 2 0 0.83

7 0.82 1 0 0 1.00

8 0.82 2 0 0 1.00

9 0.96 1 0 0 1.00

10 0.71 4 0 2 0.80

11 0.92 1 0 0 1.00

12 0.65 4 6 1 0.53

13 0.93 1 0 0 1.00

14 0.91 1 0 0 1.00

15 0.89 1 0 0 1.00

16 0.90 1 0 0 1.00

17 0.82 1 0 0 1.00

18 0.73 3 0 0 1.00

Ø
∑ ∑ ∑

0.80 31 3 4 0.90

Discussion and conclusion

In this work, we present a segmentation algorithm for spatio-
temporal data, with high heterogeneity among different but
limited amount of samples. Our goal is to incorporate the
properties of the temporal component into the decision-
making, whether a pixel belongs to a specific foreground
area.

With the presented pipeline, we achieved a F1 score of
τ = 0.99 in detecting light-polluted or pollution-free data
sets. Over all polluted data sets, a F1 score of ψtot = 0.90 in
detecting areas of interest and an average Dice’s coefficient
of χ = 0.80 with χmin = 0.62 for the segmentation were
achieved. In particular, the detection of light-polluted data
sets (τ ) and the corresponding areas (ψtot ) can be considered
well working. The area segmentation (χ ) also achieves in
most cases satisfying results. Besides true prediction errors,
low values have two leading causes. Firstly, some areas are
small in size, and thus small differences between label and
prediction yield relatively low values, a property of the eval-
uation measure. Secondly, in order to evaluate χ a ground
truth mask based on multiple images (temporal component)
needs to be defined. This complex task can lead to uncer-
tain labels and therefore lower performance.Nonetheless, the
achieved results are considered well working for our appli-
cation, since the main goal of this research is the assessment
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Fig. 10 Segmentation results

of whether automatically investigate the current data set or
not. The combination of τ = 0.99, ψ = 0.90 and χ = 0.80
enables to automatically assess whether a data set contains
ambient light pollution and if so, the effects the pollution has
on evaluating critical hand regions.

The twomajor challenges of this pipeline are the definition
of seeds and training data. This pre-processing step is highly
dependent on the use case and might not be transferable to
other research questions. Nevertheless, themain idea of com-
bining region growing and machine-learning can be easily
expanded to a diverse set of topics and applications (e.g. other
types of angiographywith a temporal component).Whenever
a segmentation should be based on higher dimensional data,
this approach can be applied. Furthermore, this method is
highly adaptive to the data and can be, if required, expanded
by more comprehensive machine-learning approaches such
as neural networks.
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