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Abstract

Purpose A positive circumferential resection margin (CRM) for oesophageal and gastric carcinoma is associated with
local recurrence and poorer long-term survival. Diffuse reflectance spectroscopy (DRS) is a non-invasive technology able to
distinguish tissue type based on spectral data. The aim of this study was to develop a deep learning-based method for DRS
probe detection and tracking to aid classification of tumour and non-tumour gastrointestinal (GI) tissue in real time.
Methods Data collected from both ex vivo human tissue specimen and sold tissue phantoms were used for the training and
retrospective validation of the developed neural network framework. Specifically, a neural network based on the You Only
Look Once (YOLO) v5 network was developed to accurately detect and track the tip of the DRS probe on video data acquired
during an ex vivo clinical study.

Results Different metrics were used to analyse the performance of the proposed probe detection and tracking framework,
such as precision, recall, mAP 0.5, and Euclidean distance. Overall, the developed framework achieved a 93% precision at
23 FPS for probe detection, while the average Euclidean distance error was 4.90 pixels.

Conclusion The use of a deep learning approach for markerless DRS probe detection and tracking system could pave the way
for real-time classification of GI tissue to aid margin assessment in cancer resection surgery and has potential to be applied

in routine surgical practice.
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Introduction

Cancers of the gastrointestinal (GI) tract remain a major
contributor to the global cancer risk. The aim of surgery is
for complete resection of tumour with clear margins, while
preserving as much surrounding healthy tissue as possible
[1]. A positive circumferential resection margin (CRM) is
associated with local recurrence of the tumour and poorer
long-term survival. The accurate mapping of tumour mar-
gins is of particular importance for curative cancer resection
and improvement in overall survival. Current mapping tech-
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niques preclude a full resection margin assessment in real
time.

Currently, the gold-standard intra-operative technique for
CRM assessment is frozen sections [2]. However, this tech-
nique is at risk of sampling errors, plus it is time-consuming,
labour- intensive, and lengthens the operative time, affecting
both patient outcome and theatre efficiency [3]. These chal-
lenges can potentially be addressed by using multispectral
optical probes, which have been previously shown to have
high sensitivity and specificity (greater than 90%) for dis-
criminating between normal and cancer tissue [4].

Diffuse reflectance spectroscopy (DRS), a point-based
spectroscopy technique, allows discrimination of normal and
abnormal tissue based on spectral data and presents a promis-
ing advancement in cancer diagnosis [5]. The main limitation
of the clinical use of DRS is that although DRS can discrimi-
nate tissue types, it does so by providing single-point spectral
measurements and leaves no marks on the tissue during scan-
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Fig.1 Video data from human
excised tissue “Group A” (left)
and tissue phantom “Group B”
(right)

(a) Group A

ning [6]. In this way, it is not possible to localise the area that
has been in contact with the probe when optical biopsy takes
place, and thus makes it difficult for the surgeon to deter-
mine the resection margin. This is particularly challenging
when DRS is used endoscopically or during minimally inva-
sive surgery (MIS), where the ergonomics of scanning and
viewing the DRS probe site are even more demanding. To
overcome this limitation and localise the optical biopsy sites
on the specimen, an optical tracking method was developed,
as described in previous work [7]. Briefly, to track the DRS
probe, a colour marker was chosen based on the colour distri-
bution of biological tissue in the hue saturation value (HSV)
colour space. A green colour marker was wrapped around
the distal end of the DRS probe to allow detection of the
probe. Tracking of the probe was achieved using a Kalman
filter. The exact probe coordinates at each sampling point
were recorded. In this way, the localisation of the probe tip
was known in real time.

The main limitation of this approach was that a marker
is required to be attached on the probe’s shaft. This is chal-
lenging when it comes to the in vivo clinical setting, as a
biocompatible sterilised marker is needed to be attached to
the probe, a process that highly interferes with the surgical
workflow. Additionally, the colour marker is prone to occlu-
sion from blood that leads to inaccurate detection of the probe
during the surgical operation. To overcome this limitation and
localise the optical biopsy sites on the specimen, this paper
presents a novel deep learning-based detection and tracking
system to enable markerless real-time localisation of the tip
of the handheld DRS probe. The system allowed tracking
of the two-dimensional (2D) position and orientation of the
DRS probe using image data (Fig. 1).

Methodology

The aim of this study was to develop a robust deep learning
framework for accurate detection and tracking of the tip of
the DRS probe. Two video datasets were used for the train-
ing and testing of our deep learning framework. The first
dataset, Group A, comprised of ex vivo video data acquired
at Imperial NHS Trust (ref. no. 08/H0719/37). More specifi-
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Fig.2 Video data processing and labelling pipeline

cally, once the human tissue specimen was excised from the
patient, a video of the DRS probe sampling the tissue was
taken. For the second dataset, Group B, a solid tissue phan-
tom was used for the collection of the video data. In total,
11 videos were acquired for both Groups A and B at 1920 x
1080 resolution and 30 frames per second (FPS), while the
length of the videos ranged from 60 to 120s.

Following the processing pipeline shown in Fig.2, we
ended up with a total of 1942 frames that were then labelled
using the open-source labelling tool Labelbox (https://
labelbox.com). Two annotation types were used, namely the
bounding box around the metal shaft of the probe and the
tip point of the DRS probe. To address the requirements
of deep learning methods for big data, the video dataset
was further increased using image augmentation techniques.
Specifically, the Mosaic [8], mix-Up [9], and non-max sup-
pression [10] methods were used.

The developed model was based on the implementation
of You Only Look Once (YOLO) v5 network [10]. YOLO
formulates the object detection task as a unified, end-to-
end regression problem resulting in a fast and generalisable
framework. Compared to YOLO v5, the network modifies
the CBL block by replacing the Leaky ReLU activation func-
tion with the SiLU activation function. The detailed structure
update of the network is shown in Fig.3. The YOLO v5’s
Focus Layer is replaced by the STEM layer, which is con-
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Fig.3 Developed
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Fig.4 DRS probe tip point
detection. The green point is
ground truth, and the blue point
is the prediction by our model

sidered to improve the generalisation ability of the network
reducing at the same time its computational complexity. For
the DRS probe tip detection, a four-point tip regression was
also added to the network to minimise probe detection errors.

Results

To measure the performance of the developed deep learn-
ing model, precision, recall, mAP0.5, and mAP0.5:0.95
were employed. For point tracking, the Euclidean distance
between the predicted and ground truth tip points was calcu-
lated at pixel level. For the training of the developed network,
data were split into training, validation, and testing using a
ratio of 8:1:1. The model was trained on a NVIDIA 2080
Ti GPU-powered machine. In total, 760 epochs were used
leading to a detection precision of 0.76, mAPO0.5 of 0.99, and
mAPO0.5:0.95 of 0.88, while the average Euclidean error was
7.13 pixels. Furthermore, the average error for the Group
A was significantly lower compared to that of Group B, as
85.22% of the error value is less than 10 pixels. Overall, an
average error of 4.90 pixels and a prediction precision of

[B-CSP]——’[ conv ]———»

T
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93.67% were achieved (Fig.4). In the inference mode, the
developed model was able to detect and track the DRS probe
in 23 FPS.

Discussion and conclusion

In this study, a deep learning framework for the DRS probe
detection was developed to support clinicians with the com-
plete tumour detection and resection. The network is able to
detect and track the tip of the probe with 93% accuracy in
near real time at 23 FPS. The real-time probe detection and
tracking method developed in this study can also be applied
to other optical spectroscopy techniques, such as rapid evap-
orative ionisation mass spectrometry (REIMS) technology,
fluorescence spectroscopy, and Raman spectroscopy. In this
way, the ergonomics, ease of use, and validation of data col-
lection for these optical techniques can be improved.

The proposed deep learning-based DRS probe detection
and tracking network has been validated on ex vivo data, and
the accuracy derived demonstrates the strength and clinical
value of the technique. The method allows real-time probe
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tracking and could aid resection margin assessment in cancer
surgery and has potential to be applied in routine surgical
practice.
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