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Abstract
Purpose Endovascular intervention is the state-of-the-art treatment for common cardiovascular diseases, such as heart attack
and stroke. Automation of the procedure may improve the working conditions of physicians and provide high-quality care to
patients in remote areas, posing a major impact on overall treatment quality. However, this requires the adaption to individual
patient anatomies, which currently poses an unsolved challenge.
Methods This work investigates an endovascular guidewire controller architecture based on recurrent neural networks. The
controller is evaluated in-silico on its ability to adapt to new vessel geometries when navigating through the aortic arch.
The controller’s generalization capabilities are examined by reducing the number of variations seen during training. For this
purpose, an endovascular simulation environment is introduced, which allows guidewire navigation in a parametrizable aortic
arch.
Results The recurrent controller achieves a higher navigation success rate of 75.0% after 29,200 interventions compared to
71.6% after 156,800 interventions for a feedforward controller. Furthermore, the recurrent controller generalizes to previously
unseen aortic arches and is robust towards size changes of the aortic arch. Being trained on 2048 aortic arch geometries gives
the same results as being trained with full variation when evaluated on 1000 different geometries. For interpolation a gap of
30% of the scaling range and for extrapolation additional 10% of the scaling range can be navigated successfully.
Conclusion Adaption to new vessel geometries is essential in the navigation of endovascular instruments. Therefore, the
intrinsic generalization to new vessel geometries poses an essential step towards autonomous endovascular robotics.
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Introduction

Endovascular interventions are the state-of-the-art treatment
for many vascular diseases, which include the common dis-
eases of heart attack and stroke. For treatment, a guidewire
and catheter are inserted into the patient’s vessel system and
navigated to the lesion, e.g. the coronary arteries for a heart
attack or cerebral arteries for a stroke. At the lesion, treat-
ment is performed through the catheter, which may include
placing a stent, or mechanically removing the stenosis.

To navigate to the lesion, the instruments are manipu-
lated by translation, i.e. insertion and retraction, and rotation,
i.e. twisting, of the instruments from outside the patient’s
body. Feedback of the current position of the instrument’s
tip is obtained through continuous fluoroscopy imaging, a
low dose variant of X-ray imaging. In a normal fluoroscopy
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image, the guidewire and catheter are visible, but arteries and
veins cannot be differentiated from the surrounding tissue.
By injecting contrast agent, whichmakes the vascular system
radiopaque, vessels can be made visible fluoroscopy image.
By creating a snapshot with contrast agent, a roadmap can
be overlayed with the fluoroscopy image showing the vessel
geometry. Too much contrast agent can pose a health risk
and creating and updating the roadmap takes time, therefore
these methods are only applied when necessary.

A typical method for selective catheterization is leading
with the guidewire. The guidewire’s angled tip allows prob-
ing the desired artery at bifurcations by skillful rotation and
insertion such that the tip enters the desired artery. In cases
where the guidewire alone is not able to probe the desired
artery, it is necessary to utilize guidewire and catheter con-
currently. The shaped tips of both instruments influence each
other and can be modified by skillfully changing overlap
and rotation allowing to probe difficult vessels. When the
guidewire sits firmly in the artery, the endovascular surgeon
pushes the more flexible catheter over it [1, 2].

During such a procedure, the surgeon must continuously
stand in close proximity to the patient at the operating table
and is exposed to radiation. Best practices can already sig-
nificantly reduce radiation exposure, but a further reduction
is still a reasonable goal for the health of the surgeon [3, 4].
Automation of the endovascular navigation will allow the
physician to stay out of the radiation zone during the navi-
gation.

Remote and rural areas have a significantly reduced access
to endovascular treatments compared to urban areas [5].
One approach to solve this problem is telesurgery, which
is shown as feasible in research settings [6]. A comprehen-
sive application of telesurgery is not yet possible due to
technical constraints, e.g. connection stability and latency
requirements, and legal issues, e.g. liability or validation of
the telesurgery networks [7]. Autonomous navigation can
supplement telesurgery by lessening the requirements on
the communication network or can be utilized where no
telesurgery network or skilled physician is available.

Additionally, cognitive andphysical strain of the operating
surgeon can be reduced by an autonomous system such that
physicians can change their attention focus from the visuo-
motoric task of manipulating the endovascular instruments
to high-level intervention decisions.

Recent research regarding autonomous control of
endovascular instruments during navigation in interventions
utilize learning-based approaches [8–15]. They utilize super-
vised learning [8], deep-q-networks [9, 10], asynchronous
advantage actor-critic [11], deep deterministic policy gra-
dients with hindsight experience replay [12], generative
adversarial imitation learning and proximal policy optimiza-
tion [13], soft actor critic [14] or discrete soft actor critic with
auto-encoder [15]. These approaches are all trained on one

vessel geometry and show reduced success [13] on a different
geometry.

Learning-based controllers utilizing neural networks
show a high potential of autonomously navigating endovas-
cular instruments. However, the lacking generalization to
new geometries is problematic, as each patient has a unique
vascular system. Generalization to previously unseen envi-
ronments is a major challenge in reinforcement learning
research and is an essential component to deploying algo-
rithms in real world scenarios [16].

This work builds on the results of [12], where testbench
performance decreased compared to the simulation results,
partly due to the soft vessel geometry changing shape in the
testbench. Here, we design a learning-based controller uti-
lizing recurrent neural networks to autonomously navigate
varying geometries. Navigation is performed in synthetic
three-dimensional aortic arches to targets in the supraaortal
arteries. Probing the supraaortal arteries is an important step
in the treatment of cerebral arteries. Strong anatomical vari-
ations occur rarely and are not considered. The intervention
is performed with a guidewire only and without geometry
information. The utilization of contrast agent to gain geome-
try information and utilization of a catheter are not regarded.
Instrument characteristics remain constant. Subsequently,we
examine the generalizability of the controller by reducing the
training context, such that evaluation is performed in aortic
arches, which were not encountered during training. To per-
form the in-silico experiments we introduce a parametrizable
endovascular environment with aortic arches randomized
by arch type, specific geometry, width scaling and height
scaling.

Methods andmaterials

Navigation task

Here, we consider the navigation through the aortic arch from
the descending aorta to the supraaortal arteries. An example
of one aortic arch model, the insertion point, a possible tar-
get point, the path to the target and the artery nomenclature
are presented in Fig. 1. The controller’s task is to navigate a
guidewire from the insertion point at the caudal end of the
models to a target randomly sampled from the centerlines
of the supraaortal arteries. For each navigation attempt the
vessel geometry is randomized. Feedback during the naviga-
tion is given as two-dimensional (x′, z′) tracking coordinates
of the guidewire. No feedback about the vessel geometry is
given. The tracking coordinate system is a rotated projection
of the patient coordinate system to a left anterior oblique
(LAO) projection with a − 25° rotation around the z-axis
and 5° around the x-axis. This projection is normally utilized
when navigating the aortic arch, as the visibility of the aortic
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Fig. 1 Aortic archmodelwith the artery nomenclature, insertion point, a
possible target, guidewire’s path to the target and the patient coordinate
system

arch is maximized in the fluoroscopy images. Therefore, the
feedback is equivalent to the two-dimensional tracking that
would be extracted from such fluoroscopy images.

Preliminary experiments with manually performed inter-
ventionswith full visibility of the vessel geometry and unlim-
ited duration showed that 76.3% of the random geometry
and target combinations can be reached within a maximum
of 19 s. Training of the controller is performed on random
geometry/target combinations and evaluation on 1000 prese-
lected reachable geometry/target combinations. The success
criterion is whether the target is reachedwithin 60 s, allowing
the controller to make failures and correct them.

For each navigation attempt, a new aortic arch is generated
by a parametrizable aortic arch generator. Four parameters
are considered: arch type, specific geometry of each artery in
the arch type, height scaling and width scaling. Height and
width correspond to the patient’s z-axis and xy-axes, respec-
tively.

Aortic arch types are derived fromNatsis et al. [17]. Here,
we utilize types I, II, IV, V, VI and VII as shown in Fig. 2a–f.
Types III and VIII are neglected as in these types the left
vertebral artery and the thyroidea ima artery emerge directly
from the aortic arch, two arteries, which are not considered
in our study.

After selecting an arch type, the specific geometry of the
arteries is calculated utilizing cubic hermite splines with ran-
domized spline points. Each artery is defined by a finite
number of spline points, e.g. the aorta and the left subcla-
vian artery are defined by four and two points, respectively.
Each spline point is defined by its coordinates, the artery

Fig. 2 Aortic arch type variations available in the aortic arch generator.
The centerlines of the arteries are shown in green

diameter and the parametric derivative of the coordinates and
the artery diameter with respect to the independent spline
variable. Coordinates and artery diameters, as well as their
parametric derivatives are derived from normal distributions.
Starting points of arteries are constrained to the centerline of
the preceding artery. A specific geometry can be reproduced
by setting a certain seed to the random number generator for
the spline points. In Fig. 3a two different seeds for a type I
aortic arch are shown.

In addition, the aortic arch can be independently scaled
in its height and width, while the diameter of the arteries
remains constant. The effect of scaling the height is depicted
in Fig. 3b and scaling the width in Fig. 3c.

The navigation task is modelled in a finite-element-
simulation based on the SOFA framework [18] with the
BeamAdapter plugin [19]. The guidewire is modelled as a
one-dimensional finite-element-model based on Kirchhoff’s
rod theory confined by the vessel-phantom walls. Phan-
tom walls are assumed rigid and the lumen empty. Friction
between wall and guidewire as well as guidewire stiffness
have been adapted from [12] where they were iteratively
tuned to mimic real guidewire behaviour. The simulation
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Fig. 3 Aortic arch type variations for height and width scaling and the
seed for the detailed geometry. The centerlines of the arteries are shown
in green

receives guidewire rotation and translation speed as input.
Rotation and translation are applied at the proximal end of
the guidewire. The output is the guidewire position as coordi-
nate points, directly extracted from the finite-element-model
of the simulation. Rotational speed is limited to 180°/s and
translational speed to 40 mm/s.

Controller architecture and training procedure

To autonomously navigate the guidewire in arbitrarily gen-
erated aortic arches, we introduce a neural-network-based
controller, which incorporates a recurrent layer trained by
the reinforcement learning method soft actor critic [20].
The recurrent architecture adds a long short-term memory
(LSTM) layer to the strictly feedforward architecture utilized
in the state of the art. The LSTM layer serves as an obser-
vation embedder, which learns a useful trajectory dependent
state representation, while the following feedforward lay-
ers learn the control of the guidewire. The recurrent layer
is expected to improve performance in this partially observ-
able navigation task (the vessel geometry is not observable),
as shown for other partially observable environments [21].
Assumably, the LSTM remembers information about the
geometry of the vessel system as proposed by Ma et al. [22]
for robotic indoor navigation. The observation embedder is
updated with the q1-network only. Controllers with feedfor-
ward embedder and without embedder serve as baseline. The
controller and network architectures are shown in Fig. 4.

The controller receives an observation as input and the
gaussian policy network provides a mean μ and standard
deviation σ of a normal distribution for the next action.
For training, an action is sampled from the normal distribu-
tion. For evaluation, mean μ is taken as action directly, thus
the behaviour becomes deterministic. Network architectures
have been chosen based on preliminary experiments with the
recurrent-based controllerwhere learning rate, embedder and
network size were randomly sampled. The parameters with
the best success rate have been chosen.

The action, i.e. the output of the gaussian policy, is defined
as the guidewire’s rotation and translation speed. The obser-
vation is defined as current and last guidewire position,
target position and action leading from the last to the cur-
rent position. Position data are given as (x′,z′)-coordinates
in the tracking coordinate system, relative to the insertion
point. The guidewire position is provided as three points
on the guidewire tip, described as (x′, z′)i=1,2,3. The points
are spaced evenly and 2 mm apart from each other, and (x′,
z′)1 is coincident with the guidewire tip. The target position
is given as the (x′, z′)-coordinates of the current target. A
video description of the observation can be found in Online
Resource 1.

For training the controller, navigation tasks are performed
for 2 × 107 exploration steps. An exploration step is defined
as performing one cycle of the control loop in the exploration
phase. One navigation task, i.e. navigating the guidewire
from the start to a target, is defined as an episode. An episode
is considered complete when the target is reached within a
threshold of 5 mm. During training a timeout is introduced
for computational efficiency after 150 exploration steps (i.e.
20 s) without reaching the target. The control frequency is
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Fig. 4 a Architecture of the proposed controller based on a soft actor-critic design. Reward and action input for the Q-networks are neglected. b–d
Neural-network architectures of the controllers with recurrent-embedder, feedforward embedder and no embedder, respectively

7.5 Hz, representing a fluoroscopy image frequency of 7.5
images/s. The geometry is changed every episode.

The reward per step, R, is defined as:

R � −0.005 − 0.001 · � pathlength

+

{
1.0
0

if target reached
else

The pathlength is defined as the distance of the guidewire
tip to the target along the centerlines of the arteries and
�pathlength� pathlengtht=0 − pathlengtht=−1. For each aor-
tic arch the pathlength is calculated based on the centerlines

of the individual geometry. This is an adaption of the reward
utilized in [12] enhanced by the dense feature from [14]
and [15]. Parameters for the constant penalty and change in
pathlength are chosen such that they approximately equalize
each other with an optimal action. Preliminary experiments
showed good results. Optimization of the reward might have
an impact on the training efficiency and success rate but is
not considered in this study.

Every 2.5 × 105 exploration steps, the performance of
the controller is evaluated for 1000 episodes. Performance is
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defined as the percentage of evaluation episodes where the
controller can successfully reach the target.

Evaluation

For the initial evaluation the training and evaluation environ-
ment are maintained identical. All six aortic arch types are
used, the random number generator to determine the specific
geometry is initialized randomly, and scaling is performed
over the full range of 0.7–1.3. The proposed controller with
recurrent embedder is compared to the controllers with feed-
forward embedder and no embedder. All controllers are
trained with the same set of hyperparameters. Additionally,
the controller with recurrent embedder is evaluated on an
aortic arch model of a 23-year-old healthy male patient. The
vascular model is obtained from the Vascular Model Repos-
itory (#94) [23].

To test generalization capabilities, the variety of aortic
arch geometries utilized for training is reduced. We examine
the capability of the controllers with recurrent and feedfor-
ward embedder to generalize towards specific geometry and
the scaling of the aortic arches regarding interpolation and
extrapolation.

To examine generalization towards the specific geometry,
the random aortic arch generator is limited to type I aor-
tic arches with a scale factor of 1.0, while the seed of the
random number generator is varied. A finite set of random
number generator seeds is introduced during exploration,
while evaluation seeds were sampled from a different set.
We train controllers with 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 4096, 8192, 16,384 and 32,768 seeds and evaluate
on 231 reachable geometry/target combinations. A controller
trained on seeds randomly sampled between 0 to 231 for every
episode serves as baseline.

For scaling generalization, the random aortic arch gener-
ator is limited to type I aortic arches with the single seed 13
for the random number generator, while the scaling range is
varied. Interpolation and extrapolation are examined.

For interpolation, the scaling range utilized during train-
ing is evenly distributed at the upper and lower end of the full
scaling range of 0.7–1.3, e.g. a controller trained with 60%
scaling range will utilize the ranges 0.7–0.88 and 1.12–1.3
during training and 0.7–1.3 during evaluation. We train con-
trollers on10–100%of the full scaling range in 10% intervals.

For extrapolation, the scaling range utilized during train-
ing is evenly distributed in themiddle of the full scaling range
of 0.7–1.3, e.g. a controller trained with 60% scaling range
will utilize the range 0.82–1.18 during training and 0.7–1.3
during evaluation. A controller trained on the full scaling
range serves as baseline. We train controllers on 10–100%
of the full scaling range in 10% intervals.

Fig. 5 a Success rates, b average translation speed and c average
trajectory length during training for the recurrent controller and the
feedforward controller with the full aortic arch distribution during train-
ing
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Fig. 6 Example trajectories of
controller with recurrent and
feedforward embedder with
a success, b success if arteries
are explored, c failure due to a
lack of depth reception and
d unknown failure

Results

Figure 5 depicts the success rate, average translation speed
and average trajectory length during training of the initial
evaluation. The recurrent embedder reaches a success rate of
75.0%, average translation speed of 30.1 mm/s and average
trajectory length of 499.1 mm after 3.5 × 106 exploration
steps (29,200 episodes). The feedforward embedder reaches
itsmaximumof 71.5%successwith 30.8mm/s and507.8mm
after 15.0 × 106 exploration steps (156,800 episodes). The
controller without embedder reaches 62.2% success with
28.0 mm/s and 560.7 mm after 4.25 × 106 exploration steps
(33,200 episodes).

Figure 6 shows trajectories of the guidewire tip of four
exemplary navigation tasks for the controllers with recurrent
and feedforward embedder. In Fig. 6a both reach the tar-
get directly, in 6b only the recurrent controller reaches the
target in the left common carotid artery after exploring the

right and left subclavian arteries and the feedforward con-
troller enters the right subclavian artery and remains there,
in 6c both controllers navigate to the correct coordinates in
the two-dimensional tracking coordinate system but cannot
reach the target which is in the right subclavian artery behind
the guidewire tip and in 6dboth controllers failwithout appar-
ent reason. Videos of the navigation process can be found in
Online Resource 1.

On the vessel geometry of the real patient, the recurrent
controller achieves a success rate of 29%. The success rate
strongly varies between the target branches with 78.6% in
the left subclavian artery, 31.8% in the left common carotid
artery and 0% in the brachiocephalic trunk, right subclavian
and right common carotid artery. An example for a successful
trajectory can be seen in Fig. 7 and Online Resource 1.

The experimental evaluation of the controllers’ general-
ization behaviour is shown in Fig. 8a and b. For seed variation
the baseline reaches a success rate of 97.8% after 29,100
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Fig. 7 Guidewire tip trajectory for the recurrent controller in an aortic
arch model from a real patient

episodes. Performance increases with the number of seeds
utilized during training. The controllerwith recurrent embed-
der reaches the baseline success rate trained with 2048 seeds.
The controller with feedforward embedder reaches a maxi-
mum of 97.4% trained with 1024 seeds.

Results regarding generalization towards scaling the aortic
arch are shown in Fig. 8b. Performance increases with the
size of the scaling range utilized during training. For the
recurrent embedder, interpolation starts at 76.2% success rate
and reaches 100% with 70% scaling range and extrapolation
starts at 42.3% and reaches 100% success rate with 90%
scaling range. For the feedforward embedder, interpolation
starts at 59.7% success rate and reaches 98.4% with 90%
scaling range and extrapolation starts at 31.9% success rate
and reaches 97.6% with 90% scaling range.

It is noticeable that the success rate is not steadily improv-
ing with increasing similarity between the training and
evaluation distribution but fluctuates by up to 2.4% gener-
ally and 6.5% if training and evaluation environment differ
strongly.

One training with 2 × 107 exploration steps took 29.1 h
on a computer equipped with an AMD Ryzen Threadripper
3970x CPU and Nvidia RTX3090 GPU and required 68 GB
RAM.

Discussion

Recurrent architecture for patient adaptability

The recurrent architecture has a slight advantage in patient
adaptability to the feedforward architecture improving suc-
cess rate from 71.5 to 75.0%. Analysis of the guidewire tip
trajectories from Fig. 6b and Online Resource 1 suggest, that
the recurrent architecture can probe for the correct vessel
when the target branch is not unambiguously from the target
coordinates.

Fig. 8 Success rates for generalization experiments for the variation of a number of seeds and b scaling range percentage
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The reduction of required episodes from 156,800 to
29,200 is an important advantage of the recurrent architecture
as it is costly to obtain intervention data in real interventions.

Generalization to unknown aortic arch geometries

Both controllers show generalization capabilities regarding
the number of specific geometries and scaling ranges utilized
during training. In all cases, the recurrent embedder super-
sedes the feedforward embedder.

As expected, the performance improves with increasing
amount of training context but doesn’t improve steadily. It
fluctuates with increasing training context and sometimes
even supersedes the baseline. Presumably, the initialization
state of the neural networks is important for the resulting
performance.

Generalization is achieved with 2048 specific geometries,
with 90% of the scaling range for extrapolation, and 70%
for interpolation. When training on patient data, edge cases
should be included, as extrapolation capabilities are low, but
cases in themiddle of the distributionmaybemissingbecause
of the comparatively good interpolation capabilities.

Limitations

The recurrent controller shows generalization capabilities to
unseen aortic arch geometries but navigation success for any
other part of the vessel system is not guaranteed. However,
during an endovascular intervention several vessel structures
must be navigated to reach a typical stroke lesion. Thus,
the presented architecture requires a distinct controller for
each vessel structure. Additionally, we consider only physi-
ological aortic arches and ignore pathological aortic arches.
In theory this methodology can be applied to other organs
where the underlying structure is similar among patients, e.g.
femoral arteries, by adjusting the training environment, but
cannot be applied to organs where the vessel structure differs
randomly, e.g. prostate or mesenteric arteries.

The controller is trained on synthetic aortic arches. Evalu-
ation on the model of a real aortic arch shows mixed results,
depending on the target branch. For adaption to real patients
either the aortic arch generator should be improved, or real
aortic arch models need to be used during training.

Transfer from simulation to clinical application poses
further challenges caused by the so-called sim-to-real gap.
Inaccuracies and delays of the tracking algorithm and vari-
ations in the dynamics of the guidewire and interaction
between guidewire and vessel system may occur.

A further limitation of our approach is the selected per-
formance metric that purely considers whether the guidewire
tip successfully reaches the target. However, in endovascu-
lar interventions a gentle navigation approach is required to
avoid injuring the patient.

Conclusion

Adaptability to new vessel geometries is an essential require-
ment for a controller that is to navigate endovascular
guidewires autonomously. For this purpose, we present a
controller architecture based on recurrent neural networks
trained with reinforcement learning. The recurrent controller
shows an increase in performance, sample efficiency and
generalization capabilities compared to a purely feedforward
controller.

Due to patient individuality, an autonomous guidewire
controller is required to adapt to each unique vessel geom-
etry. Extracting patient-specific characteristics prior to the
intervention is often not feasible. Therefore, the intrinsic gen-
eralization to new vessel geometries poses an essential step
towards autonomous endovascular robotics.
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