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Abstract
Purpose Validation metrics are a key prerequisite for the reliable tracking of scientific progress and for deciding on the
potential clinical translation of methods. While recent initiatives aim to develop comprehensive theoretical frameworks for
understanding metric-related pitfalls in image analysis problems, there is a lack of experimental evidence on the concrete
effects of common and rare pitfalls on specific applications. We address this gap in the literature in the context of colon cancer
screening.
Methods Our contribution is twofold. Firstly, we present the winning solution of the Endoscopy Computer Vision Challenge
on colon cancer detection, conducted in conjunction with the IEEE International Symposium on Biomedical Imaging 2022.
Secondly, we demonstrate the sensitivity of commonly usedmetrics to a range of hyperparameters as well as the consequences
of poor metric choices.
Results Based on comprehensive validation studies performed with patient data from six clinical centers, we found all
commonly applied object detection metrics to be subject to high inter-center variability. Furthermore, our results clearly
demonstrate that the adaptation of standard hyperparameters used in the computer vision community does not generally lead
to the clinically most plausible results. Finally, we present localization criteria that correspond well to clinical relevance.
Conclusion We conclude from our study that (1) performance results in polyp detection are highly sensitive to various design
choices, (2) common metric configurations do not reflect the clinical need and rely on suboptimal hyperparameters and (3)
comparison of performance across datasets can be largely misleading. Our work could be a first step towards reconsidering
common validation strategies in deep learning-based colonoscopy and beyond.
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Introduction

Colorectal cancer is one of the most common cancer types,
ranking second in females and third inmales [1]. Bydetecting
and subsequently resecting neoplastic polyps during screen-
ing colonoscopy, the risk of developing the disease can be
reduced significantly. Research focuses on developing deep
learning (DL) solutions for automated detection of polyps in
colonoscopy videos [2–6]. However, to date, themetrics with
which algorithms are validated receive far too little attention.
These metrics are not only important for measuring scientific
progress, but also for gauging a method’s potential for clini-
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cal translation. While previous work has highlighted general
metric pitfalls in the broader context of classification, seg-
mentation and detection [7], we are not aware of any prior
studies systematically analyzing commonmetrics in the con-
text of polyp detection. Our underlying hypothesis was that
reported performance values in polyp detection methods are
largely misleading as they are sensitive to many validation
design choices including (1) the choice of test set and (2) the
chosenmetric configurations (e.g., threshold for the localiza-
tion criteria). Our contribution is twofold: Firstly, we present
the winning solution of the Endoscopy Computer Vision
Challenge (EndoCV) on colon cancer detection, conducted
in conjunction with the IEEE International Symposium on
Biomedical Imaging (ISBI) 2022. Secondly, based on pub-
licly available challenge data, we demonstrate the sensitivity
of commonly used metrics to a range of hyperparameters as
well as the consequences of poor metric choices.

Methods

Here, we present the winning method of the EndoCV chal-
lenge on colon cancer detection, conducted in conjunction
with ISBI 2022 (Sect. 2.1), and revisit common detection
metrics including their hyperparameters (Sect. 2.2).

Object detection algorithm

We base our study on a state-of-the-art detection method,
namely the winning entry [8] of the EndoCV 2022 polyp
detection challenge [4].

Method overview

Themethod is illustrated inFig. 1.Aheterogeneous ensemble
of YOLOv5-based models was trained on the EndoCV2022
challenge training dataset [4], a collection of 46 endoscopic
video sequences of polyps. The median length of each video
was 51 frames with 3290 frames in total, of which 2631
contained polyps. For training, we split the data into dis-
joint subsets. Originally, we created four subsets for stratified
four-fold cross-validation, but the final ensemble consisted
of models which were trained on only two of the four folds to
decrease training and inference time. Furthermore, on each
fold we trained three models for the ensemble with comple-
mentary training setups, as follows: the model was trained
with (1) only light data augmentation (horizontal flips, scale,
color jitter, and mosaic), (2) heavy data augmentation (light
augmentations, vertical flips, translation, rotation, mix-up,
shear, and copy-paste augmentations), and (3) light data aug-
mentation, but additional training data from external polyp
datasets (CVC-Datasets, Etis-Larib) [9–11] were added (see
[8] for details). Overall, this led to six ensemble members

Fig. 1 Winning submission of the Endoscopy computer vision chal-
lenge (EndoCV) on colon cancer detection. We used a YOLOv5
backbone and specifically chose the large (YOLOv5l6) and extra-large
(YOLOv5x6) version. For three specific settings, namely light augmen-
tation (ML-AUGMENT), heavy augmentation (MH-AUGMENT), and
inclusion of external data (M E-DATA), we ensembled two models
trained on two different folds each. The ensemble predicts a set of
bounding box candidates, which were merged using weighted boxes
fusion and postprocessed to yield the final prediction

(two folds, three models each). As test sets, we used appro-
priate subsets of the PolypGen dataset [12] to highlight the
variability of themetrics. The dataset consists of a database of
single-frame endoscopic images of polyps from six data cen-
ters, each with a median of 242 frames, totaling 1512 single
testing frames. Details about the exact number of frames and
polyp prevalence for each center can be found in Sect. 3.1,
Table 2.

Implementation details

The models were trained for 20 epochs using a stochastic
gradient descent optimizer, a learning rate of 0.1, and a com-
plete intersection over union [13] loss. The non-maximum
suppression algorithmwas applied to each ensemblemember
individually with an intersection over union (IoU) thresh-
old of 0.5. The individual member predictions were merged
using the weighted boxes fusion [14] (WBF) algorithm. For
theWBF hyperparameters, we chose an IoU threshold of 0.5,
a skip box threshold of 0.02, and all models were weighted
equally. As we observed a tendency towards oversegmenta-
tion, we shrank all bounding boxes with a confidence score
higher than 0.4 by 2% of their size during post-processing.

Object detectionmetrics

Three metric-related design decisions are important when
assessing performance of object detection algorithms [15]:

(1) Localization criterion The localization criterion deter-
mines whether a predicted object spatially corresponds
to one of the reference objects and vice versa by measur-
ing the spatial similarity between prediction (represented
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by a bounding box, pixel mask, center point or similar)
and reference object. It defines whether the prediction
hit/detected (true positive) or missed (false positive) the
reference. Any reference object not detected by the algo-
rithm is defined as false negative. The localization criteria
that were applied in this work comprise two groups,
namely the point-based criteria and the overlap-based cri-
teria (Appendix A).

(2) Assignment strategy As applying the localization crite-
rion might lead to ambiguous matchings, such as two
predictions being assigned to the same reference object,
an assignment strategyneeds to be chosen that determines
how potential ambiguities are resolved. As multiple
polyps in the same image are rather rare, an assignment
strategy is not as relevant as in other applications. With
respect to the metric configuration, we therefore focus on
the localization criterion and the classification metrics.

(3) Classification metric Based on the choice of localization
criterion and assignment strategy, standard classifica-
tion metrics can be computed at object level [7]. The
most popular multi-threshold metric in object detection
is Average Precision (AP) (Fig. 9).

As a foundation of thiswork,wedetermined commonmetrics
in object detection challenges, along with their respective
localization criterion and classification metric (Table 1).

Experiments and results

In this section,we investigate the sensitivity of popular classi-
fication metrics to the test set composition (Sect. 3.1) and the
localization criterion (Sect. 3.2). We further assess the clini-
cal value of commonly usedmetric configurations (Sect. 3.3).
Details on the metrics and localization criteria are provided
in Appendix A.

Effect of test set

In the following, we quantitatively assess the performance
variability resulting from the chosen test set, specifically from
the target domain (i.e., the clinical validation center) and the
distribution of polyp size.

Sensitivity to center

To show the variability of performance resulting from dif-
ferent test sets, we used data from six validation centers
[12]. Figure2 shows the performance of our object detec-
tionmethod (Sect. 2.1) according to commonly usedmetrics,
using Box IoU as criterion and cutoff threshold 0.5. These
exhibit high variability between centers. For example, the
AP@0.5:0.95 ranges from [0.38, 0.63], which is notable,

given that the AP of the top three submissions for EndoCV
2022 ranged from [0.12, 0.33].

Sensitivity to polyp size

We further calculated the AP scores from all six validation
centers, stratified by polyp size (Table 2). The polyp sizes
are defined in pixels for images with 1920 × 1080 pixel
resolution. Polyps smaller than 1002 pixels are considered
small, polyps larger than 2002 pixels are counted as large
and the rest are counted as medium sized, as suggested in
the EndoCV2021 challenge [3]. A high variability can be
observed, indicating that algorithm performance is highly
affected by the distribution of polyp sizes.

To further evaluate how the IoU values relate to polyp size
and polyp type and simultaneously account for the hierarchi-
cal structure of the data set,wefit a linearmixed effectsmodel
(R version 4.1.3, package lme4). In this model, polyp size
(small, medium, or large) and polyp type (flat or protruded)
were fixed effects, while data center, patient identifier (ID),
and image ID were random effects. The results suggest that
there are strong effects of polyp type and polyp size on the
IoU values. In particular when the polyp is of a protruded as
opposed to a flat type, the values of IoU are on average higher
by a difference of 0.08 (conditional that the other predictors
remain constant). When the polyp is of a medium or small
size compared to a large size, the IoU values are lower by
a difference of 0.05 and 0.28, respectively (conditional that
the remaining predictors remain constant).

Effect of metric configuration

In the case of polyp detection, the goal of high sensitivity (not
missing a polyp) is an indispensable priority. We therefore
assess the effect of design choices related to the localization
criterion on the decisionwhether a prediction is determined to
be a true or false positive. Figures3, 4 showcase the effect of
the reference shape in point-based and overlap-based local-
ization criteria, respectively, while Fig. 5 demonstrates the
sensitivity of overlap-based criteria to different localization
thresholds. In the following, we provide experimental evi-
dence for the showcased phenomena.

Sensitivity of the AP to the specific choice of overlap-based
localization criterion

In this experiment, we investigated the AP scores using Box
IoU, Mask IoU and Hull IoU criteria over a range of IoU
thresholds [0.05:0.95]. The resulting curves are shown in
Fig. 6a). We observe that theMask IoU and Hull IoU-based
AP scores are very similar; conversely, usingBox IoU yielded
overall higher AP, even at lower thresholds.
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Table 1 Common design
choices for validation of polyp
detection methods according to
international competitions

Localization criterion Classification metric

EndoVis 2015 [16] Point inside mask PPV

Sensitivity

Overall/Average F1-score

GIANA 2017 [6] Point inside mask PPV

GIANA 2018 [6] Sensitivity

F1/F2-score

Custom metrics

GIANA 2021 [5] Box IoU (only 2021) AP@0.5:0.95 (only 2021)

EndoCV 2021 [3] Box IoU AP@0.5, AP@0.75, AP@0.5:0.95

EndoCV 2022 [4] AP across 3 scales of polyp size

Mean of 4 APs

PPV positive predictive value, IoU intersection over union, AP average precision

Fig. 2 Performance variability
resulting from the chosen
validation center. Sensitivity,
PPV, F1-Score and F2-Score are
calculated using a Box IoU as
criterion and a cutoff threshold
of 0.5. The AP is calculated for
thresholds 0.5, 0.75 and
threshold range 0.5:0.95. All
commonly used classification
metrics (cf. Table 1) show a
substantial sensitivity to the
center. The dot-and-box plots
contain aggregated values per
center. PPV positive predictive
value, AP average precision,
IoU intersection over union

Table 2 AP stratified by polyp size. The results are shown for a fixed IoU threshold of 0.5 (left) as well as for a range of thresholds following the
COCO benchmark evaluation standard [17, 18] (center)

Metric AP@0.5 AP@0.5:0.95 n φ(%)

Polyp size Small Medium Large Small Medium Large

Center 1 0.24 0.48 0.73 0.14 0.33 0.55 256 98

Center 2 0.00 0.46 0.81 0.00 0.31 0.67 276 89

Center 3 0.16 0.64 0.91 0.10 0.47 0.72 457 99

Center 4 0.14 0.33 0.59 0.06 0.27 0.43 227 64

Center 5 0.19 0.39 0.59 0.12 0.26 0.42 208 99

Center 6 0.00 0.52 0.89 0.00 0.39 0.67 88 94

All centers (SD) 0.14(0.1) 0.47(0.11) 0.75(0.14) 0.07(0.06) 0.34(0.08) 0.58(0.13) 1512 91

We provide additional information on the number of frames (n) and polyp prevalence (φ) per center (right). AP average precision, IoU intersection
over union, SD standard deviation

Sensitivity of the AP to the IoU range

We investigated the AP scores, using Box IoU as a criterion,
over different IoU threshold ranges including the commonly
used range of [0.5:0.95]. As shown in Fig. 6b), the AP scores
on the commonly-used IoU range substantially differ from
those on lower IoU ranges.

IoU versus point in mask

Considering the clinical goal of prioritizing the localization
of polyps more than their boundaries, we compared the val-
ues of the aggregated metrics Sensitivity, Positive Predictive
Value (PPV), F1-Score, F2-Score and AP using point-based
localization criteria to the values obtained using Box IoU.
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Fig. 3 Effect of the reference shape in point-based localization criteria (a) on the CM (b). In the case of non-convex polyps, Center Point in Mask
leads to substantially more predictions being categorized as false negatives. CM confusion matrix

Fig. 4 Effect of the reference shape (here: reference mask or its bounding box or convex hull) in boundary-based localization criteria. For two
different (blue) predictions (a) and (b) the IoU results are shown. These vary substantially in the case of the inferior prediction (b). IoU intersection
over union

Point in Mask returns a true positive (TP) if the center point
of the predicted bounding box lies within the respective ref-
erence mask. The reference can be the segmentation mask,
convex hull or bounding box. The result is shown in Table 3.
Point inside Reference criteria yield higher scores across all
metrics compared toBox IoU over most IoU thresholds. This
especially holds true for detection Sensitivity. Note that the
AP score for Center Point in Reference is 0.73 and thus com-
parable to the AP score for Box IoU criterion with a cutoff
range of [0.05:0.5], namely 0.72.

Alignment with clinical interest

In the presence of many sources of variability depending
on the metric configuration, we conducted an experiment to
determine which configuration aligns most with the clinical
goal. We presented colonoscopy images of over 300 patients
with their predicted bounding boxes to three gastroenterol-
ogists, one with over five years and two with over ten years
of experience, who rated the predicted boxes as (clinically)
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Fig. 5 Effect of IoU threshold on the confusion matrix for three different overlap-based localization criteria. The same predictions produce
substantially different confusion matrices for commonly used thresholds 0.5 and 0.75. IoU intersection over union

Fig. 6 a Effect of different localization criteria on the most common
object detection metric AP. Three common overlap-based criteria using
different references (box, mask and hull) are plotted as a function of
the IoU cutoff threshold in the range [0.05:0.95]. Box IoU scores are
higher across all thresholds, while Mask IoU and Hull IoU do not dif-

fer substantially. b AP with IoU threshold for three different ranges
of IoU thresholds. Note that the range [0.5:0.95] (orange) is the most
common one in the computer vision community. AP average precision,
IoU intersection over union

Table 3 Point-based versus
overlap-based localization
criteria applied to the set of all
six centers. Point-based criteria
give rise to similar results while
the IoU criterion consistently
yields lower values. IoU
intersection over union

Localization criterion Box IoU = 0.5 Point inside box Point inside mask Point inside hull

Sensitivity 0.68 0.74 0.74 0.74

PPV 0.78 0.86 0.85 0.86

F1-Score 0.73 0.8 0.79 0.8

F2-Score 0.70 0.74 0.74 0.74

AP 0.65 0.73 0.73 0.73
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“useful” or “not useful”. Each clinician was responsible for
one third of the images and each image was only rated once.

In order to assess the agreement of certain metric config-
urations with the clinician score, we plotted the number of
predictions that met the criterion as a fraction of the predic-
tions rated as “useful”, as well as the number of predictions
not meeting the criterion as a fraction of predictions rated
as “not useful”. We applied overlap-based and point-based
criteria and highlighted the localization granularity that they
focus on (rough outline or only position). The result can be
seen as a bar plot in Fig. 7. All predictions clinically rated as
“not useful” were rejected by all localization criteria. Criteria
that focus only on position yielded a higher agreement with
the “useful” score than those that localize based on overlap
using rough outline. In other words, currently used localiza-
tion criteria, which put a focus on object outlines through
relatively strict IoU localization criteria may not be well-
suited for reflecting the clinical interest (Figs. 8, 9 ).

Generalizability of results

As the present work is about performance variability rather
than absolute performance we assumed that a high num-
ber of images (n = 1512), objects (n = 1386) and centers
(n = 6) involved in the analyses is the key to ensure
drawing solid conclusions. Specifically, we hypothesized
that a state-of-the-art method applied to such a large
number of cases would yield a representative distribu-
tion of output boxes. To confirm this hypothesis, we have
repeated our analyses with two complementary algorithms
based on different neural network backbones. (1) EndoCV
2021 winner: We used the open-source implementation
(https://github.com/GorkemP/EndoCV2021-EfficientDet-
Pytorch) of the EndoCV 2021 polyp detection challenge
winner [19], which is based on an ensemble of Efficient-
Det networks and (2) YOLOv7 ensemble: To reflect the new
state of the art in object detection (note that the EndoCV
2022 challenge took place in early 2022) we implemented
an ensemble of YOLOv7 [20] models, which are currently
considered the state of the art in object detection in terms of
speed and accuracy. Both new methods were trained, opti-
mized and tested on the same data splits as the EndoCV
2022 winner. As illustrated in Appendix B, Figs. 10, 11 and
Tables 4, 5, in terms of the trend (relative values) the results
are in very strong agreement with the results of the EndoCV
2022 winner (only absolute values differ).

Discussion

To our knowledge, wewere the first to systematically investi-
gate the variability of polyp detection performance resulting

from various validation design choices. The following key
insights can be derived from our experiments:

(1) Performance results are highly sensitive to various design
choicesOur experiments clearly demonstrate that various
validation design choices have a substantial effect on the
performance computed for object detection algorithms
according to popular metrics. These range from the
choice of test set to the specificmetric configuration used.
While the effect of using different classification metrics
may be increasingly well-understood [15], we believe
that common metrics, such as AP, are often regarded as
black boxes and the effect of the various hyperparam-
eters remains poorly understood. Our findings clearly
suggest that hyperparameters—specifically the localiza-
tion criterion and the corresponding threshold—should
not indiscriminately be adopted from other work, but
carefully be chosen to match the domain need.

(2) Common metric configurations do not reflect the clinical
need According to a usefulness assessment of polyp pre-
dictions from over 300 patients by three clinicians from
different hospitals, commonly used localization criteria
that are popular in the computer vision community do
not reflect the clinical domain interest when deciding
whether a prediction should be assigned a true posi-
tive or false positive. This holds specifically true for the
international competitions that have been conducted in
the context of Polyp detection. The community should
therefore revisit the question of whether a good object
detection method must necessarily yield a good outline
of a polyp. Restricting the need to just localizing a polyp
via its position (reflected by the requirement of I oU > 0,
for example) might better approximate the clinical need
and at the same time overcome problems resulting from
suboptimal IoU thresholds.

(3) Common hyperparameters may be too restrictive Our
visual examples (Fig. 5) demonstrate that even fairly
well-localized polyps feature an IoU below the com-
monly used threshold of 0.5, resulting in them being
considered a miss even though a clinician might find the
prediction useful. The community may therefore want to
reconsider commonly used threshold ranges and use a
broader range (see Fig. 6b).

(4) Comparison of performance across datasets can be
largely misleading Our work finds that detection perfor-
mance depends crucially on the polyp sizes. Hence, even
if the prevalences of polyps across centers are similar,
comparison of algorithm results can be largely mislead-
ing in case of different polyp size distributions.

The closest work to ours was recently presented by Ismail
et al. [21] outside the field of deep learning. They provide
anecdotal evidence on the non-comparability of confusion
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Fig. 7 Agreement of common localization criteria with clinicians’
ratings. Predictions rated as “not useful” by clinicians were rejected
by all criteria without exception. However, especially overlap-based
localization criteria yielded a high proportion of false negatives that

clinicians would have classified as “useful”. Almost perfect agreement
was achieved by the metric Mask IoU > 0. Details on the analyzed
localization criteria can be found in Appendix A

matrices between different methods, but do not analyze
common multi-threshold metrics such as AP or popular
localization criteria that serve as the basis for popular clas-
sification metrics. Other related work focused on providing
benchmarking data sets [2] or showing limitations of metrics
for clinical use cases outside the field of polyp detection [7,
22, 23].

We purposefully investigated only the task of polyp
detection (and no other object detection tasks) because
performance variability is application-specific and metric
hyperparameters should be adjusted to the clinical interest
[15]. Future work could be directed to challenging current
metric configurations also for other medical detection tasks.

A limitation of our study can be seen in the fact that we
reported our findings only on a single data set [12]. However,
this data set comprises images from six centers and can there-
fore be seen as sufficiently representative for the scope of our
research question. Our results clearly show that validation
results are not comparable unless a method has been tested
on the same data with the exact same metric hyperparame-
ters. Future work could investigate the stability of challenge
rankings as a function of metric configurations. Finally, there
are several other factors related to performance assessment
that we did not prioritize in this work. These include the
assignment strategy, the prevalence as well the confidence
threshold in the case of counting metrics. Future work could
hence explore the impact of these factors.

In conclusion, our study is the first to systematically
demonstrate the sensitivity of commonly used performance
metrics in deep learning-based colon cancer screening to a
range of validation design choices. In showing clear evidence
for the disparity between commonly used metric configu-
rations and clinical needs, we hope to raise awareness for
the importance of adapting validation in machine learning to

clinical relevance in general, and spark the careful reconsid-
eration of common validation strategies in automatic cancer
screening applications in particular.
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Fig. 8 Localization criteria can be point-based or overlap-based
depending on whether the user is mainly interested in the position or
in the rough outline of an object. Point in Mask returns a TP if the
center point of the predicted bounding box lies within the respective
reference mask. The reference can be the segmentation mask, convex
hull or bounding box. Center distance criterion determines a TP if the

distance d between prediction and reference centers is within a range
τ . For overlap-based criteria, the result is a TP if the overlap lies above
a certain threshold. Depending on whether the IoU is computed for a
reference mask or an approximating bounding box, we refer to it as
Mask or Box IoU. IoU intersection over union, TP true positive, FP
false positive

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Appendix

In this work, we distinguish point-based and overlap-based
localization criteria (see Fig. 8). Point-based criteria include
the (Center) Point in Mask criterion, which defines a TP
once the center point of the predicted object or bounding
box lies inside of the reference mask (alternatively, reference
box or reference hull) and the center distance, which calcu-
lates the distance between the reference and predicted center
points. This criterion defines a TP if the distance is below a
user-defined threshold. Overlap-based criteria compute the
overlap between the reference and the prediction, in our case
done by the Mask or Box IoU. This criterion returns a TP if
theMask/Box IoU is greater than a user-defined threshold. A
specific case is the Mask IoU > 0 criterion, which returns a

TP once only a small amount of pixels (e.g., a single pixel)
of the prediction overlaps with the reference.

We further utilize the AP as a validation metric of the
detection performance. In practice,AP is typically calculated
at a specific IoU threshold (e.g., AP@0.5 for a threshold of
0.5) or a range of thresholds. The metric is calculated by
scanning over different decision thresholds and calculating
the Sensitivity (Recall) and Precision (PPV) at the respective
thresholds. The points are connected to form a diagram, as
depicted in Fig. 9.

B Complementary experiments

This section presents the results corresponding to our gener-
alizability experiment described in Sect. 3.4

Fig. 9 Pictorial representation of the AP metric. AP average precision
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Fig. 10 Complementary experiments: Sensitivity to center. Consistent
with the result in Fig. 2, both complementary algorithms showcase
high variability between centers for each metric. For example, the

AP@0.5:0.95 ranges from [0.06, 0.36] in the case of the EfficientDet
ensemble, while the range is [0.31,0.59] for the YOLOv7 ensemble.
PPV positive predictive value, AP average precision

Table 4 IoU versus Point in
Mask results of complementary
algorithms

Localization criterion Box IoU = 0.5 Point inside box Point inside mask Point inside hull

EfficientDet ensemble (Complementary method #1)

Sensitivity 0.49 0.61 0.59 0.59

PPV 0.36 0.46 0.44 0.44

F1-Score 0.41 0.51 0.49 0.49

F2-Score 0.45 0.56 0.54 0.54

AP 0.37 0.49 0.47 0.47

YOLOv7 ensemble (Complementary method #2)

Sensitivity 0.64 0.76 0.75 0.76

PPV 0.71 0.78 0.77 0.77

F1-Score 0.67 0.77 0.76 0.76

F2-Score 0.65 0.77 0.76 0.76

AP 0.59 0.74 0.73 0.73

Consistent with the observation shown in Table 3, point-based criteria give rise to similar metric values, while
the Box IoU criterion consistently yields lower values. IoU intersection over union, PPV positive predictive
value, AP average precision

Fig. 11 Complementary experiments: AP over different IoU thresholds. Coherent with the observation in Fig. 6, both complementary methods
show that a lower IoU range results in a higher AP score. AP average precision, IoU intersection over union
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Table 5 Sensitivity to polyp
sizes of complementary
algorithms

Metric AP@0.5 AP@0.5:0.95
Polyp size Small Medium Large Small Medium Large

EfficientDet ensemble (Complementary method #1)

Center 1 0.12 0.2 0.5 0.07 0.08 0.22

Center 2 0.00 0.39 0.65 0.00 0.25 0.38

Center 3 0.02 0.24 0.59 0.01 0.12 0.29

Center 4 0.03 0.0 0.24 0.02 0.0 0.13

Center 5 0.08 0.08 0.17 0.03 0.04 0.08

Center 6 0.00 0.03 0.56 0.00 0.23 0.32

All centers (SD) 0.04 (0.05) 0.2 (0.14) 0.45 (0.2) 00.2 (0.03) 0.12 (0.1) 0.24 (0.12)

YOLOv7 ensemble (Complementary method #2)

Center 1 0.12 0.41 0.59 0.07 0.29 0.45

Center 2 0.00 0.53 0.81 0.00 0.33 0.63

Center 3 0.12 0.57 0.83 0.06 0.36 0.64

Center 4 0.07 0.49 0.58 0.01 0.26 0.44

Center 5 0.22 0.41 0.58 0.13 0.27 0.39

Center 6 0.00 0.46 0.69 0.00 0.3 0.55

All centers (SD) 0.09 (0.08) 0.48 (0.06) 0.68 (0.12) 0.05 (0.05) 0.3 (0.04) 0.52 (0.11)

Consistent with the observation shown in Table 2, the results suggest that there are strong effects of polyp
size on the AP values. For both methods and across all centers, smaller polyps have a lower AP@0.5 and
AP@0.5:0.95 score than medium sized polyps, while larger polyps generally score higher. AP average preci-
sion, SD standard deviation
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