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Abstract
Purpose Abnormalities in the bladder wall require careful investigation regarding type, spatial position and invasiveness.
Construction of a 3-D model of the bladder is helpful to ensure adequate coverage of the scanning procedure, quantitative
comparison of bladder wall textures between successive sessions and finding back previously discovered abnormalities.
Methods Videos of both an in vivo bladder and a textured bladder phantom were acquired. Structure-from-motion and
bundle adjustment algorithms were used to construct a 3-D point cloud, approximate it by a surface mesh, texture it with the
back-projected camera frames and draw the corresponding 2-D atlas. Reconstructions of successive sessions were compared;
those of the bladder phantom were co-registered, transformed using 3-D thin plate splines and post-processed to highlight
significant changes in texture.
Results The reconstruction algorithms of the presented workflow were able to construct 3-D models and corresponding 2-D
atlas of both the in vivo bladder and the bladder phantom. For the in vivo bladder the portion of the reconstructed surface
area was 58% and 79% for the pre- and post-operative scan, respectively. For the bladder phantom the full surface was
reconstructed and the mean reprojection error was 0.081 mm (range 0–0.79 mm). In inter-session comparison the changes in
texture were correctly indicated for all six locations.
Conclusion The proposed proof of concept was able to perform 3-D and 2-D reconstruction of an in vivo bladder wall
based on a set of monocular images. In a phantom study the computer vision algorithms were also effective in co-registering
reconstructions of successive sessions and highlighting texture changes between sessions. These techniques may be useful
for detecting, monitoring and revisiting suspicious lesions.
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Introduction

Clinical challenge

Bladder cancer is a disease affecting 550,000 new cases
worldwide every year, accounting for roughly 3% of all new
cancer diagnoses and the tenth most diagnosed cancer type
worldwidewhen both genders are considered [1]. For staging
the 2017 Tumor, Node, Metastasis classification is used [2,
3]. The non-muscle-invasive tumors confined to the mucosa
and invading the lamina propria are classified as stage Ta and
T1, respectively. The muscle invasive tumors are T2 when
only invasion in the detrusor muscle is seen, T3 when not
only the tumor invades in the detrusor muscle but also in the
underlying fat and a bladder tumor is classified as T4 when
adjacent organs are invaded. The early recognition of muscle
invasive tumors is of utmost importance regarding the prog-
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nosis of this disease. In general, Ta and T1 lesions can be
treated by a sufficient transurethral resection of the bladder
tumor (TURBT), eventually in combination with intravesical
instillations. Small Ta lesions can be controlled by a pre-
cise follow-up when a properly documentation is available.
Unfortunately this is currently still lacking.

For a correct diagnosis the whole bladder wall needs to
be visually inspected for abnormalities. Flexible cystoscopes
can be used for this procedure which are generally equipped
with a monocular camera plus illumination in the tip, of
which the image is displayed on a screen [4]. Each individual
abnormality needs to be assessed and suspicious abnormal-
ities that require follow-up scanning or treatment should be
properly documented [5].

One of the challenges among urologists is that it is difficult
to identify and quantify changes in the bladder wall between
successive sessions. The bladder is highly deformable and
the actual shape may be different among sessions even with
the same fluid volume. Abnormalities may be recorded in a
bladder diagram [6], but this must be constructed manually
and is often incomplete. Even with a bladder diagram it may
be difficult to find back a specific abnormality on a follow-
up session or during transurethral resection of the tumor(s)
by another urologist due to the complexities in landmark
localization from cystoscopy images. Changes in the volume
and the shape of the bladder (due to the way surrounding
organs are pushing on it) and abnormalities complicate this
further. There is no universal standardized way in which a
bladder wall is scanned for optimal coverage. Furthermore,
rigid instruments have inferior coverage compared to flexible
instruments, while in flexible instruments it is more difficult
to mentally visualize the camera orientation in space and
properly position abnormalities on a 2-D atlas.

The goal of this study is to develop a system for retrospec-
tively constructing 3-D reconstructions and corresponding
2-D atlases of cystoscopy studies and automatically detect
and quantify changes in texture between successive sessions.

State of art

Suarez-Ibarrola et al. developed an endoimaging system
with a rigid cystoscope and software to perform 3-D blad-
der reconstruction for improved diagnosis, management and
follow-up, as part of the RaVeNNA-4pi project [7]. Experi-
ments on a series of rigid and expandable bladder phantoms
show that textured 3-D models of the bladder surface can
be reconstructed and that clinically relevant features such
as papillary tumors and bladder stones can be automatically
detected. A limitation is that an additional sensor (NDI elec-
tromagnetic system or inertial sensor) is required in their
3-D reconstruction algorithms, making it unsuitable for ret-
rospective studies recorded from cystoscopes lacking such
sensors.

Falcon et al. used a flexible cystoscope to record images
from a half-sphere phantom and a portion of an ex vivo
porcine bladder [8]. The image sequences are 3-D recon-
structed using the COLMAP pipeline, which first constructs
sparse point clouds and then dense point clouds using the
Multi View Stereo method. Besides the hemisphere phantom
only a small part of a porcine bladder was reconstructed. No
full bladder reconstruction is presented, indicating that the
system is not complete yet.

Lurie et al. performed retrospective 3-D reconstruction of
both bladder phantoms and an in vivo human bladder using
a rigid cystoscope with camera and without additional sen-
sors, using a hierarchical SfM-based pipeline [9]. Camera
frames are extensively preprocessed to compensate for lens
distortions and differences in illumination. A mesh is gen-
erated from a sparse point cloud and subsequently textured
with non-overlapping image sections. Changes in texture and
structure in successive sessions of the same phantom are also
analyzed. The reconstruction is not real time: the process
takes about 100min on average. Thanks to the high num-
ber of frames (2700 on average) taken at HD quality (1280
× 720 pixels) and sophisticated algorithms the 3-D recon-
structed models visualize small lesions and blood vessels
without interruptions.

Ben-Hamadou et al. make use of a rigid cystoscope plus
structured light consisting of eight distinct spots projected
by a laser with diffractor to aid in 3-D reconstruction of
the bladder wall [10]. A series of physical open phantoms
(flat and curved planes) and a simulated (i.e., virtual) closed
bladder phantom were scanned and reconstructed. While the
structured light indeed aids in 3-D reconstruction, the setup
requires several additional components which makes it com-
mercially less interesting for in vivo scanning.

Kriegmair et al. performed 2-D reconstruction of in vivo
bladder wall portions in real time using panorama stitching
[11]. A limitation is that the projection is 2-D only, so no 3-D
model can be generated.

Shevchenko et al. demonstrated the possibility of incor-
porating laser-based measurements in 2-D and 3-D bladder
wall reconstruction [12] although the results were limited to
a partial surface reconstruction only.

Soper et al. reconstructed an ex vivo porcine bladder
from a video recorded using a scanning fiber endoscope
(SFE). Vessel contrast was enhanced by injecting red and
blue ink in the arteries, while the SFE was tethered to a
rigid insertion tube to allowback-bending. The authors report
an almost complete coverage of the bladder surface with
small projection error by applying suitable algorithms for
image stitching, loop closure, incremental bundle adjustment
and point cloud construction. Approximately 1000 camera
frames with 10,000 feature points in total were utilized. The
practical use of the presented method is somewhat limited
due to the implementation being specifically tailored for the
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Fig. 1 Impressions of state-of-art approaches. a Suarez-Ibarrola et al. [7]. b Falcon et al. [8]. c Lurie et al. [9]. d Ben-Hamadou et al. [10]. e
Kriegmair et al. [11]. f Shevchenko et al. [12]. g Soper et al. [13]. h Phan et al. [14]

SFE, which is not typically used in cystoscopy diagnostics.
[13].

Phan et al. applied optical flow techniques in partial 3-D
reconstruction of hollow organs and human limbs. The pre-
sented techniques are particularly useful whenever textures
are insufficiently detailed for robust feature point matching
techniques. Strong changes in illumination (including spec-
ular reflections) are also taken into account. Reconstruction
of parts of the pyloric antrum (stomach), bladder wall and
a human leg were demonstrated. The limitations are that
the optical flow algorithms are relatively slow, and recon-
struction of fully enclosed cavities (which poses additional
changes regarding loop closure) has not been demonstrated
yet [14]. Still, optical flowmay be an useful addition to point-
based registration algorithms based on the image contrast and
any other aspects.

Figure 1 shows an impression of the state-of-art reviewed
in this section.

Contribution of this paper

The main contributions of this paper are twofold: (1) making
3-D reconstructions and associated 2-D atlases of bladders
based on sets of monocular images, and (2) automatic detec-
tion and quantification of texture changes in recordings of
successive sessions.

Structure of the paper

The remainder of this paper is structured as follows: “Meth-
ods” describes the different steps of the reconstruction

algorithms, “Results” section describes the measurement
setups and all results, and “Conclusion” section finally con-
cludes the paper.

Methods

Figure 2 shows the global workflow for in vivo bladders,
while 3 shows the workflow for the bladder phantom. In
both cases monocular camera frames are acquired using a
cystoscope or miniature camera, co-registered and converted
to a point cloud using computer vision techniques. The point
cloud is converted to a surface mesh on which camera frames
are back-projected and converted to a 2-D atlas. Whenever
feasible the atlases are co-registered, quantitatively com-
pared and its differences highlighted.

Bladder phantom design

For the phantom study a textured bladder phantom was
constructed. Paper was chosen as the primary construction
material due to the possibility of printing textures which
mimic those of an actual bladder.

First a 3-D CAD model of an anatomical bladder was
drawnwith overall size 170×130×110mm3 (with∅40mm
aperture to the urethra) and converted to a surfacemodel with
86 polygons in total. This surface model was unfolded using
Pepakura Designer (Tama Software Ltd., Tokyo, Japan) and
textured using a mosaic of images from in vivo cystoscopies
of a human bladder. The design was printed on both sides of
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Fig. 2 Workflow for in vivo bladder reconstruction. Cystoscopy videos
of sessions are converted to 3-D textured models and 2-D atlases, which
can be compared visually

an A3-sized paper (one side mirrored), cut out, folded and
glued together resulting in the phantom shown in Fig. 3(a).
After the first session the phantom texture was modified by
positioning six stickers (diameter 5mm to 30mm in steps of
5mm) containing photographs of bladder tumors (also taken
from several in vivo cystoscopies of human bladders) inside
the phantom to simulate the generation of abnormalities.

Data acquisition

For the in vivo study, one human (male, age 40) was scanned
twice using a cystoscope of type CYF-VH (Olympus Med-
ical Systems, Tokyo, Japan) with the following parameters:
number of recorded pixels 1920×1080 and diagonal field-of-
view 75◦. Twenty-six days after the first cystoscopy session
a TURBT procedure was performed to remove a tumor, and

Fig. 3 Alternate workflow for the textured bladder phantom. 3-D
textured models and 2-D atlases are reconstructed and co-registered.
Changes between successive sessions are automatically detected and
highlighted

106 days thereafter a second cystoscopy session was con-
ducted.

For the phantom study, monocular images were recorded
using a miniature camera of type FXD-VB20903L-76 (MIS-
UMI Electronics Corporation, Taipei, Taiwan) with the
following parameters: size ∅3.7mm× 11.1mm, number of
recorded pixels 1280× 720, diagonal field-of-view 76◦. The
camera was positioned at different poses within the phantom
using hand-held guides.

All camera frames were undistorted to compensate for
lens distortion effects [15]. The brightness was leveled using
a Gaussian-smoothed mask, and contrast was enhanced for
each frame. In the in vivo study the camera frames were
downsampled to 480 × 270 pixels to improve the signal-to-
noise ratio and reduce the computational load. No additional
sensors were used, so the camera pose in each frame was
initially unknown.

Reconstruction algorithms

3-D reconstruction of in vivo datasets was conducted using
the COLMAP pipeline [16], while in the phantom study all
algorithms were developed in-house in Matlab. In both
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cases the algorithms run in a single thread on an Intel i7-
1050H CPU at 2.6−5.0 GHz and 32 GB RAM.

This section starts with a definition of coordinate frames
and variables and continues with detailed descriptions of the
different algorithms.

Variable definitions

• �w: 3-D world coordinate frame
• �c: local 3-Dcoordinate frame attached to camera (origin

at pinhole; z-axis in viewing direction)
• Hw

ci : camera-world coordinate transformation matrix for
camera frame i

• NF : number of camera frames
• NL : number of homologous points
• NEi : number of feature points in camera frame i
• NA j : number of camera frames in which homologous
point j is visible

• p j : location of j-th homologous point; pw
j : the 3-D loca-

tion vector expressed in world coordinates
• P: point cloud consisting of all reconstructed p j

• Q: vertices of surface mesh
• G j : biconnected graph of all camera features correspond-

ing to homologous point j with co-registrations as edges

Feature detection, matching and robust identification of
homologous points

Let NF be the total number of camera frames recorded. These
are numbered 0..NF − 1.

Feature points on individual frames are detected using
scale-invariant uniform features (SURF) descriptor [17–19].
Pairwise images are co-registered using an exhaustive search
testing NF (NF −1)/2 pairs. Each successfully co-registered
pair results in a relative 3-D camera rotation, a camera dis-
placement direction vector, the list of matched feature points
and robustness statistics.

One homologous point may be visible as feature points
on multiple camera frames. A connectivity graph is con-
structed based on co-registrations of the same homologous
point j visible on all different camera frames. The graph
G j is a biconnected graph such that removal of any edge
does not result in disconnected subgraphs so that a sin-
gle invalid registration cannot connect unrelated features
together, significantly increasing robustness of the registra-
tion and reconstruction algorithms.

In total NL homologous points are detected. Each homolo-
gous point j appears as a feature point in one or more camera
frames. To homologous point j is associated a set:

S j = {(i, f ) j0, (i, f ) j1, . . . , (i, f ) j(NA j −1)}.

in which (i, f ) represents the camera frame index and the
feature point index within that camera frame, for a particular
homologous point. The elements in set S j form a bicon-
nected graph G j by pairwise camera registration; each edge
(i, f ) ja −(i, f ) jb indicates a co-registration of homologous
point j within frame pairs (i ja, i jb) established by feature
point matching [14].

Point cloud generation

The camera transformations Hw
ci and homologous points

positions p j are initially unknown, except for Hw
c0 (the cam-

era pose for the first camera frame) which is chosen to be as
reference by equating it to the identity matrix.

Each detected feature point in camera frame i lies on a ray-
line through the origin of the local camera coordinate frame.
Whenever Hw

ci is estimated the rayline can be represented in
the world coordinate frame. The position p j of homologous
point j can then be determined by finding the intersection
of all raylines of the individual camera frame feature points
which correspond to homologous point j . A requirement for
robust triangulation is that the raylines not all approximately
parallel: the largest angle among all pairs of raylines may
not be smaller than a certain threshold, experimentally set to
2◦. The raylines in general do not precisely intersect, and the
least mean squared distance error is used as the optimization
variable. This error distance is analyzed and the presence of
outliers are investigated separately and eliminated if neces-
sary.

Frames are iteratively added to the scene, defining an
increasing subset of Hw

ci and p j . At each iteration the frame
with the highest number of co-registered pairs with camera
frames already in the scene (using robustness measures in
case of ties) is selected. The new camera pose is initially cal-
culated based on the different pairwise registrations and then
iteratively optimized based on the point cloud after the latter
is expanded with additional robust features seen by at least
two cameras in the scene.

Next, bundle adjustment is performedwhich involves iter-
atively re-calculating the point cloud followed by optimizing
all camera poses in which the mean reprojection errors are
minimized. In case the last added camera frame results in
poor reprojection errors which fail to improve during bun-
dle adjustment, the inclusion of this specific camera frame is
automatically reverted, and a different frame is added instead.

The bundle adjustment procedure is as follows:

1. The camera coordinate transformations Hw
ci are opti-

mized by first representing these in exponential coordi-
nates (6-element vectors consisting of three translations
and three rotations [20]) and then optimizing these coor-
dinates such that the mean squared error distance of the

123



1920 International Journal of Computer Assisted Radiology and Surgery (2023) 18:1915–1924

homologous points p j that are detected in camera frame
i to the respective raylines, is at a minimum.

2. The positions of the homologous points p j are re-
computed by finding the intersection of all raylines of
the individual camera frame features that correspond to
homologous point j , using the least mean squared dis-
tance error.

After adding all usable frames the bundle adjustment algo-
rithm is repeated for a predefined number of steps, or when
the average reprojection error cannot be reduced further.

3-Dmesh reconstruction, texture and 2-D atlas generation

The point cloud P is converted to a surface mesh by binning
the nodes (for node reduction and outlier removal) and sub-
sequent computation of the volume boundary surface. The
resulting surface mesh may or may not be convex, but we
assume that from the model’s barycenter all faces are visi-
ble.

A 2-D atlas is useful to visualize the entire scanned blad-
der wall surface in a single picture. For this, a one-to-one
correspondence between surface mesh points and 2-D atlas
points is to be defined. For each individual camera frame a
grid pattern (size 32× 18 points) is projected on the surface
mesh by finding intersections of raylines with the mesh. The
projected grid coordinates are converted to spherical coordi-
nates (azimuth and elevation) so that the camera frames can
be warped to the atlas picture using piecewise linear inter-
polation. Special cases such as frames containing degenerate
points (i.e., intersecting the z-axis) and frames clipping at
azimuth ±π are explicitly taken into account.

The 2-D atlas is back-projected on the surface mesh to
create a textured 3-D representation of the bladder.

Inter-session comparison

Given the 3-D and 2-D reconstructions of two successive ses-
sions, the respective textures may be co-registered similar to
registration of camera frame pairs. Each homologous point j
has previously been detected inmultiple camera frames, each
with its own SURF feature description vector. From all these
feature vectors the average vector is computed. After this the
homologous points of the two sessions are co-registered and
the rigid coordinate transformation computed by mapping
the inliers of both sets together. Outliers are excluded using
the M-estimator sample consensus (MSAC) algorithm with
a maximum distance of 3 mm from point to projection to
classify inliers [21, 22]. Next, a thin plate spline (TSP) trans-
formation in 3-D Cartesian space is established to warp the
first session’s atlas to the second session for optimal non-rigid
co-alignment [23]. The per-pixel color differences are plot-

ted and regions of relatively high pixel differences identified,
smoothed and visualized.

Results

In vivo study

Figure 4 shows the 3-D reconstruction byCOLMAP of the in
vivo bladder from the post-operative session. From the 114-
second cystoscopyvideo, 572 frameswere extracted ofwhich
466 were successfully co-registered in the 3-D reconstruc-
tion. Most of the remaining 106 frames pictured the surface
around the urethra entrance by bending the cystoscope over
180◦. The corresponding post-operative 2-D atlas is shown
in Fig. 5 in which 79.3% of the surface area is covered.

In the pre-operative session several 3-D reconstruction
attempts did not result in a consistent model. Only a subset
of 197 frames from the 90-second cystoscopy video resulted
in a reasonable 3-D reconstruction ofwhich the pre-operative
2-D atlas is shown in Fig. 6. Here, the scanning coverage was
evaluated to be 58.0%.

The pre-op and post-op reconstructions could not be
co-registered automatically, so the respective atlases were
compared manually. The post-op atlas shows a distinctive
scar at the site where the pre-op atlas showed a tumor. At
specific other sites the local pattern of blood vessels can be
matched, but in general the textures showed too many dif-
ferences for effective matching. This is also confirmed by
comparing the raw video frames of both sessions directly.

Phantom study

In the first session a total of 124 camera frameswere recorded
inside the bladder phantom. In total, 780 pairwise registra-
tions were found (using Matlab) with an average of 34.9
inlier feature pairs per registration, leading to 2041 robust

Fig. 4 3-D reconstruction of in vivo bladder (post-op)
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Fig. 5 Post-operative atlas of in vivo bladder, with the tumor surgically
removed

Fig. 6 Pre-operative atlas of in vivo bladder. A tumor can be seen at
the right side

Fig. 7 Atlas of bladder phantom in first session

homologous points in the bi-connected connectivity graph.
Three camera frames were discarded in the 3-D reconstruc-
tion.Apoint cloudwas constructed consisting of 2041 points,
in which the mean reprojection error was 0.081 mm (range
0mm to 0.79mm). The point cloud was subsequently con-
verted to a surface mesh with 623 vertices and 674 faces. The
2-D atlas of the textured model is shown in Fig. 7.

The total time needed to reconstruct the first session was
44min when using Matlab implementation. The break-
down is shown in Table 1. The time to reconstruct the second
session was similar, and the extra time needed for inter-
session alignment and highlighting of differences was less

Table 1 Bladder phantom reconstruction time for session 1usingMat-
lab software (124 frames)

Part Time (mm:ss)

Feature detection 0:14

Pairwise image registration (1st run) 7:58

Improving pairwise image registration 0:45

Point cloud construction with bundle adjustment 31:00

2-D Atlas generation 3:18

Manual steps and corrections 1:00

Total 44:15

than one minute. When using COLMAP, the time of the
workflow reduces to approximately 15min (Fig. 8).

The difference between both sessions is shown in Fig. 9,
with deviations from 50% gray quantifying the changes
in color. Six distinctively colored regions can be observed
indicating significant changes in texture between both ses-
sions. By smoothing and thresholding the saturation channel
these six binary regions are automatically identified, bina-
rized and subsequently expanded, and used to highlight the
corresponding regions shown in Fig. 10. This 2-D map is
back-projected on the 3-D rendering of the phantomas shown
in Fig. 11.

Discussion

The results show that both COLMAP and our Matlab
implementation are able to estimate the camera poses for the
input frames, build the 3-D point cloud, construct the sur-
face mesh, project the camera frames on it and draw the 2-D
atlas. The atlas image is predominantly sharp, even though
many frames are blended together. The reprojection errors
are small, indicating high-quality reconstructions.

In the in vivo study, the pre-operative session was difficult
to reconstruct properly which can be attributed to the wob-
bling tumor. Relatively many frames pictured this tumor and
the reconstruction software used in this study cannot com-
pensate for such deformations. In addition, both in the pre-
and post-operative cystoscopy the transition from forward-
looking to rear-looking cystoscopy happened too quickly
such that no continuous reconstruction could be made to
include the surface around the urethra entrance in the recon-
struction. This could be remedied by bending the cystoscope
at a slower pace, keeping focus on the bladder wall during
the transition.

Only in the phantom study it was possible to conduct auto-
mated inter-session detection of texture changes. With the
right detection threshold settings all six sites were correctly
identified. In the in vivo study, there were too many changes
in texture for automatic co-registration and this could be
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Fig. 8 Atlas of bladder phantom in second session, after adding six
stickers representing tumors

Fig. 9 Difference of atlases of phantom in two successive sessions.
The 50% gray color represents areas which remained unchanged (i.e.,
identical pixel color) between the sessions. Deviations from 50% gray
corresponding to proportionally larger changes in pixel color. Various
brightly colored areas of various sizes can be distinguished

attributed to the surgical removal of the tumor combinedwith
the inter-session interval of 132 days.

The 3-D and 2-D reconstruction algorithms take approx-
imately fifteen to forty-five minutes per session, depending
on the frame size and count and the algorithms used. While
this is quite long, it may still be useful in retrospective
comparisons of multiple sessions, in proper documenting of
clinical findings and in preparation for the next session. In
our Matlab-based algorithm, the slowest part is pairwise
image registration and point cloud reconstruction which both
run in O(N 2

F ) time. This time can be cut down by prior-
itizing camera frames which are temporally close instead
of an exhaustive search [14]. The point cloud reconstruction
part needs extensive use of bundle adjustment calculations to
keep the reprojection errors sufficiently low, and this could
be improved by using more sophisticated algorithms.

Comparison with state-of-art

The presented results show improvements in certain aspects
compared with state-of-art reconstructions. Lurie et al. tex-
tures each individual mesh face using only one camera frame
[9], while our presented algorithm is able to stack almost all

Fig. 10 Atlas of second session, with highlighted areas indicating sig-
nificant texture changes between the two sessions

Fig. 11 3-D rendering of bladder phantom (second session), with tex-
ture changes highlighted

camera frames in full in the texture generation process. Our
method in theory results in a better signal-to-noise ratio if
the bladder is sufficiently rigid, although in our in vivo study
imperfect overlapping of textures reduces sharpness due to
the deformability of the bladder.

Several researchers only reconstructed a portion of the
bladder wall surface. Falcon et al. demonstrated detailed spa-
tial reconstruction of a hemisphere phantom and an ex vivo
porcine ureter aperture [8], resulting in a much denser point
cloud andmesh compared to our results. This could be useful
for monitoring local structural changes rather than texture.
Compared to the work of Phan et al., the textures in our
phantom have sufficient feature points for registration so that
optical flow algorithms were not strictly necessary, although
these could still be useful in cases with less distinct vascu-
larization in the bladder walls [14]. We also did not need the
structured light techniques used by Ben-Hamadou et al. [10]
aswe already knew the physical phantomdimensions before-
hand so that the model could be scaled accordingly, which
to some extent also applies to in vivo bladder cystoscopies.
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Conclusion

The presented system is able to reconstruct a 3-D model and
corresponding 2-Datlas froman in vivo or ex vivo cystoscopy
video. In the ex vivo study the mean reprojection error is
0.081mm (range 0-−0.79mm) thanks to the effective bundle
adjustment algorithms.

In the bladder phantom study, 3-D reconstructions of suc-
cessive sessions can be co-registered and differences in the
corresponding 2-D atlases can be effectively highlighted.
All six test tumor sites were correctly identified automat-
ically, with the smallest one measuring 5mm in diameter.
The total reconstruction time for one session usingMatlab
was approximately 45min, which can be reduced to 15min
when using the COLMAP pipeline.

In the in vivo study the scanning coverage was 58% and
79% for the pre- and post-operative reconstructions, respec-
tively. While no automatic co-registration and detection of
changes is possible, the 2-D atlases may still be helpful for
documenting and comparing clinical findings.

Outlook

More sophisticated algorithms are required to successfully
reconstruct 3-D and 2-D models of human bladders, espe-
cially in challenging cystoscopy video recordings. Urologists
also need to take the prerequisites of usable recordings into
account in their cystoscopy procedures. The workflow needs
to be streamlined as much as possible so that it reasonably
fits within the current clinical practice. When 3-D recon-
structions and annotated 2-D atlases of different sessions
are constructed consistently, it opens the door to different
advancements in bladder cancer healthcare. Specialized sen-
sors such as optical coherence tomography (OCT) could be
steered toward designated sites to inspect the different tissue
layers for muscle invasiveness of tumors. The treatment plan
can then be optimized, so that a TURBT is performed when
appropriate and removal of the entire bladder is properly jus-
tified.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-023-02900-
7.
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