
International Journal of Computer Assisted Radiology and Surgery (2023) 18:1043–1051
https://doi.org/10.1007/s11548-023-02889-z

ORIG INAL ART ICLE

Occlusion-robust scene flow-based tissue deformation recovery
incorporating a mesh optimization model

Jiahe Chen1 · Kazuaki Hara1 · Etsuko Kobayashi1 · Ichiro Sakuma1 · Naoki Tomii1

Received: 7 February 2023 / Accepted: 27 March 2023 / Published online: 17 April 2023
© The Author(s) 2023

Abstract
Purpose Tissue deformation recovery is to reconstruct the change in shape and surface strain caused by tool-tissue interaction
or respiration, which is essential for providing motion and shape information that benefits the improvement of the safety of
minimally invasive surgery. The binocular vision-based approach is a practical candidate for deformation recovery as no extra
devices are required. However, previous methods suffer from limitations such as the reliance on biomechanical priors and
the vulnerability to the occlusion caused by surgical instruments. To address the issues, we propose a deformation recovery
method incorporating mesh structures and scene flow.
Methods The method can be divided into three modules. The first one is the implementation of the two-step scene flow
generation module to extract the 3D motion from the binocular sequence. Second, we propose a strain-based filtering method
to denoise the original scene flow. Third, a mesh optimization model is proposed that strengthens the robustness to occlusion
by employing contextual connectivity.
Results In a phantomand an in vivo experiment, the feasibility of themethod in recovering surface deformation in the presence
of tool-induced occlusion was demonstrated. Surface reconstruction accuracy was quantitatively evaluated by comparing the
recovered mesh surface with the 3D scanned model in the phantom experiment. Results show that the overall error is 0.70 ±
0.55mm.
Conclusion The method has been demonstrated to be capable of continuously recovering surface deformation using mesh
representation with robustness to the occlusion caused by surgical forceps and promises to be suitable for the application in
actual surgery.

Keywords Deformation recovery · Stereo vision · Scene flow · Computer-assisted intervention · Minimally invasive surgery

Introduction

Tissue deformation describes the change in shape and surface
strain due to external forces induced by surgical instruments
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or internal forces induced by respiration or cardiovascular
circulation. Tissue deformation analysis aids in the analysis
of biomechanical properties and promises to contribute to
safer and more efficient surgery. First, biomechanical prop-
erties, such as elasticity and Young’s modulus, are closely
related to the functionality of tissues and can be measured
according to the observed surface deformation [1–3]. Second,
even though robotic minimally invasive surgery (RMIS) has
been proven to achieve many positive clinical outcomes in
many cases [4, 5], the absence of tactile sensation is still one
of the shortcomings, which may lead to unintentional tissue
injury and complicates the manipulation [6]. One possible
approach to restoring the tactile sensation is to establish a
force feedback system based on the observation and analysis
of tissue deformation [6, 7].

Different from mere 3D reconstruction of a static surgery
scene, deformation recovery requires dynamic reconstruc-
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tion and tracking of the shape of the target. Considering the
compatibility with the current workflow of MIS, deforma-
tion recovery using the binocular camera (also known as the
stereo camera) is a more practical approach, as the binocular
camera can theoretically realize 3D reconstruction in real-
time and already exists in many MIS systems. Haouchine et
al. estimated the deformation incorporating surgical instru-
ment tracking and biomechanical priors [6]. The method was
demonstrated to be capable of recovering the deformation of
relatively regular tissues causedby simple tool-tissue contact.
However, the method depends on prior known biomechan-
ical properties of the tissue, which are patient-specific and
not available in actual surgery.Another deformation recovery
method was proposed by Aviles et al., implementing diffeo-
morphic deformation mapping in an unsupervised learning
approach. The method was demonstrated to be useful in both
ex vivo and in vivo datasets [7]. However, only 36 pairs of
surface features were directly tracked, which was not suffi-
cient for surface strain analysis.

Overcoming the above limitations, scene flow-based
methods provide a practical approach to recovering dense
tissue deformation from binocular sequences without relying
on biomechanical priors. Scene flow is the 3D displace-
ment field of features between frames. Typically, a two-step
framework is used for generating the scene flow from binoc-
ular sequences: the first is stereo-matching between left and
right images to reconstruct the 3D scene at each frame;
the other is feature tracking using optical flow to estab-
lish the temporal connectivity between frames. Chen et al.
realized stereo-matching and feature tracking using Digi-
tal Image Correlation (DIC) and implemented the recovered
deformation for surface strain estimation [8]. Stoyanov et al.
developed a seed growing method for 3D reconstruction and
sceneflowgeneration [9]. Themethodhas beendemonstrated
to be capable of dealing with various cases in RMIS.

However, in general, there are three major problems with
the scene flow-based deformation recovery method. First,
mismatching in stereo-matching and feature tracking caused
by factors such as specular highlights results in outliers of the
generated scene flow. Second, scene flow-based methods are
vulnerable to the visual occlusion caused by surgical instru-
ments, because 3D reconstruction and feature tracking both
rely on the visibility of the target. Third, previous methods
only focused on the deformation between adjacent frames,
while the continuous long-term deformation recovery from
the no-load state to the current loading state is more suitable
for practical applications.

In this study, a novel method for continuously recovering
dense surface deformation is reported. To overcome the lim-
itations of previous methods, we propose a scene flow-based
mesh optimization model, which addresses the occlusion
problem by making use of contextual information. Another
advantage of the method is that both spatial and temporal

connectivity of surface features has been established, mak-
ing it possible and convenient for continuous deformation
analysis. The results of a phantom and an in vivo experiment
demonstrate the feasibility of the method in recovering the
surface deformation induced by surgical forceps.

Methods

This article reports a novel method for continuous surface
deformation recovery from binocular sequences. A flowchart
of the method is shown in Fig. 1. Surface deformation is rep-
resented by deformable dense mesh surfaces driven by the
scene flow generated using the two-step framework (“Scene
flow generation and mesh initialization” section). A novel
scene flow filtering method (“Scene flow filtering” section)
and a mesh optimization model (“Mesh optimization model”
section) are proposed to enhance the stability and strengthen
the method’s robustness to occlusion.

Scene flow generation andmesh initialization

The scene flow is a 3D displacement field depicting the
movement of each point in a 3D pointset. The two-step
framework consisting of stereo-matching and optical flow
algorithms is commonly used for calculating the scene flow
between adjacent frames [9]. Stereo-matching is for recon-
structing the 3D scene from left and right images, while
optical flow is for finding correspondences between frames in
time. Note that the initial mesh was directly generated from
the 3D reconstructed points by the Screened Poisson method
[10]. The scene flow is calculated for the adjacent binocu-
lar frames, incorporating the outputs of stereo-matching and
optical flow. However, mismatching caused by factors such
as specular highlights, theweakly textured area, the duplicate
texture, occlusion, and specular reflection persists in stereo
matching and optical flow. As a consequence, the generated
scene flow will inevitably include vacancy areas and outliers
[9]. Nowadays, learning-based methods have shown great
success in various fields of medical image processing [11–
13]. Therefore, we implement outperforming learning-based
stereo-matching [14] and optical flow methods [15], which
can promisingly generate the scene flow with fewer outliers
and higher density.

Scene flow filtering

The original scene flow generated using the two-step method
is noisy and comprises vacancy areas and outliers. In partic-
ular, due to the occlusion caused by surgical instruments, the
original scene flow of the occluded area belongs to the sur-
gical instruments rather than the tissue surface. To address
these problems, we propose a scene flow filtering method
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Fig. 1 Workflow of the method

incorporating surgical instrument segmentation and infinites-
imal strain analysis. The idea is to detect and filter the scene
flow causing roughness in the displacement field or belong-
ing to the instrument. First, we coarsely segment and track
the instrument using optical flow [15]. The scene flow in the
segmented area is recognized as belonging to the instrument
and is marked as an outlier. Second, we detect the outlier of
the scene flow via locally infinitesimal strain analysis based
on the consistency hypothesis that the scene flow vectors
within a local area should be uniform. The advantage of the
technique is that outliers, regardless of their cause, such as
occlusion or specular highlights, can be detected uniformly.
The infinitesimal strain tensor (ε) is defined as:

ε =
⎡
⎣

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎤
⎦ (1)
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the spatial displacement derivatives, and u, v, w are the
displacement fields of the x, y, z directions, respectively.
Inspired by [8], we propose a vertex-wise least-squares
(VWLS) algorithm (please refer to the appendix for details)
to calculate the spatial displacement derivatives. Principal
strain (ε1, ε2, ε3) are the eigenvalues of the infinitesimal
strain tensor. The maximal local strain (εmax) is defined as
the maximal absolute principal strain. With the consistency
hypothesis, the scene flow of a vertex is judged as an outlier
if the estimated maximal local strain εmax is larger than a
threshold εt , which is empirically set to 1 and remains the
same in all the experiments.

Mesh optimizationmodel

The mesh surfaces are employed to continuously model the
tissue deformation. The advantage of the strategy is that it

establishes long-term spatiotemporal connectivity of the sur-
face features and benefits the separation of rigid displacement
and deformation. We propose a mesh optimization model to
estimate the new positions for vertices and to enhance the
smoothness of the whole mesh surface. The mesh optimiza-
tion model is defined as:

[
Ĩ

αE

]
C =

[
C∗

α�E

]
(2)

where α is a constant scalar empirically set between 1 and 2,
C is the position of the vertices to be estimated, which is a N
by 3 matrix in the row-major order, where N is the number
of all vertices. The mesh optimization model consists of two
terms: the dynamic term Ĩ C = C∗ (“Dynamic term” section)
and the smoothness term EC = �E (“Smoothness term”
section). The solution of the linear system is found in the
constrained least square (CLS) sense (“The constrained least
square solution” section). Details of the model are explained
in the following sections.

Dynamic term

To facilitate the following discussion, let’s define Vvalid as a
set of vertices assigned with the filtered scene flow vectors
and Vinvalid as a set of those without. The functionality of
the dynamic term is to guarantee that the estimated positions
of the vertices in Vvalid are close to the positions directly
updated using the scene flow, which is defined as:

ĨC = C∗ (3)

where C are the positions of the vertices to be estimated, Ĩ is
a Nvalid by N matrix, where Nvalid is the number of vertices
in Vvalid and N is the number of all vertices. W.l.o.g., assume
that the verticeswith indices i , j , and k are in Vvalid. Each row
of the corresponding Ĩ only contains one non-zero element
in the h-th (h ∈ {i, j, k}) column. C∗ are the positions of the
vertices directly updated using the filtered scene flowvectors:
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Fig. 2 Asample of the differential edgematrix corresponding to amesh

C∗ = ĨC p + Fs , where C p is the Cartesian coordinates of
the vertices of the mesh estimated in the previous frame, Fs

is the filtered scene flow vectors. Although we can build a
full-rank linear system merely with the dynamic term, it is
still necessary to introduce additional constraints to establish
a full-rank and over-determined linear system to apply proper
constraints to the vertices in Vinvalid.

Smoothness term

Inspired by [16], we propose the smoothness term to intro-
duce additional constraints to all vertices of a mesh. In
contrast to the previous work where the Laplacian matrix
is used [16], we propose a novel differential edge matrix to
build the smoothness term. The supposed advantage is that
the differential edge matrix has a higher level of sparseness
that reduces the redundancy when searching for a solution
and increases the computation efficiency. The differential
edge matrix is derived from the connectivity of the mesh,
as shown in Fig. 2. Each edge corresponds to a row in the
differential edge matrix. W.l.o.g., the i-th edge connecting
the j-th and k-th ( j < k) vertices corresponds to the i-th
row in the differential edge matrix with the element in the
j-th column as 1 and that in the k-th column as −1, and the
remaining elements as 0. The smoothness term is defined as:

EC = �E (4)

where C are the positions of the vertices to be estimated,
E is the differential edge matrix, �E is the delta coordinate
calculated by �E = EC0, where C0 is the Cartesian coor-
dinates of the vertices of the initial mesh. E and �E are a
Nedge by N matrix and a Nedge by 3 matrix, respectively,
where Nedge is the number of edges and N is the number
of the vertices. In this study, the differential edge matrix E
and delta coordinate �E are generated from the initial mesh
and remain identical over iterations. The smoothness term

Fig. 3 Phantom experiment setup

is derived from the hypothesis that the scene flow vectors
between two neighboring vertices are similar.

The constrained least square solution

Given that the visual occlusion is caused by the instrument
above the tissue, we introduce additional constraints that
the estimated vertex in the occluded area should always be
under the instrument. The constraint is only applied to the
z-coordinate (depth) of the estimated vertex. According to
occlusion detection, the variables of the linear system inEq. 2
are divided into the non-occluded part (subscripted as no) and
the occluded part (subscripted as o). Thus, the solution of the
linear system in Eq. 2 for mesh optimization in the constraint
least square sense is:

Ĉ = argmin
C

{∥∥∥ ĨC − C∗
∥∥∥2 + α ‖EC − �E‖2

}
,

C = [
X Y Z

]
, Z =

[
Zno

Zo

]
, Zo > P z

(5)

where Zo > P z is the instrument constraint. Zo are the z
coordinates of the estimated occluded vertices, while P z are
the z coordinates of the nearest 3D points to the occluded
vertices in the reconstructed 3D point set of the instrument.

Experiments and results

Phantom experiment

A phantom experiment was performed to validate the pro-
posed method and quantitatively evaluate the surface recon-
struction accuracy. In the experiment, surgical forceps held
by a passive holding arm (point setter, Mitaka Kohki Co.,
Ltd., Japan) were moved up and down through a linear rail
attached to the passive holding arm to cause deformation
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Fig. 4 Schema of the suspension strategy. The movement of the forceps was divided into the approaching and the leaving stages. Suspension points
were set in the stages, which indicated the suspension of forceps movement

on the surface of a hydrogel phantom (FasoLab, Japan), as
shown in Fig. 3. The deformation procedure was recorded by
a binocular camera formed by two monocular RGB cameras
(EMVC-CB130C3, CatchBest Co., Ltd., China). The binoc-
ular camera was calibrated using the AprilTag method [17].

To quantitatively evaluate the surface reconstruction accu-
racy, it is necessary to compare the recovered mesh surface
with the ground truth. However, it is impossible to obtain
the ground truth of the tissue surface merely with the binoc-
ular sequence due to the invisibility of the occluded tissue.
To overcome the occlusion problem, a handheld 3D scanner
(EinScan Pro 2X, Shining 3DCo., Ltd., China) is used. Since
we can walk almost 360 degrees around the phantom, the 3D
scanner can obtain a full scan of the phantom’s surface, and
thus, there is almost no occlusion problem anymore. Given
that the volumetric accuracy and the minimum point dis-
tance of the 3D scanner is 0.1mm + 0.3mm/m and 0.2mm,
respectively, the scanned surface can be reliably used as a
ground truth. However, the 3D scanner and the RGB cam-
era cannot work in sync. Typically, the RGB camera works
at 25 FPS, while it takes more than one minute for the 3D
scanner to finish a full scan of the surface. To guarantee that
the scanned surface corresponds to the current deformation
state, we propose a suspension strategy, as shown in Fig. 4.
The movement of the forceps is divided into the approaching
and leaving stages. Each stage consists of several suspension
points, where the movement of the forceps and the recording
of the binocular camera are paused. During the suspension
duration, the camera, the forceps, and the phantom remain
relatively static, and a 3D scan is performed to capture the
surface 3D structure under the current deformation state.

The binocular sequencewas the only input of the proposed
method, and the output was the mesh surface for each frame.
Eleven 3Dscanned surfaceswere obtained during the suspen-
sion duration and were registered to the camera coordinates
by the Iterative Closest Point (ICP) algorithm [18]. The sur-
face distance between the scanned surface and the recovered
mesh surface was calculated to quantitatively evaluate the
reconstruction accuracy of the method. Each vertex (V 0) of

Fig. 5 The surface distance between the recovered mesh surface and
the reference point cloud obtained by the 3D scan

the recovered mesh was projected onto a plane formed by
the three closest points (A, B,C) in the scanned pointset, as
shown in Fig. 5. The distance between the projection point
(P0) and the vertex (V 0) is defined as the surface distance.

This article reports qualitative and quantitative results of
the phantom experiment to demonstrate the feasibility of the
proposed method in recovering surface deformation under
the occlusion caused by surgical forceps. Figure6 shows the
recovered mesh surface at the 84th frame (Fig. 6b) together
with a failure case where the original scene flow was directly
used to update the vertex positions (Fig. 6c) visualized by
the MeshLab [19]. The mesh had 26,299 vertices. The aver-
age length of the edges was 0.86mm. The result in Fig. 6
demonstrates that the proposed method has higher resis-
tance to occlusion compared to the case where the original
scene flow was used. Figure7 shows the continuous defor-
mation recovery result. To illustrate the possible application
in biomechanical property analysis of the mesh representa-
tion of deformation, strain maps were calculated using the
Cauchy strain and were overlaid on the phantom surfaces, as
shown in the fourth row in Fig. 7.

Surface reconstruction accuracy was quantitatively eval-
uated using the surface distance defined in this section and
the Hausdorff distance (95%) (HD95). The recovered mesh
surfaces of the frame close to the suspension point (as shown
in Fig. 4) were compared to the aligned scanned surfaces.
Table 1 reports the maximum, mean, and standard deviation
of the surface distance (error) in the x, y, and z directions.
Results show that the overall average error is 0.70±0.55mm.
The error in the z direction is the largest (0.63 ± 0.50mm)
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Fig. 6 a The left image where
the phantom surface was
partially occluded by the
forceps; b The recovered mesh
surface with the proposed
method; c A failure case where
the original scene flow was
directly used to update the
vertex positions. Note that all
images correspond to the 84th
frame of the binocular sequence

Fig. 7 The first row: the left images of the 1st, 67th, 76th, and 84th
frames. The second row: the recovered mesh surfaces. The third row:
slices of the mesh surfaces from the blue lines and the correspond-
ing slices of the aligned scanned surfaces for reference, the red arrows
indicating the positions of the forceps. The fourth row: surface strain

maps overlaid on the phantom surfaces within the selected areas (green
bounding boxes as shown in the first row). The strain is calculated for
each edge of the mesh using the Cauchy strain defined as (L − L0)/L0,
where L0 is the edge length of the initial mesh, and L is the edge length
of the mesh of the current frame

among all the three directions, showing that the stereo vision-
based method has the lowest accuracy in the depth direction.
The surface distance measured in the first and the last sus-
pension points is shown in Table 1 to highlight the long-term
stability of the proposed method. Results show that there is
no significant increase in the error of the last measurement as
compared to the first one. Table 2 reports the surface recon-
struction accuracy in the sense of the HD95. The average
HD95 of all measuring points is 1.78 ± 0.35mm.

In this study,wepropose a novel differential edgematrix to
increase the computation efficiency, which is different from
the previous methods where the Laplacian matrix is used
[16]. Table 3 shows the results obtained via the differential

edge matrix-based and Laplacian matrix-based optimization
model, both weightings of which were optimized. Compared
to the Laplacian matrix-based method, the differential edge
matrix-based method got the same reconstruction accuracy
with only one third of the time. Note that the codes were
majorly written in MATLAB® and were run on windows PC
with AMDRyzen™ 7 5800X CPU and 16 GB RAMwith no
optimization or acceleration. It is promising that the program
can achieve real-time performance if written in the compiled
language and with GPU acceleration.
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Table 1 Surface reconstruction accuracy (surface distance)

Error (mm) O F L O F L O F L O F L

Max x 1.61 1.44 1.53 y 2.30 1.42 2.08 z 3.26 2.93 3.26 All 3.38 2.98 3.38

Mean 0.12 0.19 0.15 0.23 0.29 0.30 0.63 0.72 0.80 0.70 0.83 0.89

Std 0.15 0.19 0.17 0.22 0.24 0.26 0.50 0.47 0.67 0.55 0.51 0.71

Std standard deviation, O (overall) results measured over all durations are counted, F (first)/L (last) only the results measured at the first or the
last suspension point are counted. Error is calculated by the surface distance defined in “Phantom experiment” section; the x and y directions are
parallel to the x and y axis of the image plane, and the z direction is parallel to the optical axis of the left camera

Table 2 Surface reconstruction
accuracy (HD95: 95%
Hausdorff distance)

Frame index 1 59 67 76 79 84 94 102 107 121 158 Mean

HD95 (mm) 1.18 1.78 1.55 1.62 1.53 2.24 1.14 1.60 2.11 1.88 2.34 1.78

Table 3 Comparisons between
the proposed differential edge
matrix-based and previous
Laplacian matrix-based methods

Error (mm) Time per iteration (s)
Max Mean Std

Differential edge matrix 3.38 0.70 0.55 2.47

Laplacian matrix 3.26 0.71 0.55 6.17

Std standard deviation, Overall results measured over all durations are counted, The edge/Laplacian matrix
results obtained by the differential edge matrix-based or the Laplacian matrix-based model; error is calculated
by the surface distance defined in “Phantom experiment” section; time per iteration indicates the average time
to solve the optimization model

Experiment with in vivo data

An in vivo experiment was performed using the stereo
laparoscopic video from the Hamlyn Center Laparoscopic
/ Endoscopic Video library [20] to demonstrate the feasibil-
ity of the proposed method in the environment of minimally
invasive surgery. A clip of a porcine stereo laparoscopic
video was manually chosen for the demonstration, where
relative motions existed among the camera, the tissue, and
the forceps, and the tissue surface was deformed by the
forceps in the form of palpation. The baseline of the stereo-
laparoscopic camera is around 5.2mm. The frames of the
video were rectified using the known intrinsic and extrinsic
camera parameters. Mesh surfaces were recovered from the
video clip, as shown in Figs. 8 and 9. Results in Fig. 8 show
that the proposed method is robust to the occlusion caused
by the forceps, as the mesh surface was successfully recon-
structed in both the occluded and non-occluded areas. Results
in Fig. 9 show the deformed areas of the tissue surface more
clearly.

Discussion

The proposed method shows its feasibility in continuously
recovering surface deformation and has potential in analyz-
ing the tool-tissue contact and the biomechanical properties
of the tissue. The next step of the study is to move forward

to the implementation of the method in accomplishing some
clinical outcomes, such as distinguishing tissue with differ-
ent stiffness, the prevention of unintentional tissue injury, and
the estimation of tool–tissue interaction force.

The phantom experiment and in vivo experiment demon-
strated the feasibility of the method in recovering surface
deformation induced by simple tool-tissue contact. However,
in the experiment, we did not evaluate the deformation using
the ground truth of the temporal connectivity of surface fea-
tures,which is unavailable especially in the case ofminimally
invasive surgery, as mentioned by Stoyanov [9]. Instead, in
this article, we reported the surface reconstruction accuracy
of the method using the 3D scanned surface registered to the
camera coordinate for reference. However, the registration
error remained and could not be separated from the results.
Besides, due to the narrow space in the scene of theminimally
invasive surgery, the proposed evaluation implementing the
3D scanner is not applicable to obtaining the ground truth of
the 3D structure in the in vivo experiment. As a consequence,
only qualitative results were reported.

Due to the hypothesis behind the smoothness term that
the mesh remains similar structure over iterations, the pro-
posed method cannot handle the surface incisions where the
continuity of the mesh surface is broken. To overcome this
problem, the model should be capable of updating the mesh
structure constantly. Furthermore, if multiple tools are in
the view of the camera, the performance of the proposed
method will worsen as the occlusion becomesmore severe. It
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Fig. 8 a The left image where
the tissue surface was partially
occluded by the forceps; b The
recovered mesh surface with the
proposed method; c A failure
case where the original scene
flow was directly used to update
the vertex positions

Fig. 9 The first row: the left images of the 1st, 22nd, 24th, and 26th frames. The second row: the recovered mesh surfaces. The third row: slices of
the mesh surfaces from the blue lines, the red arrows indicate the positions of the forceps

is also important to note that the performance of the proposed
method depends on the stereo-matching and optical flow
algorithms, which are implemented for calculating the scene
flow. Despite the fact that the filteringmethod is proposed for
denoising the scene flow, large surface recovery errors may
still occur if the reconstructed surface by stereo-matching is
rough and inaccurate, which is common when dealing with
wet and textureless tissue surfaces, and if the image qual-
ity is poor. Thanks to independence of the proposed surface
recovery framework from the actually used stereo-matching
and optical flow methods, it is easy to replace the current
stereo-matching and optical flow modules with others with
better performance.

Conclusion

We present a method for continuously recovering surface
deformation from binocular sequences. We overcome the
problem of occlusion and realize continuous surface defor-
mation recovery without any reliance on biomechanical prior
or predefined fiducial markers. The major novelties and con-
tributions of the study are scene flow filtering based on
strain analysis; the mesh-based deformation recovery frame-
work using the mesh optimization model incorporating the

differential edge matrix. Results from the phantom and in
vivo experiment demonstrated the feasibility of the method
in recovering surface deformation in the presence of tool-
induced occlusion, with an average surface reconstruction
accuracy of 0.70 ± 0.55mm. The method promises to be
a binocular vision-based deformation recovery tool suitable
for minimally invasive surgery.
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