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Abstract
Purpose This work presents a novel camera-based approach for the visual recognition of surgical instruments. In contrast
to the state of the art, the presented approach works without any additional markers. The recognition is the first step for
the implementation of tracking and tracing of instruments wherever they are visible and could be seen by camera systems.
Recognition takes place at item number level. Surgical instruments that share the same article number also share the same
functions. A distinction at this level of detail is sufficient for most clinical applications.
Methods In this work, an image-based data set with over 6500 images is generated from 156 different surgical instruments.
Forty-two images were acquired from each surgical instrument. The largest part is used to train convolutional neural networks
(CNNs). The CNN is used as a classifier, where each class corresponds to an article number of the surgical instruments used.
Only one surgical instrument exists per article number in the data set.
Results With a suitable amount of validation and test data, different CNN approaches are evaluated. The results show a
recognition accuracy of up to 99.9% for the test data. To achieve these accuracies, an EfficientNet-B7 was used. It was also
pre-trained on the ImageNet data set and then fine-tuned on the given data. This means that no weights were frozen during
the training, but all layers were trained.
Conclusion With recognition accuracies of up to 99.9% on a highly meaningful test data set, recognition of surgical instru-
ments is suitable for many track and trace applications in the hospital. But the system has limitations: A homogeneous
background and controlled lighting conditions are required. The detection of multiple instruments in one image in front of
various backgrounds is part of future work.

Keywords Object recognition · Surgical instruments · Convolutional neural networks · Instrument tracking

Introduction

The tracking and recognition of surgical instruments plays a
crucial role inmany clinical andmedical processes. Knowing
which instrument was at a particular point of time during an
operation can contribute to the success of the operation and
provide clarity in case of failure. Furthermore, this infor-
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mation also serves the direct preparation and revising of
the surgery in the operating room itself. They also help to
improve the efficiency of the processes in a central sterile
services department (CSSD). Figure1 shows a typical cycle
of reusable surgical instruments in hospitals.

Surgical instruments are transported in so-called trays
between operating rooms and the CSSD. It is precisely
defined which instruments belong to which tray. The lack of
a surgical instrument or the presence of a wrong instrument
can risk the success of an operation andmust be avoided in all
preparation processes [1]. In follow-up processes, the miss-
ing of a surgical instrument immediately after the operation
can have serious consequences. If the instruments are mixed
in the trays after an operation, the sterilization processes sig-
nificantly lose efficiency. In consequence, the recognition and
tracking of surgical instruments is an important aspect that
can be prone to mistakes if carried out purely by humans.
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Fig. 1 Cycle of surgical
instruments within a hospital

Fig. 2 Classification of surgical instruments with respect to different
levels of detail

It is important to distinguish the level of detail in which
the recognition of surgical instruments takes place. A sim-
ple breakdown of instruments into main classes provides no
added value. Whether the instrument is a pair of scissors
or a clamp is basically an important information. But not
all clamps fulfill the same function. An assignment of the
manufacturer and the item number is necessary to ensure
the required functions of the instruments for an operation. In
contrast, a unique identification is not necessary, since instru-
ments that have the same item number are basically the same
medical device and therefore provide the same function (cf.
Figure2). In this work, it is first investigated whether the par-
tially very similar but also very different surgical instruments
can be recognized under controlled environmental condi-
tions.

Scientific question

In cooperation with Charité CFM Facility Management
GmbH, the following scientific question was investigated in
this work: Is image-based recognition of surgical instruments
at item number level possible using only machine learning
and image processing methods?

State of the art

The state of the art addresses current techniques and sys-
tems that are used marker-based recognition, track and trace
of surgical instruments. The field of object recognition with
image processing methods based on machine learning is also
reviewed, especially convolutional neural networks (CNNs).

The authors are not aware of any publication or method
that has successfully tested surgical instrument recognition
based on convolutional neural networks to date.

Marker-based technologies

Marker-based recognition means that an additional element
must be added to each instrument so that a technical system
can recognize this instrument. A separation is made between
non-image processing technologies and image processing
technologies.

Non-image processing technologies

Non-image processing technologies use radio frequency
identification (RFID) techniques. These systems consist of
a reader and a passive transponder for each instrument. The
reader can contactlessly read the passive transponder and
thus identify and localize the transponder. There are already
established products available on the market for this purpose
[2–6].

Image processing technologies

Image processing technologies use visual markers as QR
codes or bar codes [7]. Several publications address the track
and trace of surgical instruments with image processing. But
the focus is on the use in the operating room during an oper-
ation. Therefore, the motion of an object is tracked. The
knowledge about the item number of an instrument must be
set manually in a previous step [9–11].
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Advantages and disadvantages

The technologies presented have the advantage that they can
identify each instrument uniquely, i.e., much more precisely
than the item number-wise recognition. The disadvantage
is that such detailed recognition is often not necessary and
each surgical instrument must be specially prepared for this
purpose. Due to the sterilizing process of the instruments,
markers such item numbers, QR codes or bar codes wear out
and are no longer readable. In addition, modified instruments
must be re-certified in order to be used.

Marker-free technologies

Numerous publications have already shown that modern
methods of image processing from the field of machine
learning achieve great success in object recognition [8, 12–
15]. The methods recognize objects simply based on their
visual appearance. Recognition is formulated as a classifica-
tion problem. An image is assigned to a class, i.e., an item
number.

So-called convolutional neural networks (CNNs) perform
feature extraction and subsequent classification using a holis-
tic approach. Their special advantage is that no manual
modification ofweights or parameters is necessary. TheCNN
learns all weights during a training process using a large
amount of training data. The network architectures used for
this work are presented below.

Density networks

The density network (short: DenseNet) is characterized by
the fact that the features of all preceding layers are available
as input for each layer [13]. This results in a very high density
of information. Classically, CNNs only receive the features
of the previous layer in each layer. This has the disadvan-
tage that calculations in CNNs take place several times and
the same features can be calculated several times at different
locations in the network. The DenseNet can thus calculate
better features more efficiently. The authors compare differ-
ent networks sizes with respect to the number of layers (the
depth of the network). The version with 201 layers gives the
best performance between recognition accuracies and size
of the network. Therefore, DenseNet-201 is chosen for this
work.

Efficient networks

The efficient network (short: EfficientNet) is a partially auto-
mated CNN architecture [14]. Machine learning algorithms
have optimized an already existing architecture at various
points: width, depth and resolution of the network. The
authors present eight different variants with respect to the

number of weights of the network. The network with the
highest number of weights is version B7. It reaches the
highest recognition accuracies. Therefore, EfficientNet-B7
is chosen for this work.

Big transfer models

The big transfer model (short: BiT-M) is a modified version
of a residual network [15]. Its special feature is that it was
pre-trained on a data set comprising 21 million images [13].

Concept

The presented work addresses the recognition of surgical
instruments on images. The use ofmachine learningmethods
requires the acquisition of training, validation and test data.
This section describes how these data are obtained and pro-
vided. Furthermore, the design of experiments is presented.

Acquisition setup

An acquisition system with three industrial cameras is used
for data acquisition. The cameras focus on the instrument at
three different angles: Top view = 0◦, 2nd view = 30◦ and
3rd view = 45◦. A 90◦ view for a side view was omitted,
since the instruments are characterized mainly in length and
width which is addressed with the top view. Essential recog-
nition features are not expressed in height for most of the
instruments. The instrument tray is homogeneous, white and
non-reflective. The lighting is diffused to avoid shadows cast
by the instruments. The colored RGB images have a resolu-
tion of 896 × 1024 pixels (width × height).

Data set

A total of 156 different surgical instruments are used in this
work. They provide a wide range of sizes and types. Figure3
shows example images of surgical instruments which look
very similar and very different. Figure4 shows the distribu-
tion of main classes across all used instruments.

A total of seven different positions and two different orien-
tations were used to cover all perspectives of the instruments.
Using three cameras, this results in 7×2×3 = 42 images per
instrument. Only one instrument is presented to the acquisi-
tion system at any given time. The instrument is captured
with different orientations (e.g., lying on its side) and in dif-
ferent positions (e.g., central or left in the image). The entire
image set of one instrument is shown in Fig. 5. Note that the
first and seventh positions are very similar as they describe
the intuitive position.

To train the CNNs, the data set is split as follows:
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Fig. 3 The top row shows
surgical instruments with
different article numbers that are
very similar. The bottom row
shows surgical instruments that
look very different

Fig. 4 Distribution of the main
classes for the used instruments
in this work

1. Training data These data are used to learn the patterns of
objects to be recognized. The CNNs use the training data
to automatically tune their weights during the training
phase.

2. Validation data About 25% of the training data is ran-
domly selected and held out to the CNN during training.
This allows testing how the CNN behaves with unknown
data. The validation data does not follow a fixed scheme.
The higher the recognition accuracy in the validation data
the higher the generalization of the algorithm.

3. Test data These data consist of six images per instrument
and describe the intuitive position of how a worker would
present an instrument to the acquisition system (straight
orientation, central in the image). The higher the recogni-
tion accuracy in the test data, the higher the specialization
of the algorithm to the use case.

The total amount of 6552 images is split into 4496 training
images, 1120 validation images and 936 test images (percent-
age distribution: 67/17/14). The final recognition accuracy
for the test data is the deciding criterion.

Design of experiments

The CNNs presented in “Marker-free technologies” section
consist of several million network weights, all of which are
tuned automatically in the training process. In addition to
architecture selection and training duration, different opti-
mization techniques will also be evaluated.

Prior knowledge

This is the targeted input of prior knowledge to optimize fea-
ture extraction evenwith little data. TheCNNs are pre-trained
on the publicly available ImageNet data set [16]. Three dif-
ferent ways are distinguished in the experiments:

1. Random initializationTheCNN is initializedwith random
weights and parameters.

2. Pre-trained The CNN is pre-trained on the 1.2 million
images of the ImageNet data set. The feature extraction
is frozen. Only the classifier is trained.

3. Fine-tuning The initialization is done as in the “pre-
trained” case. The feature extraction is not frozen but
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Fig. 5 The 42 images for one single instrument are shown here. The colored boxes show which images are used for training, validation and test
data. Details can be found in the following section

adapted to the instruments with fine-tuning during the
training process.

Data augmentation

All training images are modified using image processing
techniques. During training, the images are randomly rotated
or their color values (e.g., hue, saturation, contrast) are
changed by up to 5%.

Experiments

The baseline for all evaluations is defined by DenseNet-201.
The training is initially trained over 50 epochs, so the training
data is presented to the CNN 50 times. The corresponding

accuracies for the test data are entered in Table 1. First, the
extent towhich the use of prior knowledge provides an advan-
tage in the recognition of surgical instruments is evaluated.

It is obvious that the resulting data set is far too small to
train a network from scratch. Using prior knowledge helps
a lot, but still gives worse results. Only with the fine-tuning
approach, very good results are achieved. In the test data,
even a Top 5 accuracy of 100% is achieved. This means that
correct item number is within the first five predictions of the
CNN. The fine-tuning approach is therefore always used for
the following calculations.

To ensure the robustness of the recognition even with
increased variance, it is advisable to augment the training
data set. In each epoch of the training, a uniform distribution
is used to randomly project these augmentations onto each
image. Thus, the variance within the training data increases
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Table 1 Evaluation for the usage of prior knowledge

Method Validation Test

Top 1 (%) Top 5 (%) Top 1 (%) Top 5 (%)

Random initialization 4.6 12.3 4.7 14.0

Pre-training 45.6 76.9 58.0 86.1

Fine-tuning 91.8 100.0 95.3 100.0

Table 2 Evaluation of data augmentation techniques

Method Validation Test

Top 1 (%) Top 5 (%) Top 1 (%) Top 5 (%)

None 91.8 100.0 95.3 100.0

Rotation 97.8 100.0 98.9 100.0

Color jitter 94.1 99.9 98.3 100.0

Table 3 Evaluation of the duration of the training

Epochs (duration [h]) Validation Test

Top 1 (%) Top 5 (%) Top 1 (%) Top 5 (%)

20 91.5 99.6 95.3 99.8

50 91.8 100.0 95.3 100.0

100 94.3 100.0 97.9 100.0

200 94.8 100.0 97.9 100.0

500 95.9 100.0 98.5 100.0

significantly. Table 2 shows that expanding the training data
in terms of rotation is effective. In contrast, increasing the
variance by slightly manipulating the pixel values does not
add any value.

Table 3 shows the accuracies of aDenseNet-201 for differ-
ent training lengths. It can be seen that the difference between
20 and 50 epochs is hardly relevant. But a training over 500
epochs brings a significant increase in recognition.

Finally, different architectures are evaluated against each
other. All methods are trained without data augmentation
over 50 epochs. The BiT-M again illustrates the influence
of transfer learning. Table 4 shows the increase compared
to the DenseNet-201 with 5.7% points in the Top 1 accu-
racy for the validation data and 4.1% points for the test data.
EffiecientNet-B7 achieves the highest values for the Top 1
accuracy of the validation data and the test data in this work.
The Top 1 accuracy of the test data with 99.9% means in
absolute numbers that there is only one misclassification in
the 936 test images.

Table 4 Evaluation of different network architectures

Epochs (duration [h]) Validation Test

Top 1 (%) Top 5 (%) Top 1 (%) Top 5 (%)

DenseNet-201 91.8 100.0 95.3 100.0

BiT-M 97.5 100.0 99.4 100.0

EfficientNet-B7 98.5 100.0 99.9 100.0

Discussion

It is obviously that the specific integration of prior knowledge
is necessary in order to be able to use CNNs in the scenario
described. This is mainly due to the size of the networks. To
train all the weights with 4496 training images is not possi-
ble. Initializing the CNNs with meaningful weights so that
only fine-tuning has to be done, is very successful. Another
method to address the small amount of training data is to
augment the data artificially. For example, the images can
be rotated or their pixel values can be changed. Enhancing
the training data with rotated images has led to an increase
in recognition accuracy. Recognition of instruments is a use
case that requires high specialization rather than high gener-
alization of CNNs. The longer an algorithm trains the higher
the recognition accuracy. The highest increase is found in
the first 10 epochs. Nevertheless, it has been shown that
longer training times can still achieve small but measurable
increases in recognition accuracy. For future work, it must
be noted that the training duration per epoch increases pro-
portionally to the number of training dates.

Conclusion

A total of 156 different surgical instruments are captured and
a data set with a total of 6552 images is created. The instru-
ments can be recognized with a maximum Top 1 accuracy of
99.9% and a Top 5 accuracy of 100%. The scientific question
of “Scientific question” section can be answered with yes.

This work is the basis for an image-based tracking of sur-
gical instruments in the operating room during an operation.
It addresses the recognition of one instrument per image in
front of a homogeneous background with controlled light-
ing conditions. The high variance of possible backgrounds
and scenes as well as the very small ratio of instrument size
to image size pose the most difficult challenges. Overlap-
ping instruments or covering by operating room personnel
are further hurdles to reliable track and trace of instruments
in the operating room. It should be noted that the estab-
lished marker-based technology can only be replaced where
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recognition at item number level makes sense and where
instruments are visible.
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