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Abstract
Purpose In telemedicine such as remote auscultation, patients themselves or non-medical people such as patient’s parents
need to place the stethoscope on their body surface in appropriate positions instead of the physicians. Meanwhile, as the
position depends on the individual difference of body shape, there is a demand for the efficient navigation to place the medical
equipment.
Methods In this paper, we have proposed a non-rigid iterative closest point (ICP)-based registrationmethod for localizing the
auscultation area considering the individual difference of body surface. The proposed system provides the listening position
by applying the body surface registration between the patient and reference model with the specified auscultation area. Our
novelty is that selecting the utilized reference model similar to the patient body among several types of the prepared reference
model increases the registration accuracy.
Results Simulation results showed that the registration error increases due to deviations of the body shape between the
targeted models and reference model. Experimental results demonstrated that the proposed non-rigid ICP registration is
capable of estimating the auscultation area with average error 5–19 mm when selecting the most similar reference model.
The statistical analysis showed high correlation between the registration accuracy and similarity of the utilized models.
Conclusion The proposed non-rigid ICP registration is a promising newmethod that provides accurate auscultation area takes
into account the individual difference of body shape. Our hypothesis that the registration accuracy depends on the similarity
of both body surfaces is validated through simulation study and human trial.

Keywords Registration · Non-rigid iterative closest point · Auscultation · Telemedicine · Cardiac examination

Introduction

Auscultation is utilized as essential clinical examinations,
which has been considered a highly cost-effective screening
for detecting abnormal clinical signs from 1800s [1]. In the
2020s, auscultation will still play a pivotal role for the diag-
nosis in cardiopulmonary diseases, and have a significant
impact on quality of life and health care costs [2]. Addition-
ally, recent studies reported that auscultation is a potential
diagnostic tool for COVID-19 patients and be applicable

B Ryosuke Tsumura
ryosuke.tsumura@aist.go.jp

1 Health and Medical Research Institute, National Institute of
Advanced Industrial Science and Technology, Tsukuba,
Ibaraki, Japan

2 Faculty of Medicine, University of Tsukuba, Tsukuba,
Ibaraki, Japan

for the follow-up tool with noncritical COVID-19 patients
[3, 4]. Although the auscultation is non-invasive, rapid and
cost-effective screening tool, the result of the examination
is highly subjective mostly because the ability to diagnose
the acquired sound correctly depends on physicians’ expe-
rience and knowledge, which potentially causes inaccurate
diagnosis and mistreatment. To address the limitation of the
conventional auscultation, the capability of recent stetho-
scope has been significantly improved, which allows the
recording of sounds with digital stethoscope and sharing the
recorded sound via wireless communication such as blue-
tooth or Wi-Fi [5, 6]. Since the sound can be stored as
the digital data, the obtained sound data can be analyzed
with computer-assisted technologies, which helps to improve
the inter-listener variability and subjectivity. For instance,
there have been several papers on artificial intelligence (AI)-
assisted auscultation which classifies the pattern of sounds
and identifies their abnormalities [7, 8].
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As another issue in the conventional auscultation, the
examination must be performed face-to-face because the
physician needed to place the stethoscope on the patient’s
body. Many patients living in nursing facilities or at home
due to chronic illness or reduced mobility often do not have
health care providers nearby. Also, there has been a demand
for telemedicine due to regional maldistribution of medi-
cal facilities which causes decreasing the accessibility of
medical facilities for patients living in rural area [9]. While,
advances in battery technology have led to the development
of wireless stethoscope with low-power embedded proces-
sors and sensors that allow physicians to examine patients
from a distance [6]. Then, auscultation became the applica-
ble screening tool even in remote and home care medicine.

In order to perform the auscultation in the remote care,
instead of the physicians, patients themselves or non-medical
people such as patient’s parents need to place the stethoscope
on their body surface in appropriate positionswhere the diag-
nosable quality of sound can be obtained. Particularly, in
cardiac examinations, it is required to obtain the sound of
four valves and place the stethoscope on each valve precisely
[10]. In such the remote care, due to the difficulty of commu-
nication between physician and patient, it may be difficult
to give the patient the precise instruction to place the stetho-
scope. Although there is a standardized manual for health
care provider to identify the listening area, it is challenging
for non-medical professionals to follow the manual easily
since there is an individual difference of the body shape.
Then, we assume that there is a demand for the navigation
of the auscultation considering the individual difference of
body shape.

For localizing the auscultation area under compensating
the individual differences of body shape, we assume that a
surface registration between the patient’s body and a ref-
erence model can be utilized. The surface registration in
this paper is to compute the correspondence between two
surfaces. If both surfaces are registered correctly, the auscul-
tation areas specified on the referencemodelwill be projected
on the patient’s body. One of the common known registra-
tion pipeline is the Iterative Closest Point (ICP) algorithm
that enables to apply an input point cloud data of the sur-
face with an affine transformation in order to fit the targeted
surface, resulting in the point cloud being considered rigid
[11, 12]. Meanwhile, since the body surface depends on the
individuals, the rigid registration with ICP cannot find the
accurate correspondence between two surfaces and the input
point cloud data may need to be deformed to fit the targeted
surface. As an advanced ICP algorithm, non-rigid ICP which
canfit the point clouds non-rigidly byusing feature points and
deformation constrain was proposed [13, 14]. The non-rigid
registration has been widely researched in the past decade
and can be applied to various dynamic shape reconstruction
issues such as human motion capture which is utilized for

the applications in VR, AR, and entertainment. Some stud-
ies reported to apply non-rigid ICP to the field of biomedical
engineering such as tracking of respiratory motion abdomi-
nal surface [15, 16]. However, there is no research to apply
the non-rigid ICP for localizing the specific region on the
body surface such as the auscultation area considering the
individual difference of body shape.

In this paper, we propose a non-rigid ICP-based registra-
tion method for localizing the auscultation area considering
the individual difference of body surface. The proposed sys-
tem provides the listening position on the patient body by
applying the body surface registration between the patient
and referencemodel with the specified auscultation area. Our
hypothesis is that several types of the referencemodel are pre-
pared and selecting the utilized reference model closing to
the patient body increases the accuracy of the localization. If
the shape deviation between the patient and reference model
is significant, the accuracy of the registration with non-rigid
ICP may be decreased.

The contribution of this paper is to investigate the feasi-
bility of non-rigid ICP in the body surface registration under
varying body shape and establish the registration method for
localizing the auscultation area considering the individual
difference of body shape through the evaluation of simula-
tion and human trial. We believe that this study is the first for
introducing the localization of the auscultation area consid-
ering the individual difference of body shape.

This paper is organized as flows. In Methods section, we
introduce an overview of the proposed registration system
and describe several algorithms adopted in the system. In
Simulation and Experiment sections, simulation and exper-
imental results are provided, and the following discussion
and conclusion are described in Discussion and conclusion
section.

Methods

System overview

The proposed system aims to estimate the position of the four
valves that are required for auscultation of the heart: aortic,
pulmonary, tricuspid, andmitral valves. The tricuspid,mitral,
pulmonary, and aortic valves are located on the left side of the
lower sternum near the fifth intercostal space, on the left fifth
intercostal apex at the midclavicular line (about 10 cm from
the midline), the inner edge of the left second intercostal
space, and the right second intercostal space, respectively,
and it may be challenging for non-medical professionals to
find them correctly [17].We try to project the position of each
valve on the patient body surface from the reference body
model by applying the non-rigid registration between both
body surfaces. The overall procedure of the proposed system
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Fig. 1 Pipeline of the non-rigid ICP registration with reference model similar to patient body

consists of two parts: the selection of reference body model
closing to patient body and the body surface registration with
non-rigid ICP as shown in Fig. 1. First, the optimal reference
model closing to the patient body from among the several
prepared reference models is selected. With the selected ref-
erence model, the body surface registration with non-rigid
ICP is performed and the position of each valve is projected
on the patient body from the reference model. The detail of
each is described in the following sections.

Selection of reference bodymodel closing to patient
body

For selecting the optimal reference body model closing to
patient body, we measured the similarity between both bod-
ies by overlapping the point cloud data of both bodies and
calculating the degree of overlap. Chamfer Distance has been
broadly adoptedmetrics formeasuring the similarity between
two point sets and be defined as below.

dCD(S1, S2) =
∑

x∈S2
min
y∈S2

‖x − y‖ +
∑

y∈S2
min
x∈S1

‖x − y‖

S1, S2 ∈ R
3 (1)

S1 and S2 are subsets of point cloud data. x and y are point
data contained in S1 and S2. dCD represents Chamfer Dis-
tance between S1 and S2. This is computed by summing the

squared distances between nearest neighbor correspondences
of two point clouds. When the shape deviation between both
point cloud is large, the distance between nearest neighbor
correspondences of two point clouds is large and then the
Chamfer Distance is increased. By computing the Chamfer
Distance between the patient body and each of the prepared
reference body models, most similar reference body model
is identified.

For computing the Chamfer Distance, the subsets of point
cloud of different shapes and arrangements need to be over-
lapped roughly first. Then, ICP registration is utilized to align
both subsets roughly based on local features of point cloud.
In each of subsets, Fast Point Feature Histograms (FPFH)
feature is calculated and the correspondence of the feature
between the subsets is searched with RANSAC.

To all reference body models, the Chamfer Distance is
calculated as the similarity to the patient body after apply-
ing the ICP registration and the most similar reference body
model is utilized for the Non-rigid ICP process described in
the following section.

Non-rigid iterative closest point for body surface
registration

In order to deform the selected reference model fitting to
the patient body, the non-rigid ICP is applied. The non-rigid
ICP utilized in this study is a partially modified version of
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algorithm proposed by Amberg et al. [14]. The non-rigid ICP
is applied to the mesh data converted from the point cloud
data in this study. The source mesh converted from the point
cloud of the reference model is given as a set of n vertices
V and a set of m edges E . The registration performs finding
parameters X representing a set of displaced source vertices
V(X) which is the deformed mesh to the targeted patient
body surface. For finding X, the cost function E was defined
as below:

E(X) := Ed(X) + αEs(X) + βEl(X) (2)

where Ed , Es and El represent distance cost function, stiff-
ness cost function and landmark distance cost function,
respectively. α and β show the stiffness and landmark param-
eters. Given that the correspondent source and target vertices
are (v i , ui ), the distance cost function was defined as below:

Ed(X) :=
∑

vi∈V
wi‖Xiv i − ui‖2 (3)

where the reliability of the match was weight by wi. If there
are no corresponding vertices, the weight is set to zero. If
the correspondence is found, the weight is set to one. The
stiffness cost function is used to regularize the deformation
by penalizing the weighted difference of the transformations
of neighbor vertices, and be definedusing theFrobenius norm
‖ · ‖F and a weighting matrix G as below:

Es(X) :=
∑

{i , j}∈E

∥∥(
Xi − X j

)
G

∥∥2
F (4)

where G was used to weight the difference between the rota-
tional and skewed portions of the deformation against the
translational portion of the deformation. Finally, the land-
mark distance cost function was used for initialization and
guidance of the registration and be defined as following.

El(X) :=
∑

(vi , l)∈L
‖Xiv i − l‖2 (5)

where L = {(vi1 , l1
)
, . . .

(
vil , ll

)} represents a set of land-
marks mapping source vertices into the target vertices. For
matching the upper body surface accurately, we assume nip-
ples and navel are applicable as the landmark. Then, we
picked up those landmarks manually on both source and
target body surfaces before applying the non-rigid ICP reg-
istration. X was obtained by solving the total cost function
with Algorithm 1with reference to [14]. The stiffness param-
eter αi was set at {50, 20, 5.0, 2.0, 0.8, 0.5, 0.35, 0.3, 0.2}
and weight parameter β j was set at {5.0, 2.0, 0.5} experi-
mentally. The acceptable mismatch ε was set at 3 mm. The
algorithm was developed based on Python framework. Open
3D library was used for the calculation and visualization of
the point cloud data and scikit-sparse Python library was
used to compute Cholesky decomposition of sparse matrix
for solving the cost function. For the computation in all trials,
the obtained point cloud data using the RGB-D camera was
uniformly downsampled to 25,000 points. The implementa-
tion workstation PC is composed of Intel XeonW-2133 CPU
@ 3.60 GHz and 64 GB RAM.

Simulation

In this section, our hypothesis that selecting the utilized refer-
encemodel closing to the patient body increases the accuracy
of the localization is verified through the simulation at first.
We prepared several types of human body model with a
digital human platform software “DhaibaWorks” [18]. This
software can generate the human body model with various
shape as mesh data. With this software, nine types of body
shape including light, heavy, small, and tall were prepared as
shown in Fig. 2.

In this simulation, the reference bodymodel (sourcemesh)
is fixed at the standard model (#0 in Fig. 2) and the patient
body (target mesh) are set at other models, and the non-rigid
ICP is applied to each of the source and target pairs. The
accuracy of registration is evaluated by the error between
each of the valves’ position projected with the registration
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Fig. 2 Human body models produced by DhaibaWorks

Table 1 Non-rigid ICP
registration error and chamfer
distance in simulation

Body model Registration error in each auscultation area (mm) Chamfer distance

I II III IV Ave. ± S.D

#1 40.21 29.38 44.54 33.96 37.02 ± 6.70 47.15

#2 18.99 27.40 16.44 23.58 21.60 ± 4.87 19.59

#3 22.55 19.50 4.32 2.10 12.12 ± 10.40 3.74

#4 13.05 14.14 26.46 16.74 17.59 ± 6.11 12.98

#5 16.90 14.55 28.61 22.36 20.61 ± 6.26 35.07

#6 9.37 14.50 23.06 8.68 13.90 ± 6.63 9.64

#7 23.97 15.98 5.80 18.72 16.12 ± 7.67 12.34

#8 25.49 25.71 20.17 18.11 22.37 ± 3.82 36.82

Table 2 The information of volunteers

No Tall (m) Weight (kg) Body mass index (kg/m2)

#1 1.73 77 25.7

#2 1.82 78 23.5

#3 1.73 71 23.7

#4 1.67 67 24.0

#5 1.69 69 24.2

#6 1.65 65 23.9

#7 1.71 63 21.5

#8 1.81 63 19.2

and the ground truthwhichwas picked up by a clinical expert.
Additionally, Chamfer Distance is calculated with each cor-
respondence of the body models.

Table 1 shows the result of non-rigid ICP registration error
of each valve position and Chamfer Distance with the simu-
lated human body models. The auscultation areas I–IV in
Table 1 represent aortic, pulmonary, tricuspid, and mitral
valves, respectively. The result suggests the registration error
increases as the deviation of the body shape between the tar-
geted models and reference model (#0 in Fig. 2) is large.
Also, the Chamfer Distance could show the degree of the
shape deviation and its degree corresponds to the result of the
registration error. This simulation result verifies our hypoth-
esis that selecting the utilized reference model closing to the
patient body increases the accuracy of the localization.
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Table 3 Results of registration
error between each body model Source

model
Ref.
model

Chamfer
distance

Registration error in each auscultation area
mm

I II III IV Ave. ± S.D

#1 #2 3.03 40.02 29.61 36.78 39.95 36.59 ± 4.89

#1 #3 5.31 33.67 72.51 40.84 39.13 46.54 ± 17.58

#1 #4 1.88 10.7 2.31 1.25 7.27 7.89 ± 4.41

#1 #5 1.79 25.42 19.1 23.91 23.6 23.01 ± 2.72

#1 #6 2.59 26.35 28.79 30.89 38.14 31.04 ± 5.08

#1 #7 5.44 30.44 74.89 34.2 50.35 47.47 ± 20.22

#1 #8 3.57 27.79 25.1 24.42 30.39 26.92 ± 2.73

#2 #1 2.76 50.1 42.47 40.91 37.75 42.81 ± 5.24

#2 #3 1.76 2.44 2.19 7.46 9.85 15.49 ± 3.79

#2 #4 2.17 38.98 33.86 35.19 28.4 34.11 ± 4.38

#2 #5 1.22 26.31 27.84 29.04 33.25 14.11 ± 2.98

#2 #6 1.17 15.82 15.78 7.82 2.52 10.49 ± 6.51

#2 #7 1.62 1.89 6.01 11.13 27.92 11.74 ± 11.43

#2 #8 2.05 17.56 18.16 12.73 10.55 14.75 ± 3.71

#3 #1 5.93 54.06 52.14 50.48 55.21 52.97 ± 2.09

#3 #2 1.95 1.59 4.75 12.03 10.51 7.22 ± 4.89

#3 #4 3.24 42.86 46.15 45.4 38.44 43.21 ± 3.48

#3 #5 2.25 31.67 32.13 39.2 37.4 35.10 ± 3.77

#3 #6 1.52 17.66 22.3 19.45 7.36 16.69 ± 6.51

#3 #7 1.10 1.89 4.76 6.49 19.29 8.11 ± 7.69

#3 #8 1.74 21.75 23.68 20.75 12.51 19.67 ± 4.93

#4 #1 2.68 9.66 10.9 7.42 13.93 20.48 ± 2.71

#4 #2 3.32 29.35 28.45 28.66 28.4 28.71 ± 0.44

#4 #3 4.06 25.38 75.42 40.84 34.82 44.11 ± 21.82

#4 #5 1.73 18.77 17.24 16.66 22.98 18.91 ± 2.85

#4 #6 1.9 20.1 18.96 27.01 34.46 25.13 ± 7.16

#4 #7 2.91 24.79 27.25 38.29 49.05 34.84 ± 11.14

#4 #8 3.15 18.49 23.11 21.05 29.13 22.94 ± 4.54

#5 #1 2.06 30.92 21.15 20.98 7.04 20.03 ± 9.82

#5 #2 1.76 27.39 23.87 28.24 28.52 27.00 ± 2.15

#5 #3 2.71 25.82 25.72 31.35 32.94 28.96 ± 3.74

#5 #4 1.53 19.11 20.32 14.96 18.26 18.16 ± 2.3

#5 #6 1.22 11.3 9.73 19.44 31.89 8.09 ± 10.14

#5 #7 2.39 24.57 21.97 33.76 49.25 32.39 ± 12.33

#5 #8 2.26 6.07 10.1 10.84 23.03 12.51 ± 7.32

#6 #1 2.92 37.26 32.32 36.81 42.54 37.23 ± 4.18

#6 #2 1.51 13.12 14.9 11.67 6.58 11.57 ± 3.58

#6 #3 1.67 16.65 16.65 19.23 9.85 15.59 ± 4.02

#6 #4 1.61 25.11 28.57 29.72 30.25 28.41 ± 2.31

#6 #5 1.20 12.84 13.94 19.92 27.91 6.15 ± 6.91

#6 #7 1.49 13.49 9.34 20.01 23.52 16.59 ± 6.37

#6 #8 2.37 3.7 4.43 3.2 5.89 24.31 ± 1.17

#7 #1 5.75 48.75 48.17 45.05 60.29 50.56 ± 6.68
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Table 3 (continued)
Source
model

Ref.
model

Chamfer
distance

Registration error in each auscultation area
mm

I II III IV Ave. ± S.D

#7 #2 2.42 6.05 4.75 12.03 23.27 11.52 ± 8.45

#7 #3 1.21 4.08 2.78 1.86 11.67 5.10 ± 4.48

#7 #4 2.58 37.34 36.76 44.3 54.14 18.13 ± 8.1

#7 #5 2.38 32.91 31.8 33.28 54.45 38.11 ± 10.91

#7 #6 1.46 17.66 17.11 19.45 19.91 18.53 ± 1.36

#7 #8 1.73 21.75 18.16 20.75 26.27 21.73 ± 3.38

#8 #1 4.23 33.96 27.39 33.15 36.68 32.79 ± 3.91

#8 #2 1.57 17.63 19.16 19.57 8.38 16.19 ± 5.27

#8 #3 2.09 23.53 25.72 25.85 18.65 23.44 ± 3.36

#8 #4 3.02 21.55 22.55 28.23 29.4 25.43 ± 3.96

#8 #5 2.44 8.56 9.17 11.21 23.24 13.05 ± 6.89

#8 #6 2.39 2.28 5.15 11.44 10.51 22.34 ± 4.37

#8 #7 2.56 20.7 18.35 23.71 31.97 23.68 ± 5.95

Experiment

For the experiment, we obtained 8 datasets of the body sur-
face frommale healthy volunteers. Themale volunteers were
selected considering the variety of body shape. The average
tall,weight and bodymass index (BMI) of volunteers are 1.73
± 0.06 m, 69.1 ± 5.87 kg and 23.2 ± 1.98 kg/m2, respec-
tively. The detailed information of the selected volunteers
is listed in Table 2. The study protocol was approved by the
Institutional ReviewBoard of National Institute of Advanced
Industrial Science and Technology (No. 2022-1154), and
informed consents were obtained from each volunteer. The
point cloud data of the body surface is acquired with a RGB-
D camera (L515 RealSense, Intel, USA). The volunteers lie
on the bed and the RGB-D camera is positioned about 80 cm
above the bed surface. Noted that we gave the volunteers
an instruction to hold their breath during the acquisition. As
same as the simulation, the ground truth listening position
of each valve on the acquired body surface was determined
by the clinical expert. In this experiment, the registration
errors and Chamfer Distance were calculated and compared
for all pairs of the body surfaces of 8 volunteers. Under fixing
one volunteer’s body data as source model, the registration
between the source model and other volunteer’s body data as
reference models was performed.

Table 3 shows the result of non-rigid ICP registration
between all of each volunteer’s body. The auscultation areas
I–IV in Table 3 represent aortic, pulmonary, tricuspid, and
mitral valves, respectively. In Table 3, the minimum and
maximum of the calculated Chamfer Distance and averaged
registration error in each source bodymodelwere highlighted
with bold fonts. Figure 3 also summarizes the results of the

comparison of registration error and Chamfer Distance when
the reference model is varied for each source model. The
result showed that, in the six-eighths of source model condi-
tions, the minimum Chamfer Distance corresponded to the
minimum registration error, and the maximumChamfer Dis-
tance corresponded to the maximum registration error. The
average calculation time for the non-rigid ICP was 133.5 ±
5.8 s.

Figure 4 shows the result of all registration errors corre-
sponding to the Chamfer Distance. In Fig. 4, we performed
linear regression analyses to investigate the strength of the
association between the accuracy of the non-rigid ICP regis-
tration and the similarity of comparedmodels. The coefficient
of linear determination R2 showed 0.66, which indicated
some association between Chamfer Distance and registra-
tion error.

Discussion and conclusion

The non-rigid ICP registration we have described is capa-
ble of estimating the auscultation area with average error
5–19 mm and is a promising new method that provides
accurate auscultation area takes into account the individual
difference of body shape. Our hypothesis that the regis-
tration accuracy depends on the similarity of both body
surfaces is validated through simulation study and human
trial. The statistical results indicate some correlation between
the registration accuracy and the Chamfer Distance which
is equivalent to the similarity of the utilized models. Since
this study recruited the limited number of volunteers for
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Fig. 3 Results of comparison of registration error and chamfer distance when the reference model is varied for each source model
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Fig. 4 Results of registration error depending on the chamfer distance

human trials, it is necessary to perform a large-scale investi-
gation. An acceptable registration error should be considered
in terms of the quality of acquired sound, although the error
of less than 20 mm may not affect the diagnosis qualita-
tively. Although there were no scientific literatures directly
discussing the required positioning accuracy of stethoscope
in auscultation from our survey, a recent paper performed
human trials with a teleoperated-robotic auscultation system
which enabled to search optimal positions obtaining quali-
fied sounds [19], and demonstrated that the optimal position
can be found if the search area is within 30 mm. This report
may support that our method is applicable in auscultation,
but we need to continue further the investigation about the
acceptable positioning error not only in auscultation but also
other applicable diagnoses such as ultrasonography.

The results also indicated that the registration error is not
isotopic and varied depending on the individual subjects.
Although the relationship between the error distribution and
body shape was not clear due to the limited number of sam-
ples, focusing on the cases of minimal Chamfer Distance,
which is selecting the most similar model, the registration
error at mitral valve (IV) tended to be large. The locations of
the tricuspid, mitral, pulmonary, and aortic valves is roughly
at the left of the lower part of the sternum near the fifth
intercostal space, over the apex of the heart in the left fifth
intercostal space at the midclavicular line, over the medial
end of the left second intercostal space, and over the medial
end of the right second intercostal space, respectively [20].
Thus, the mitral valve is relatively far from the center axis of
body compared to other three valves. As the RGB-D camera
was set at the center of body, the point cloud data close to the
center of body may be well captured. The registration error
may have been amplified according to the distance between
the mitral valve and the central axis of the body. It may be
necessary to obtain data frommultiple locations and perform
registration to eliminate data coarseness.

On the other hand, considering that the resolution of point
cloud data acquired with the RGB-D camera used in this

study was between 5 and 14 mm, the performance of the
registration was possibly maximized. The registration accu-
racy may be improved by using RGB-D camera with higher
resolution such as structured-light 3D scanner. Also, in the
process of the non-rigid ICP registration, we utilized nipples
andnavel as the landmark. If other landmarks on the body sur-
face such as boundary of ribs are applicable, the registration
accuracy may be further improved. Additionally, for evalu-
ating the similarity of pairs of point cloud data, the Chamfer
Distance was used for the metrics in this study, but we still
need to investigate more appropriate metrics in terms of the
robustness. For example, Ref. [21] is developing a new met-
rics for the point cloud similarity.

This registration method can be utilized for a navigation
or pre-operative planning of robotic diagnosis and treatment
that requires to place some medical equipment on the patient
body. For example, there have been several researches of
autonomous robotic ultrasonography and auscultation,which
requires to recognize the scanning path or area based on the
patient information autonomously [19, 22–24].With the pro-
posed registration method, the pre-determined scanning path
or area can be estimated on the patient body taking account
the individual deference of body shape only by using RGB-D
camera.

Acknowledgements The research is supported by the JSPSKAKENHI
Grant (Grant Number 21K20524) and JST FOREST Program (Grant
Number JPMJFR215A).

Declarations

Conflict of interest All authors declare no competing financial interests.

Ethical approval The study protocol has been reviewed and approved by
the institutional review board at National Institute of Advanced Indus-
trial Science and Technology (No. 2022-1154). Informed consent was
obtained from all individual participants included in the study.

References

1. Zuhlke L, Myer L, Mayosi BM (2012) The promise of computer-
assisted auscultation in screening for structural heart disease and
clinical teaching: review article. Cardiovasc J Afr 23:405–408.
https://doi.org/10.5830/CVJA-2012-007

2. Bennett JE, StevensGA,Mathers CD, Bonita R, Rehm J, KrukME,
Riley LM, Dain K, Kengne AP, Chikidou K, Beagley J, Kishore
SP, Chen W, Saxena S, Bettcher DW, Grove JT, Beaglehole R,
Ezzati M (2018) NCD countdown 2030: worldwide trends in non-
communicable disease mortality and progress towards sustainable
development goal target 3.4. The Lancet 392:1072–1088. https://
doi.org/10.1016/S0140-6736(18)31992-5

3. Carvalho-Schneider C, Laurent E, Lemaignen A, Beaufils E,
Bourbao-Tournois C, Laribi S, Flament T, Ferreira-Maldent N,
Bruyere F, Stefic K, Gaudy-Graffin C, Grammatico-Guillon L,
Bernard L (2021) Follow-up of adults with noncritical COVID-
19 two months after symptom onset. Clin Microbiol Infect
27:258–263. https://doi.org/10.1016/j.cmi.2020.09.052

123

https://doi.org/10.5830/CVJA-2012-007
https://doi.org/10.1016/S0140-6736(18)31992-5
https://doi.org/10.1016/j.cmi.2020.09.052


1520 International Journal of Computer Assisted Radiology and Surgery (2023) 18:1511–1520

4. RajV,RenjiniA, SwapnaMS,Sreejyothi S, SankararamanS (2020)
Nonlinear time series and principal component analyses: potential
diagnostic tools for COVID-19 auscultation. Chaos Solitons Frac-
tals 140:110246. https://doi.org/10.1016/j.chaos.2020.110246

5. Pereira D, Castro A, Gomes P, Areias JCNC, Reis ZSN, Coimbra
MT, Cruz-Correia R (2016) Digital auscultation: challenges and
perspectives. Encycl E-Health Telemed. https://doi.org/10.4018/
978-1-4666-9978-6.ch070

6. Kim Y, Hyon YK, Lee S, Woo SD, Ha T, Chung C (2022) The
coming era of a new auscultation system for analyzing respiratory
sounds. BMCPulmMed 22:1–11. https://doi.org/10.1186/s12890-
022-01896-1

7. Grzywalski T, Piecuch M, Szajek M, Breborowicz A, Hafke-
Dys H, Kocinski J, Pastusuak A, Belluzzo R (2019) Practical
implementation of artificial intelligence algorithms in pulmonary
auscultation examination. Eur J Pediatr 883:890. https://doi.org/
10.1007/s00431-019-03363-2

8. Lv J, Dong B, Lei H, Shi G, Wang H, Zhu F, Wen C, Zhang Q, Fu
L, Gu X, Yuan J, Guan Y, Xia Y, Zhao L, Chen H (2021) Artifi-
cial intelligence-assisted auscultation in detecting congenital heart
disease. Eur Heart J Digital Health 2:119–124. https://doi.org/10.
1093/ehjdh/ztaa017

9. Ishikawa T, Fujiwara K, Ohba H, Suzuki T, Ogasawara K (2017)
Forecasting the regional distribution and sufficiency of physicians
in Japan with a coupled system dynamics-geographic informa-
tion system model. Hum Resour Health 15:1–9. https://doi.org/
10.1186/s12960-017-0238-8

10. Voin V, Oskouian RJ, Loukas M, Tubbs RS (2017) Auscultation
of the heart: the basics with anatomical correlation. Clin Anat
30:58–60. https://doi.org/10.1002/ca.22780

11. ChetverikovD, SvirkoD, StepanovD,Krsek P (2002) The trimmed
iterative closest point algorithm. Proc Int Conf Pattern Recogn
16:545–548. https://doi.org/10.1109/icpr.2002.1047997

12. Bouaziz S, Tagliasacchi A, Pauly M (2013) Sparse iterative closest
point. Eurogr Sympos Geom Process 32:113–123. https://doi.org/
10.1111/cgf.12178

13. Deng B, Yao Y, Dyke RM, Zhang J (2022) A survey of non-rigid
3D registration. Preprint arXiv:2203.07858

14. Amberg B, Romdhani S, Vetter T (2007) Optimal step nonrigid
ICP algorithms for surface registration. In: 2007 IEEE conference
on computer vision and pattern recognition, pp 1–8. https://doi.org/
10.1109/CVPR.2007.383165

15. Spinczyk D, Karwan A, Copik M (2014) Methods for abdominal
respiratorymotion tracking. Comput Aided Surg 19:34–47. https://
doi.org/10.3109/10929088.2014.891657

16. Spinczyk D, Bas M (2019) Anisotropic non-rigid iterative closest
point algorithm for respiratory motion abdominal surface match-
ing. Biomed Eng Online 18:1–18. https://doi.org/10.1186/s12938-
019-0643-4

17. Sayeed RA, Darling GE (2007) Surface anatomy and surface land-
marks for thoracic surgery. Thorac Cardiovasc Surg 17:449–461.
https://doi.org/10.1016/j.thorsurg.2006.12.002

18. Mochimaru M (2017) Digital human models for human-centered
design. J Robot Mechatron 29:783–789. https://doi.org/10.20965/
jrm.2017.p0783

19. Zhu Y, Smith A, Hauer K (2022) Automated heart and lung auscul-
tation in robotic physical examinations. IEEE Robot Autom Lett
7:4204–4211

20. Sayeed RA, Darling GE (2007) Surface anatomy and surface land-
marks for thoracic surgery. Thorac Surg Clin 17:449–461. https://
doi.org/10.1016/j.thorsurg.2006.12.002

21. Alexiou E, Ebrahimi T (2020) Towards a point cloud structural
similarity metric. In: 2020 IEEE international conference on mul-
timedia and expo workshops (ICMEW), pp 1–6

22. Tsumura R, Koseki Y, Nitta N, Yoshinaka K (2023) Towards fully
automated robotic platform for remote auscultation. Int J Med
Robot Comput Assist Surg 19:e2461. https://doi.org/10.1002/rcs.
2461

23. Kim R, Schloen J, Campbell N, Horton S, Zderic V, Efimov I, Lee
D, Park CH (2021) Robot-assisted semi-autonomous ultrasound
imaging with tactile sensing and convolutional neural-networks.
IEEE TransMed Robot Bionics 3:96–105. https://doi.org/10.1109/
tmrb.2020.3047154

24. Tsumura R, IwataH (2020) Robotic fetal ultrasonography platform
with a passive scan mechanism. Int J Comput Assist Radiol Surg
15:1323–1333. https://doi.org/10.1007/s11548-020-02130-1

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1016/j.chaos.2020.110246
https://doi.org/10.4018/978-1-4666-9978-6.ch070
https://doi.org/10.1186/s12890-022-01896-1
https://doi.org/10.1007/s00431-019-03363-2
https://doi.org/10.1093/ehjdh/ztaa017
https://doi.org/10.1186/s12960-017-0238-8
https://doi.org/10.1002/ca.22780
https://doi.org/10.1109/icpr.2002.1047997
https://doi.org/10.1111/cgf.12178
http://arxiv.org/abs/2203.07858
https://doi.org/10.1109/CVPR.2007.383165
https://doi.org/10.3109/10929088.2014.891657
https://doi.org/10.1186/s12938-019-0643-4
https://doi.org/10.1016/j.thorsurg.2006.12.002
https://doi.org/10.20965/jrm.2017.p0783
https://doi.org/10.1016/j.thorsurg.2006.12.002
https://doi.org/10.1002/rcs.2461
https://doi.org/10.1109/tmrb.2020.3047154
https://doi.org/10.1007/s11548-020-02130-1

	Body surface registration considering individual differences with non-rigid iterative closest point
	Abstract
	Introduction
	Methods
	System overview
	Selection of reference body model closing to patient body
	Non-rigid iterative closest point for body surface registration

	Simulation
	Experiment
	Discussion and conclusion
	Acknowledgements
	References




