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Abstract
Purpose Artificial intelligence in computer vision has been increasingly adapted in clinical application since the imple-
mentation of neural networks, potentially providing incremental information beyond the mere detection of pathology. As
its algorithmic approach propagates input variation, neural networks could be used to identify and evaluate relevant image
features. In this study, we introduce a basic dataset structure and demonstrate a pertaining use case.
Methods Amultidimensional classification of ankle x-rays (n= 1493) rating a variety of features including fracture certainty
was used to confirm its usability for separating input variations.We trained a customized neural network on the task of fracture
detection using a state-of-the-art preprocessing and training protocol. By grouping the radiographs into subsets according to
their image features, the influence of selected features on model performance was evaluated via selective training.
Results The models trained on our dataset outperformed most comparable models of current literature with an ROC AUC
of 0.943. Excluding ankle x-rays with signs of surgery improved fracture classification performance (AUC 0.955), while
limiting the training set to only healthy ankles with and without fracture had no consistent effect.
Conclusion Using multiclass datasets and comparing model performance, we were able to demonstrate signs of surgery as
a confounding factor, which, following elimination, improved our model. Also eliminating pathologies other than fracture in
contrast had no effect on model performance, suggesting a beneficial influence of feature variability for robust model training.
Thus, multiclass datasets allow for evaluation of distinct image features, deepening our understanding of pathology imaging.
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Introduction

Artificial intelligence (AI) via neural networks is becom-
ing an increasingly important tool in diagnostic imaging. Its
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accuracy in detecting pathologies has been increased to and
even beyond the level of human radiologists [1–5]. Because
of its consistency, reproducibility, speed as well as resistance
to bias and distractors, a well-trained neural network has the
potential to assist not only in diagnostics [6, 7], but in research
as well, by reducing human effort in analyzing increasingly
large amounts of data. With its ability to be attuned to well
defined direct image features, indirect derivatives thereof or a
combination of both, its usage could provide insight into the
process of radiological pathology detection and recognition
underlying the network training.

Application of neural networks in computer vision is
widely established on two-dimensional real world images
[8], allowing for direct adaptation onto two-dimensional
radiographs. Even given their limited sensitivity, due to low
radiation dose, wide availability and the simple imaging pro-
cess, conventional radiographs remain the main screening
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and diagnostic tool in isolated musculoskeletal trauma. Rou-
tine evaluation by neural networks therefore is the logical
step of technological advancement for this modality.

In this study, we present a multiclass image dataset of
ankle x-ray examinations as well as improvements in image
preprocessing and augmentation on the performance of a
modified Inceptionv3-network in a clinical image classifi-
cation task. The dataset consists of ankle x-ray images taken
over 6 years at a single medical center, its intended primary
purpose is to be used as a training set for a variety of deep
learning algorithms in clinical application with a focus on
trauma diagnostics. Its multiclass design enables an analysis
of influencing factors as well as performance optimization,
as we demonstrate on a fracture prediction task.

Methods

Study population and dataset

The dataset included x-ray examinations of the ankle region
from adult patients at the trauma center of our institution
between 2017 and 2019. In order to balance the train-
ing datasets regarding the proportion of fracture-containing
examinations (from here on referred to as fracture-positive in
contrast to fracture-negative ones, whichwere devoid of frac-
tures), fracture-positive ankle examinations from the years
2013 to 2016 were selectively included. The image data were
imported from PACS into the NORA application for further
processing.NORA is a software designed to improve the con-
nection between research and clinics in the field of medical
imaging and offers customized integrated solutions to visu-
alize and process medical imaging data [9]. The study was
approved by the local ethics committee (reference: 570/19),
written informed consent was waived. We minimized ini-
tial examination preselection by manually excluding only
unique anatomical or post-therapeutic variations as well as
gross deviations from standard image projections. In total,
we imported 1,493 examinations for further network train-
ing and testing (Fig. 1).

Images were then classified into anteroposterior (ap) and
lateral projections of the ankle, disregarding mortise projec-
tions for their lack of prevalence in routine ankle trauma
workup at our institution. Exclusion due to clinical reasons
was not performed, neither didwe exclude examinationswith
osteosynthetic materials, prostheses, obstructed images or
those displaying pathologies other than ankle fractures, but
rather classified them into respective selective and partially
overlapping training subsets.

Rating and annotation

Aside from image classification according to projection, data
was also classified at examination level using an NORA -

Table 1 Ankle fracture dataset

Fracture
class

Image feature Examinations

0 No fracture 1157

1 Certain fracture (certain
radiographic feature like
discontinuity or fragment in
either projection)

236

2 Faint fracture (faint fracture line
or cortical irregularity)

65

3 Doubtful or avulsed fracture
(uncertain fragment, possibly
ossicle)

35

Nominal fracture classes, discernibility and number of examinations for
each class. Fracture class 3was included because of frequent uncertainty
regarding ossicles at subfibular and subtibial positions

embedded custom rating tool to rate relevant aspects. These
included image quality, existence and graded certainty of
fracture, plaster casts, internal foreign bodies, joint config-
uration, previous surgery, other pathologies of the bones as
well as soft tissue lesions and swelling (see suppl. Table 1
and Table 1).

Ratings were performed in consensus reading by two
raters [SK, specialist trainee radiologist, MR, musculoskele-
tal sub-specialized board-certified radiologist] under con-
sideration of the final examination reports, which had been
created and reviewed at the time of examination by a special-
ist trainee and board-certified specialist of our institution,
respectively. Reading error inherent to projection imaging
was addressed in case of multiple examinations per patient
by considering patient history as well as rating the images
for repeat and follow-up examination for each patient in suc-
cession to allow for the possibility of later demarcation of
fracture lines to accurately assess doubtful fracture aspects.
While using all available supportive information in this way
for optimized interpretation of its displayed features, every
examination was rated on its own terms.

Fracture certainty was likewise classified according to
maximum visibility in either projection to be able to aggre-
gate information from both projections in trauma-oriented
future analysis as well as to not exclude potential signifi-
cant features unrecognizable to the human eye. Thus, in the
frame of their examination, images were rated according to
the full extent of the available patient data. Examinations
were anonymized after image annotation.

Image preparation

Images contained in the data set varied in size, resolution,
field-of-view and brightness spectrum. In order to optimize
evaluation by the network, an equalizing procedure for these
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Fig. 1 Schematic workflow for
dataset creation and training

Fig. 2 Image triplication for compatibility with the three-layered images in imagenet-pretrained network models. Inversion and edge-enhancing
filters applied to second and third layers

image properties preceded consecutive randomized augmen-
tation steps to provide homogenous training images.

To this goal, the single-channel radiolucency values were
normalized and cast to a spectrum of 8-bits. Images were
resized and resampled to a uniform size of 1.6 times the
input size of the neural network to minimize information
loss during image augmentation.Whilemedical x-ray images
consist of one single channel of radiolucency values, digital
encoding of color information commonly uses three chan-
nels in superposition. Such is the case for imagenet, a large
database of classified two-dimensional natural images [10],
where color layers are stored in three-dimensional arrays. To
ensure compatibility with imagenet-pretrained networks, we
embedded the x-ray images in three-dimensional arrays by
filling the otherwise unused or redundant channels with fil-
tered copies of the original image run through a brightness
inversion filter in the second and an edge-enhancing filter

(based on Adaptive mean thresholding) in the third channel
(Fig. 2). For the training purposes presented here, eligible ap-
viewswere randomly grouped into proportionally fixed-sized
training (80%) and validation (20%) sets after completion of
image annotation. The ratio was preserved for the image sub-
sets used for specific training as described in the following,
validation sets were not used for model training. In order to
minimize effects of overfitting,we also ensured that all exam-
inations of individual patients were assigned exclusively to
the training or validation sets (Fig. 3).

Comparative training, network and training protocol

We hypothesized improved prediction for models trained on
images selected according to stricter feature criteria for their
reduced amount of confounding features, and intended to
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Fig. 3 a Number of examinations and fracture distribution in image subsets b Examinations and gender specific fracture distribution

Fig. 4 Training subset definitions

quantify this by comparing selectively trained model per-
formances using their area under the receiver operating
characteristic curves (ROCAUC). Selective trainingwas per-
formed by defining training subsets according to the assigned
labels of their images.

In particular, we intended to investigate the effect of vis-
ible signs of therapy such as osteosynthetic materials and
plaster casts as indirect indicators of fracture, such that
models trained on an image set consisting of all ankles
(unrestricted set) were compared to those trained on a set
defined by excluding images displaying therapeutic appli-
ances (pretherapeutic set). Further excluding images dis-
playing non-traumatic osseous lesions such as tumors or
excessive degeneration (filtered set) enabled training of a
“baseline” model on only normal and fractured ankles with-
out other pathologies (Fig. 4). The analysis was extended by
comparing model performances after successive inclusion of
lower fracture certainty classes (fracture classes 0 vs 1, 0 vs
1–2, and 0 vs 1–3).

Feature filtering was performed on both training
and validation subsets for everymodel. Excluded
examinations were not redistributed to other classes

An imagenet-pretrained Inceptionv3-network architecture
was modified by removing the top layers and adding one
two-dimensional global average pooling, dropout and dense
convolutional layer each onto the network as provided by the
Keras API [11, 12]. The output layer was defined as a dense
layer using SoftMax-activation.

Network architecture, training runs and dataset augmen-
tation were implemented using the Tensorflow 2.6 library
[13]. Performances were monitored and recorded via Ten-
sorboard by registering loss, categorical accuracy, precision,
recall and ROC AUC for the training set. The initial learn-
ing rate was set to 0.1 and gradually decayed down to 0.005
over the course of training using a polygonal decay. We used
Adagrad as a solver, performing no specific hyperparameter
tuning.

Training runs were uniformly set to 200 epochs of 100
steps using a batch size of 15 images. In order to achieve
equally-mixed training batches, label-based balancing was
performed on batch generation, as well as data set augmen-
tation. Augmentation consisted of random vertical image
flipping, rotation of up to 20°, contrast adjustment and image
cropping. Afterward, images were resized to an input size
of 340 × 512 pixels, which was determined by taking into
account the oblong shapeof ankle radiographs aswell asGPU
memory capacity. All hyperparameters were set empirically
and kept constant for all training runs. Validation results were
calculated using integrated Tensorflow prediction functions
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and Scikit-learn 0.24.2. For training, we used NVidia GTX
1080 TI-GPUs on dedicated server machines.

Results

As our total training dataset was biased in favor of its frac-
ture prevalence, no epidemiologically valid conclusions can
be drawn from it as is. For the unbiased subselection from
2017–2019, 1,255patientswere included.Themale predomi-
nance of 689 vs 566 female patients suggests a predisposition
of male gender to relevant trauma exposure and subsequent
imaging diagnostics in the setting of radiographic imaging
numbers. While in agreement with [14, 15] the proportion
of fractures to examinations was higher in female patients,
there was no significant gender bias (Fig. 3). Examination
numbers by fracture certainty class are listed in Table 1.

Filtering images by non-fracture features as explained
above produced the following subsets:

1. Unrestricted set: The initial image inclusion crite-
ria yielded 1,493 images (335 fracture-positive, 1,158
fracture-negative).

2. Pretherapeutic set: Reduction to pretherapeutic x-rays
yielded 1,313 images (212 fracture-positive, 1,101
fracture-negative).

3. Filtered set: Limiting the pretherapeutic images to those
devoid of other bony pathology and foreign bodies lead
to 1,225 studies (168 fracture-positive, 1,057 fracture-
negative).

The results were compared between the described frac-
ture certainty classes 1 to 3 and the fracture-negative class
0 cases (Table 1). On the unrestricted dataset, the imagenet-
pretrained Inceptionv3-network achieved a maximum AUC
of 0.904 for overall fracture detection on the validation set
(class 0 vs classes 1, 2 and 3) with an accuracy (ACC) of
0.874. Narrowing the set to fractures of better discernibil-
ity by excluding doubtful (0 vs 1, 2) and faint fractures (0
vs 1) resulted in an AUC of 0.938 (ACC 0.884) and 0.943
(ACC 0.903), respectively. For all detection tasks, training
on the pretherapeutic subset resulted in a higher AUC com-
pared to training on the unrestricted subset. This relation
proved robust to slight hyperparameter variations, whereas
there was no consistent trend when comparing the models
trained on the unrestricted to those trained on the filtered set.
The complete results comparing the different datasets and
subsets concerning fracture certainty are presented in Table
2.

Discussion

In this study, we introduced a dataset of annotated ankle x-
rays and demonstrated the effect of its multiclass labeling

by performing network training on the task of automated
fracture detection on distinct subsets of images, thus quan-
tifying the influence of selected image features. By utilizing
customized state-of-the-art preprocessing and augmentation
methods on both the images themselves as well as the com-
position of the training data set, our study performed better
compared to most contemporary ankle studies, including
both convolutional neural networks [16, 17] and traditional
machine learning methods [18]. For convolutional neural
networks, the prevalent training protocol incorporates ran-
dom dataset augmentation as performed in our study as well
as triplication of the medical image for use on imagenet-
pretrained networks.

Kim and colleagues achieved a mean AUC of 0.89 on ap-
views using the pretrained Inceptionv3-network architecture
without layer customization on a similarly sized dataset of
1226 examinations and a comparable augmentation scheme
[16]. The ratio of positive to negative images was almost
inverted with mostly fractured ankles (85% against 15%),
which for a binary classification task should result in a com-
parable sampling bias. We attribute the increase in our AUC
to the custom layers of the network as well as the addi-
tional information provided by the filtered images in the third
dimension. Kitamura and colleagues reached an accuracy of
up to 81% when combining both different ankle projections
as well as different networks [17]. Utilizing the Inceptionv3-
network by itself, the accuracy reached 74% for all three
standard projections combined, 70% for a single view. Half
of their dataset of 596 images were of fractures, eschewing
the need for fine balancing during training. In contrast to our
study, training was de novo, i.e., without pretrained models.

We noted no obvious correlation of high ROC AUC with
high accuracy for our models, which we attribute mainly to
the skewed balance of our initial image data set. Since accu-
racy is equal to the rate of true classifications, it would be
suboptimal as a performancemetric for fracture incidences at
our institution, as models biased toward non-fracture would
be favored. While accuracy is a valid measure of model per-
formance, its higher dependence on pretest probabilitywould
explain the prevalence of the ROC AUC-metric in literature.
However, in spite of our unbalanced set, our best performing
models according to AUC also featured higher accuracies
than those reported by Kitamura, indicating improved gen-
eral performance.

In addition to the customnetwork layers and the triplicated
filtered images, the training regimen itself differed in that it
was de novo in contrast to our transfer learning approach.
Althoughmedical images differ from the natural images used
for imagenet-pretraining, larger and more diverse dataset
sizes in combination with training on x-ray images for fine-
tuning an already well-trained network apparently leads to
convergence on a more robust parameter minimum within
the reasonable timeframe of our training protocols.
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Table 2 Model performances per
subset and task Validation set AUC

(ACC)
Fractures 0vs1 Fractures 0vs12 Fractures 0vs123

Unrestricted 0.943 [0.903—0.964]
(0.903)

0.938 [0.907—0.965]
(0.884)

0.904 [0.872—0.934]
(0.874)

Pretherapeutic 0.955 [0.926—0.979]
(0.919)

0.954 [0.926—0.978]
(0.895)

0.917 [0.870—0.948]
(0.871)

Filtered 0.939 [0.909—0.968]
(0.895)

0.946 [0.916—0.973]
(0.883)

0.896 [0.850—0.937]
(0.879)

Network performance in ROC AUC (ACC) for classification of fracture against no fracture: detection of
certain fractures (0vs1), certain or doubtful fractures (0vs12) and certain, doubtful or possibly avulsed fractures
(0vs123). 95% confidence intervals in brackets as calculated via bootstrapping (10,000 repeats) are not an
indication for statistically significant differences between models, since training was performed on distinct
subsets

The level of results attainable using neural networks is
indicated in a multicenter, multiregion and multinetwork
study of fracture detection by Jones and colleagues with a
total of 715,434 images (median 40,658 per region) contain-
ing about 12% fractures, which achieved an AUC of 0.983
for the ankle regionwithout artificial data augmentation [19].

Given the obvious difference in training set size between
this large-scale study with the number of images one order
of magnitude higher than ours, we attribute the largest part
of the difference in performance to quantity and quality of
the training set, and consider the choice and rigorous training
of the network the second largest factor. Additional factors
include augmentation, pretraining status of the network and
the duration of training. Comparing the performance differ-
ence of our study to those of comparable set sizes andnetwork
structure especially in light of this very different study, the
effects of improved preprocessing, optimized network layers
as well as refined image data augmentation methods become
evident.

Utilizing the remaining two color channels by copying
especially the edge-enhanced filtered image might have pro-
vided additional benefit, although the exact extent of this
needs to be addressed in dedicated investigations. In gen-
eral, isolating and emphasizing imaging features for easier
identification by a human investigator is thought to improve
network performance at least in terms of convergence speed
as well, but to our knowledge, no relevant evidence has been
published at the time of writing.

In this regard, our aim to achieve a high precision using
several improvements over common practice on average-
sized image datasets could contribute to this question.

In order to gauge the influence of distinct image features
on fracture classification performance, we performed train-
ing runs with and without images containing the features in
question.

When training on the pretherapeutic image set without
therapeutic appliances, models consistently performed better
than on the unrestricted data set. The reason for this behavior

might be the follow-upswith andwithout visible fracture fea-
tures leading to lower correlation of fracture with therapeutic
materials. Limiting the set to pretherapeutic images removed
the palpable, confounding feature set of implants and ban-
dages, effectively reducing the variability of possible image
features, presumably simplifying the classification task.

On the other hand, reducing the image feature set even
more by excluding other pathologies in the filtered set might
have decreased the variability of training image features to a
degree that overall prediction performancewas reduced again
to the initial level of the model trained on the unrestricted set.

Limiting training to ap-projections of the ankle while hav-
ing rated fracture certainty asmaximumvisibility on both ap-
and lateral projections invariably leads to discrepancy, which
we chose not to address for the results presented here.

On the one hand, to some degree, misclassifications in a
sufficiently large and diverse data set serve to improve net-
work robustness, as in principle, fracture and non-fracture
status exist on a spectrum of possible pathologies with
overlapping imaging and clinical features, so that imaging
findings conceptually need to be differentiated from objec-
tive diagnosis. A desirable network prediction thus would
recreate that degree of overlap so that the variety of possible
morphologies can rather be accounted for during interpreta-
tion of said prediction. To what level additional findings like
secondary fracture signs could serve to aid that interpretation
on a network level needs yet to be examined.

On the other hand, wewould argue that rating an objective
property apparently not visualized on the rated image con-
ceptually extends the prediction process over those features
recognizable to the human reader, whereas implementing a
decision logic for separately trained, self-contained network
predictions on different views equals a potential limitation
to the level of optimal human performance. To make full use
of a machine’s potential to permit complementary and com-
prehensive interpretation, it would therefore be necessary to
expose it to a more comprehensive set of information than
that contained in a single view.
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Conclusion

In conclusion, the results presented here demonstrate the
multidimensional nature of influence on neural network
performance and the advantage of training on a dataset con-
taining ratings of additional features instead of only those the
detection of which it is intended to train. Systematic analysis
of various subsets offers insight into the relations of distinct
image features and ultimately may help training classifica-
tion networks by optimizing their training protocol. To this
end, we defined a multiclass dataset of ankle x-ray images
and compared the performance of a neural network trained on
it to contemporary models, where additional beneficial fac-
tors for classification performance on medical images could
be identified in preprocessing and customization of network
top layers.

We plan to expand our multidimensional dataset in size
and maximize its use in creating a robust supportive diag-
nostic tool for ankle x-rays as well as explore the relations
of distinct image and clinical features to further our own
understanding of pathology detection in conventional mus-
culoskeletal imaging.
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