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Abstract
Purpose For computer-aided planning of facial bony surgery, the creation of high-resolution 3D-models of the bones by
segmenting volume imaging data is a labor-intensive step, especially as metal dental inlays or implants cause severe artifacts
that reduce the quality of the computer-tomographic imaging data. This study provides a method to segment accurate, artifact-
free 3D surface models of mandibles from CT data using convolutional neural networks.
Methods The presented approach cascades two independently trained 3D-U-Nets to perform accurate segmentations of
the mandible bone from full resolution CT images. The networks are trained in different settings using three different loss
functions and a data augmentation pipeline. Training and evaluation datasets consist of manually segmented CT images from
307 dentate and edentulous individuals, partly with heavy imaging artifacts. The accuracy of the models is measured using
overlap-based, surface-based and anatomical-curvature-based metrics.
Results Our approach produces high-resolution segmentations of the mandibles, coping with severe imaging artifacts in the
CT imaging data. The use of the two-stepped approach yields highly significant improvements to the prediction accuracies.
The best models achieve a Dice coefficient of 94.824% and an average surface distance of 0.31 mm on our test dataset.
Conclusion The use of two cascaded U-Net allows high-resolution predictions for small regions of interest in the imaging
data. The proposed method is fast and allows a user-independent image segmentation, producing objective and repeatable
results that can be used in automated surgical planning procedures.

Keywords Automated surgical planning · 3D-Unet · Medical image segmentation · Mandible segmentation · Anatomical
curvature · CT segmentation · Artifact-free segmentation · Data augmentation

Introduction

Patient-specific computer planning has become an indispens-
able tool for complex surgeries in the cranio-maxillofacial
domain such asmandibular reconstructions [1, 2]. Large parts
of these planning procedures can be automated to standard-
ize the treatment and to overcome operator dependence in
the planning stage [3–5]. However, the upstream process of
capturing the correct geometrical surfaces of the relevant
anatomical compartments from medical imaging data has
only been scarcely investigated, even though it is paramount
for the accuracy and the success of any subsequent virtual
surgical planning.
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Computed tomography (CT) scans of the head are often
strongly affected by imaging artifacts caused by metal inlays
or implants. Manually removing these artifacts is a time-
consuming and labor-intensive process, amplifying the need
for automated segmentations.

In many clinical domains, medical image segmentation
has been disrupted by recent approaches using different tech-
niques, synoptically referred to as artificial intelligence. The
U-Net architecture [6] based on a fully convolutional network
for semantic segmentation [7] has shown to outperform com-
peting algorithms to segment various body parts including
lung, liver, bone and pathological region such tumor [8–10].
The segmentation of the mandibular bone was the topic of
recent publications and segmentation challenges [11, 12].
The approaches in theseworks are promising and showpartly
convincing results.

However, none of the approaches have yet focused on the
assessment of the segmentations with the aim of usage in a
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clinical process chain of surgical planning for facial recon-
struction. For the use of segmented data of the mandible in
virtual surgical planning, specialized criteria need to be con-
sidered, as not all anatomical structures of the mandibular
bone are equally important in the scope of reconstruc-
tive surgery. Due to capacity restrictions of the computing
devices, processing full resolution, three-dimensional CT
scans by Convolutional Neural Networks (CNNs) is not fea-
sible.

Thus, we aimed to develop a fully automated pipeline to
perform accurate segmentations of the mandible from CT
imaging, that can be used for surgical planning of mandibu-
lar reconstructions while retaining a feasible computational
effort to allow use in clinical routine. The models are trained
using a large real-world dataset of mandibles, originating
from the context of surgical planning. In this pipeline, we use
data augmentation, and we evaluate three different loss func-
tion, i.e., the Dice loss, Tversky loss [13] and Focal Tversky
loss [14]. For the evaluation of the accuracy, we introduce
the caudolateral curve distance, an observer-independent,
anatomically inspired metric that respects bony curvatures
[4] and thus relates the segmentation’s accuracy better to clin-
ical requirements as compared to established generic metrics
such asDice coefficient or 3D surface deviationswith the aim
of producing data for subsequent surgical planning.

Material andmethods

For the semantic segmentation of volumetric imaging data,
we use a 3D-U-Net architecture based on [15] and as depicted
in Fig. 1.

Two-step approach

The input sizes of three-dimensional CNNs are limited by
capacity restrictions of the computing devices. To overcome
this limitation, we propose a two-step approach that uses the
result of a first step, low-resolution segmentation to define a
bounding box for a second segmentation step that takes into
account only the actual area of interest as detected by the first
run [16] as depicted in Fig. 2. Thus, a first U-Net was trained
on the whole input image data down-sampled to the common
input size of 144 × 144 × 144 voxels. For the training of a
second U-Net, the full resolution input images were cropped
to the bounding boxes of the ground truth segmentations and
also sampled to the resolution of 144 × 144 × 144 voxels.
Apart from the different training data, both networks were
trained with identical parameters.

Data preprocessing and augmentation

The input CT images are stored with voxel values repre-
senting the local radio-density expressed in Hounsfield units
(HU). While the representable range depends on the specific
implementation of the CT manufacturer, it usually covers at
least values from − 1024 HU to 3071 HU.

For this study, the Hounsfield units were clipped to the
range of − 1024–3071 and mapped linearly to floating
point numbers ranging between 0 and 1. Since values above
2000 are nearly exclusively reserved to artificial materials
like metals, the remaining range covers all relevant informa-
tion regarding bones and tissue in the input images while
still being able to distinguish them from foreign bodies like
implants, inlays, or osteosynthesis materials [17]. For the
training of the first step model, the three-dimensional images
were then down-sampled to a size of 144× 144× x144 vox-
els using a third-degree spline interpolation.

For the second stepmodel, the images were cropped to the
padded bounding boxes of the ground truths, before being
resampled again to a size of 144 × 144 × 144 voxels.

To reduce overfitting of the model, we applied several
methods of data augmentation during the training pipeline
[18]. Mirroring, spatial translations, blurring, additive Gaus-
sian noise, down-sampling, scaling, rotations and elastic
deformations were used as provided by the batchgenerators
library [19].

Loss functions

Since the field of view of the underlying CT scans usually
contains the entire head and neck region, the mandible only
occupies a relatively small part of the imaging data. Thus,
three loss functions that are beneficial in dealing with this
imbalance issue were chosen for training of the networks.

The Dice loss (DL) function is defined as (1–Dice Coeffi-
cient (DC)) and measures the overlap of the ground truth and
the prediction in relation to the sum of both volumes. Since
the background is not considered, weighting factors are not
necessary to establish the right balance between foreground
and background voxels [20].

The dice coefficient is defined as.

DC = 2TP

2TP + FN + FP
;

where TP (true positives) is the number of overlapping vox-
els from the ground truth and the prediction and FN (false
negatives) and FP (false positives) are the numbers of vox-
els present either only in the ground truth (FN) or prediction
(FP), respectively.

The Tversky loss (TL) function, derived from the Tversky
Index (TI) [21] is extending the Dice loss with the weighting
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Fig. 1 The 3D-U-Net architecture used in this study. All convolutions have kernel sizes of 3 × 3 × 3 while all max-pooling and up-convolution
operations have kernel sizes of 2 × 2 × 2

factors α and β to control the magnitude of penalties for false
positives and false negatives, respectively:

TL = 1 − TI = 1 −
(

TP

TP + αFN + βFP

)
.

For α + β = 1 and β > α, it weights sensitivity higher
than precision by emphasizing false negatives more.

The Focal TverskyLoss (FTL) uses the parameter γ to add
nonlinearity to the Tversky loss. This nonlinearity allows for
controlling how the loss behaves at different Tversky Indices.

FTL = (1 − T I )γ

By setting γ > 1, a higher loss gradient is achieved for
harder examples of TI < 0.5. This enables the model to focus
on learning the harder examples such as highly imbalanced
data which usually get smaller TI [14]. For this study, we
selected α = 0.3, β = 0.7 and γ = 4/3 based on the values
proposed by [14].

Post-processing

Before transforming the voxel-based network prediction to
three-dimensional surfaces for subsequent evaluation, a 3D
binary erosion and a Gaussian smoothing were applied to the
network output to remove small outliers and smooth the sur-
faces. The erosion was required since the conversion from
surface data to voxel-based training data produces slightly
dilated structures. Finally, the 3D voxel-based data were
converted to surface models by using the marching cubes
algorithm [22].

Evaluationmetrics

For quantification of accordance between automated seg-
mentations and ground truths, five different metrics were
used that are described in the following.

The Dice similarity coefficient (DSC), as defined in
Sect. "Loss functions," is a widely used generic metric for
accordance between three-dimensional closed objects, often
used to measure the performance of computerized segmen-
tation in medical imaging [23].

The average surface distance (ASD) describes a projection
of the test surface to a reference surface.Advantageous in this
metric is that it is respecting outliers in a meaningful way,
as the distance of the potential outliers from the reference
surface is considered. Sinceweused a one-directional surface
distance, the computed distances would differ for switched
tests and reference objects.

The Hausdorff distance is a metric defined as the max-
imum of the 3D surface distance and the derived 95%-
Hausdorff distance (95HD) is defined as the 95th percentile
of all surface deviations, thus being more robust against out-
liers [24].

In previous works, a caudolateral curve was introduced
that describes the caudolateral demarcation of the mandible
and may be used for the automated planning of facial recon-
structions with bone transplants [4]. In the present work, this
curve was automatically generated by projecting a curve that
is individualized by automatically detected landmark points
on the mandible [25]. For the caudolateral curve distance
(CCD), the 3D surface distance is calculated between the
anatomical curves of the ground truth of the ground truths
and the predictions. This metric only considers connected
parts of the mesh and is thus very vulnerable to disconnected
predictions.
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Fig. 2 Suggested two-step approach of this study consisting of a first step for localization of the region of interest using a low-resolution prediction
(orange) and a second step for a refined prediction (green) (color figure online)

Lastly, sinceweuse theprediction from thefirst stepmodel
to compute a bounding box of the mandible to crop the input
image to, the intersection-over-union of the bounding boxes
(BB IoU) of the ground truths and predictions is used to
assess the quality of the predictions regarding its usefulness
for the cropping step.

Patient data

The data used in this study comprised a total of 307 sub-
jects from our institution who had undergone CT scans
of the head and neck region for clinical indications in the
time between 2007 and 2015. Criteria for exclusion in pri-
mary data collection were bone fracture and history of facial
trauma, bone transplant or augmentation, and bony malfor-
mation due to syndromes or other congenital craniofacial
anomalies or mandibular tumors. Dental status was not cho-
sen as a selection criterion, thus the data comprises fully
and partial dentate, as well as edentulous mandibles. The
pixel spacing varied from 0.2 to 0.9 mm in both lateral
axes. In the vertical axis, the variation ranged from 0.1 to
4 mm but most of the data had a slice distance of 0.7 mm.
Patients with any evidence of skeletal mandibular disease
and malformations were excluded based on judgments by
an experienced cranio-maxillofacial surgeon. For conformity

with legislation on data protection, all subjects’ data were
pseudonymized. No consecutive scans of the same patients
were included in the dataset to avoid data redundancy. 63.5%
(195) of the patients were male and 36.5% (112) female, the
mean age was 63 years. No data on ethnic origin of the sub-
jects were available.

The ground truths were prepared by cranio-maxillofacial
surgeons using a semi-automated process in the software
Mimics 14 (Materialise Inc., Leuven, Belgium). Based on
threshold-based pre-segmentations, the surgeons labeled the
CT images in three axes in space to triangulate 3D geometric
surface information of each mandible in STL format using a
marching cubes algorithm. The segmentations included the
mandible bones as well as themandibular teeth, imaging arti-
facts weremanually removed at the discretion of the operator
[Fig. 3], as previously described [26]. For the training of the
network, the 3D surfaces were converted back to binary vol-
umetric data.

Study design

The data were divided into a training set of 248 samples, a
validation set of 30 samples and a test set of 29 samples. We
used a fully random selection to divide our set of data into
these three groups. For all models used for the generation
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Fig. 3 Imaging artifacts in a CT
acquisition. On the left:
Projection of a threshold-based
segmentation with a threshold of
250 HU (green) and of the
ground truth segmentation
(magenta) on a CT slice. On the
right: 3D-renders of the same
segmentations. The ray-shaped
artifacts are clearly visible (color
figure online)

of the results below, the same distributions were used. The
modelswere trained on the training and validation sets for the
first and second step independently using each in combina-
tion with either the Dice loss, Tversky loss, or Focal Tversky
loss functions, respectively, while the loss functions were the
same for both corresponding steps.

All predictions generated with the different models were
evaluated with the metrics described in Sect. "Evaluation
metrics."

Statistical evaluation

To evaluate the statistical significance of the results, mul-
tiple dependent t-tests for paired samples were performed.
For each of the five evaluated metrics, tests were performed
to determine the significance for the use of the two-step
approach as well as pair-wise comparisons of the three loss
functions for both the first and the second step. The resulting
p-values from the comparisons between the loss functions
were corrected, independently for each evaluated metric,
using the Holm-Šídák method [27]. Depending on the result-
ing p-values, results were classified as “not significant” (p
≥ 0.05), “significant” (0.01 ≤ p < 0.05), “very significant”
(0.001 ≤ p < 0.01) or “highly significant” (p < 0.001).

Results

Qualitative results

Predictions from all different models for one exemplary
patient from the test dataset are seen in Fig. 4. All models are

able to remove the imaging artifacts present in the imaging
data.

While the single step predictions show to have problems
identifying narrow parts of the bone, especially the condy-
lar and the coronoid processes, overall good predictions with
highly accurate segmentations for most parts of the bone
are achieved by all two-step models. However, problematic
regions for segmentationwere found at the teeth and condyles
[Fig. 5]. For the single step predictions, the TL and FTLmod-
els provide visibly better results than the DL model [Fig. 4],
while for the two-step setup, a visual distinction between the
shapes predicted from the different model is the choice of
loss functions has less influence on the shapes [Fig. 6].

In general, toothless mandibles are segmented very accu-
rately overall, while dentatemandibles showed imprecisions,
especially at the tooth cusps [Fig. 6].

Quantitative results

The quantitative evaluation of the trained models on the test
dataset is seen in Table 1, the statistical evaluation in Table
2.

Single step

For the single step setup, the use of asymmetric loss func-
tions (Tversky loss and Focal Tversky loss) provides highly
significantly better results than the use of the Dice loss for
all regarded metrics except the Dice score itself, indicating
an advantage of these losses for imbalanced sizes of labeled
and unlabeled regions. The ASD and 95%HD are slightly
better for the first step FTL model than for the TL, while
it’s the opposite for the Dice score. All single step models
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Fig. 4 Threshold segmentation, ground truth and predictions from all si x evaluated models for an individual from the test dataset

Fig. 5 Projection of the surface distance (right) between a prediction from a two-step Tversky loss model (middle) and the corresponding ground
truth (left)

Fig. 6 Predictions from all two-step models and the corresponding ground truths for six patients from the test dataset
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Table 1 Evaluation of all models
based on average surface
distance (ASD), 95% Hausdorff
distance (95HD), Caudolateral
curve distance (CCD), Dice score
(DSC) and bounding box overlap
(BB IoU)

Model ASD (mm) 95HD (mm) CCD (mm) DSC (%) BB IoU (%)

Single step + dice
loss

1.34 ± 0.27 2.58 ± 0.45 9.44 ± 4.95 92.95 ± 1.89 81.89 ± 5.81

Single step +
Tversky loss

1.09 ± 0.23 2.28 ± 0.42 6.94 ± 4.93 91.75 ± 1.58 85.63 ± 4.63

Single step + focal
Tversky loss

1.03 ± 0.20 2.19 ± 0.38 5.94 ± 4.13 91.54 ± 1.64 85.76 ± 4.46

Two-step + dice
loss

0.36 ± 0.11 0.90 ± 0.31 1.24 ± 0.77 94.82 ± 1.91 93.38 ± 2.79

Two-step +
Tversky loss

0.31 ± 0.09 0.96 ± 0.44 1.30 ± 1.02 93.87 ± 1.71 94.74 ± 2.12

Two-step + focal
Tversky loss

0.35 ± 0.08 0.97 ± 0.31 1.71 ± 1.39 93.94 ± 1.79 94.85 ± 3.02

Table 2 Statistical evaluation
using related t-tests and
Holm-Šídák correction

Comparison ASD 95HD CCD DSC BB IoU

Single step ↔ two-step < < < < < < < < < < < < < < <

DL↔ TL (single step) < < < < < < < < < > > > < < <

DL ↔ TL (two-step) < < < > > > < < <

DL ↔ FTL (single step) < < < < < < < < < > > > < < <

DL ↔ FTL (two-step) > > > > < < <

TL ↔ FTL (single step) < < < < < > >

TL ↔ FTL (two-step) > > >

“ > ” indicates the left side of the comparison performed better and “ < ” that the right side performed better
(< / >) indicate “significant” differences, (< < / > >) “very significant” differences and (< < < / > > >) “highly
significant” differences

experience high errors for the caudolateral curve distance in
combination with high standard deviations. Since the mod-
els failed to predict a connected mandible for many subjects
from the test dataset, the correct calculation of the caudolat-
eral curve for these examples fails. In comparison with this
metric, the average surface distance and the 95% Hausdorff
distance are usually much lower, with an average surface
distance of below 1.4 mm and a 95% Hausdorff distance of
below2.6mm for all regardedmodels. The intersection-over-
union of the bounding boxes of the prediction and the ground
truth are all within the range of 81–86%, indicating a good
basis for a cropping step.

Two-step approach

For all metrics except the Dice score, a combination of the
second step model with a first step model using the same
training configuration was used, the Dice score was com-
puted based on the cropping from the ground truth data.

In contrast to the single step approach, the differences
between the different loss functions are much less pro-
nounced for the two-step approach. The Tversky loss is
highly significantly better than the Focal Tversky loss for

the average surface distance, while for the other metrics all
differences are insignificant. The Dice loss performs highly
significantly better than both other loss functions for the Dice
coefficient but is worse than them for the surface distance.
For the caudolateral curve distance, the differences between
the loss functions are insignificant.

All models yield an average surface distance below
0.4 mm, a 95% Hausdorff distance below 1.0 mm and a
caudolateral curve distance below 1.8 mm. The caudolateral
curve distance is not only much smaller than for the single
step results, but also has a much lower standard deviation.

Overall, the two-step approach vastly and highly signifi-
cantly outperforms the single step approach in all configura-
tions. While the dice scores indicate relatively good results
for the single step segmentations, the surface-based metrics
all show how the second step significantly increases the accu-
racy of the model.

The models reach accuracies in surface distances in the
orders of magnitude of the underlying CT voxel spacing.
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Discussion

The approach described in this paper could demonstrate its
applicability for the given task of mandible segmentation
out of CT data. The accuracy showed to be sufficient for
potential subsequent use in surgical planning, e.g., for facial
reconstructions.

The first step models benefit highly from the use of the
Tversky or Focal Tversky loss functions in comparison with
the Dice loss function, this effect showed to be negligible
for the full two-step setup. The finding of superior perfor-
mance of non-symmetric loss functions in the first step and
the diminishing of this effect in the second step may be
attributed to the fact that labeled and unlabeled regions are
more balanced in the latter step.

The two-step approach provided significantly better
results than a single step method with the same resolution.
The detection of the region of interest in the first step showed
to be robust with no false detections in the investigated test
dataset.

One of the main benefits of the presented approach is that
it enables an efficient and objective way to get accurate seg-
mentations of themandible for subsequent surgical planning.
This is a crucial step in computer-aided operation planning.
The fact that our set of training data was derived from a
previous study focusing on data acquisition for reconstruc-
tive surgical planning, makes the data suitable for a potential
application in this specific takt. Providing a fully automated
segmentation model requires considerable work, consider-
ing the time and effort invested in preparing the training
datasets. However, once the trained models are provided,
the segmented mandible can be accessed without the tedious
and time-consuming processes in manual or semi-automatic
segmentation methods [28–30]. On anNVIDIA Geforce RTX
2080Ti running the two-step predictionpipeline on aDICOM
dataset takes approximately 31 s.

Since our model operates on high-resolution datasets, it
allows segmentation of the mandible directly from the input
CT imaging, without any manual interaction. For this study,
the input for the second step models was resampled to a uni-
form size of 144× 144× 144 voxels. However, once trained,
ourmodel can operate at larger or smaller resolutions as well,
allowing to skip the resampling step to obtain predictions in
the original resolution of the CT images.

Our proposed pipeline uses the ground truth-based crop-
ping only for the training pipeline. For the evaluation as well
as for a potential application in clinical practice the second
step would crop the field of view based on the result from the
first step. The real-world application will thus not rely on the
presence of a ground truth segmentation.

In the recent review paper on automatic segmentation of
mandible by Qui et al., eleven studies of deep learning-based
models with a two-step approach were compared [12]. [31]

achieved a DSC of 93.12% and a 95HD of 2.48 mm on their
In-house dataset as well as a DSC of 95.00% on the pub-
licly available PDDCA dataset while Dijk et al. achieved a
DSC of 94.00% and a 95HD of 1.3 mm on their In-House
dataset from 693 patients. Our two-stepmodel with Dice loss
achieves comparable performances (DSC of 94.82%, 95HD
of 0.9 mm).

In [32], the authors propose an automated segmenta-
tion based on a prior shape model to segment CBCT scans
affected by metal artifacts. On their in-house dataset from 59
patients, they achieve a DSC of 95.35%, an ASD of 0.99 mm
and a 95HD of 2.57 mm. 3D network strategies or attention
strategies are promising strategies that have been tried in deep
learning-based mandible segmentation. [33] used 3D net-
work strategies to achieve a DSC of 95.70% on the PDDCA
dataset. An automated model with attention strategies devel-
oped by Gou et al. also used the PDDCA dataset [34]. It
showed a DSC of 94.00%, an ASD of 0.47 (± 0.11) mm and
1.40 (± 0.02) mm of 95HD.

Our approach is less prone to outliers, in contrast to other
approaches, e.g., the work of Qiu et al. [35]. However, there
are inaccuracies in the region of dental occlusion already
present in the available ground truth data, in which the sep-
aration is often not perfect either. As the present study is
focused on the segmentation of mandible for the planning of
bony reconstructions, the region of the teeth is less important.
Additionally, our method can accurately segment mandibles
affected by heavy imaging artifacts.

However, all these comparisons bear the limitation, that
none of the referenced studies used our exact set of train-
ing data. Thus, to allow a more direct comparison with other
studies, it is planned to apply the proposed method to a pub-
lic domain dataset. Another envisioned approach to enable a
fair comparison to other publicationswill be to use the imple-
mentations of other researchers and evaluate those with the
dataset presented in this study. This approach would have the
advantage to have the specific close connection of our dataset
to the application in surgical planning but is restricted by the
open availability of the competing implementations.

In conclusion, we provided a segmentation pipeline suit-
able for the clinical application in the scope of facial
reconstructions surgery planning, as indicated by evalua-
tion of the accuracy with various metrics, including the
caudolateral curves that are specifically developed for surgi-
cal planning in reconstructive surgery of the mandible. The
pipeline reaches very high accuracies in relation to manu-
ally segmented ground truth data on our real-world dataset
that is for most metrics superior to the results achieved with
previously published approaches, based on roughly compa-
rable data. We were to the best of our knowledge the first to
demonstrate the positive influence of the Tversky and Focal
Tversky loss functions for segmentation of facial bones in

123



International Journal of Computer Assisted Radiology and Surgery (2023) 18:1479–1488 1487

the presence of imaging artifacts, especially on the first part
of our two-step approach.

In future work, the method will be extended to the maxilla
and midface region with the aim of providing an automated
pipeline for the reconstruction of the bony midface. The
usage of the presented approach in an automated pipeline
for surgical planning of mandibular reconstructions may be
envisioned, but regulatory constraints do apply as software
that is used in the process chain of surgical planning is con-
sidered as a medical product.
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