Correction to: The "true" acetabular anteversion angle (AV angle): 2D CT versus 3D model

Kira A. Barlow ${ }^{1}$ (D) Zdzislaw Krol ${ }^{1}$ •Pawel Skadlubowicz ${ }^{2}$. Chao Dong ${ }^{1} \cdot$ Vanja Zivkovic 1. Andreas H. Krieg ${ }^{1}$

© The Author(s) 2022

Correction to:
 International Journal of Computer
 Assisted Radiology and Surgery https://doi.org/10.1007/s11548-022-02717-w

The original version of this article unfortunately contained a mistake. The wrong Table 2 was published and in Table 5, document measures in the column "Range" were mistakenly listed as dates.

The corrected Tables 2 and 5 is given in the following page.

In the section "Single linear regression analysis of the angle ρ and the $\Delta^{3 D-2 D "}$

Both equations should have a "minus" sign in the beginning (as in Figure 5c and 5d):
(Equation: $\mathrm{Y}=0.09744 \bullet \mathrm{X}+0.09012, p<0.0001, R^{2}=$ 0.0446 , Fig. 5c). On the left, angle ρ showed a linear regression relationship with the difference of AV angles $\Delta^{3 \mathrm{D}-2 \mathrm{D}}$ (Equation: $\mathrm{Y}=0.09403 \bullet \mathrm{X}+0.06673, p<0.0001, R^{2}=$ 0.0315; Fig. 5d).

It should be:
(Equation: $\mathrm{Y}=-0.09744 \bullet \mathrm{X}+0.09012, p<0.0001, R^{2}=$ 0.0446, Fig. 5c). On the left, angle ρ showed a linear regression relationship with the difference of AV angles $\Delta^{3 \mathrm{D}-2 \mathrm{D}}$ (Equation: $\mathrm{Y}=-0.09403 \bullet \mathrm{X}+0.06673, p<0.0001, R^{2}=$ 0.0315; Fig. 5d).

The original article can be found online at https://doi.org/10.1007/ s11548-022-02717-w.

[^0]In the section "Multiple linear regression analysis of the angles λ and ρ, and the $\Delta^{3 \mathrm{D}-2 \mathrm{D}}$ on the right" Rho-angle was mentioned double:
"which means that angle $\rho \rho$ has a significant negative influence on $\Delta^{3 \mathrm{D}-2 \mathrm{D}}$ on the right (Fig. 5e)"

It should be:
"which means that angle ρ has a significant negative influence on $\Delta^{3 \mathrm{D}-2 \mathrm{D}}$ on the right (Fig. 5e)".

[^1]Table 2 Comparison between $\mathrm{AV}^{3 \mathrm{D}}$ and $\mathrm{AV}^{2 \mathrm{D}}$ angle estimation methods, over all patients, in males and females, and in the right and left subgroups

	Overall $n=258$	Male $n=136$	Female $n=122$	p-value*	Right $n=129$	Left $n=129$	p-value***
$\begin{aligned} & \mathrm{AV}^{3 \mathrm{D}}, \mathrm{~m}(\mathrm{SD}) \\ & (\text { Range }) \end{aligned}$	$\begin{gathered} 16.1(5.9) \\ (0.2-31.2) \end{gathered}$	$\begin{aligned} & 14.0(5.4) \\ & (0.2-28.8) \end{aligned}$	$\begin{gathered} 18.4(5.6) \\ (3.0-31.2) \end{gathered}$	<0.0001	$\begin{aligned} & 16.4(5.8) \\ & (0.89-30.9) \end{aligned}$	$\begin{gathered} 15.8(5.10) \\ (0.2-31.2) \end{gathered}$	<0.0001
$\begin{gathered} \mathrm{AV}^{2 \mathrm{D}}, \mathrm{~m}(\mathrm{SD}) \\ (\text { Range }) \end{gathered}$	$\begin{aligned} & 22.0(6.0) \\ & \quad(5.0-40.1) \end{aligned}$	$\begin{gathered} 20.3(4.9) \\ \quad(9.2-33.6) \end{gathered}$	$\begin{aligned} & 23.9 \text { (6.5) } \\ & \quad(5.0-40.1) \end{aligned}$	< 0.0001	$\begin{aligned} & 22.3 \text { (6.0) } \\ & \quad(6.8-39.8) \end{aligned}$	$\begin{aligned} & 21.7(8.9) \\ & \quad(5.0-40.1) \end{aligned}$	<0.0001
Difference between mean (2D-3D), m (SD)	5.8 (4.9)	6.2 (4.5)	5.5 (5.4)		5.9 (5.2)	5.8 (4.7)	
95\% Confidence Interval (CI)	5.3-6.5	5.5-7.0	4.6-6.5		5.0-6.8	5.0-6.7	
**p-value	< 0.0001	< 0.0001	< 0.0001		< 0.0001	< 0.0001	

Comparison between male and female, $ *$ Comparison between 3 and 2D method, $* * *$ Comparison between left and right side

Table 5 Different acetabular angles measured in previous studies

Ref. Nr.	Year	Method	Gender	n*	Criteria	AV Angle (${ }^{\circ}$)	SD	Range	Comments
17	1983	CT	Overall	86		17	6		Left/right not described
11	1989	CT	Overall	40	Left	19.8	5.7	7-30	
					Right	19.0	4.7	10-28	
			Male	23	Left	18.5	5.6	7-30	
					Right	18.4	4.5	10-25	
			Female	17	Left	21.6	5.4	10-30	
					Right	19.8	4.9	11-28	
19	1996	CT	Overall	60		15.7			Left/right, Male/female not analysed
20	2006	CT	Overall	100	Age	23	5	12-39	Divided by age, left/right not divided
			Male	17	$<70 \mathrm{y}$	22	6	12-39	
				25	$>70 \mathrm{y}$	22	6	13-35	
			Female	40	$<70 \mathrm{y}$	23	5	15-35	
				18	$>70 \mathrm{y}$	25	5	17-34	
12	2007	X-ray, anatomic	Overall	43	Anatomic	20.1	6.4		Left/right not analysed, male/female not analysed; comparison of anatomic and radiographic (X-ray) measurements
					Radiographic	20.3	6.5		
			Male	30					
			Female	13					
5	2008	3D-CT	Overall	27	Normal	17	8	1-31	Left/right difference not included, difference between normal and dysplastic hips
					Dysplastic	19	9	-7-39	
			Male	11	Normal	15	7	1-24	
					Dysplastic	18	3	12-21	
			Female	16	Normal	18	8	2-31	
					Dysplastic	19	10	7-39	
13	2010	3D-CT	Overall	25	Left	17.29	5.8		Male/female differences not calculated

Table 5 (continued)

Table 5 (continued)

Ref. Nr.	Year	Method	Gender	n*	Criteria	AV Angle (${ }^{\circ}$)	SD	Range	Comments
			Female	50	Radiographic	14.8		7.3-25.0	
			Operative		22.9		10.9-36.5		
			Anatomic		21.5		5.9-33.1		
			Radiographic		17.3		4.5-26.8		
			Operative		26.9		7-39.2		

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: K Kira A. Barlow
 k.oesterwind@yahoo.de

 1 Pediatric Orthopedic Department, University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056 Basel, Switzerland

 2 Institute of Computer Science, Department of Biomedical Computer Systems, Faculty of Computer and Materials Science, University of Silesia, Sosnowiec, Poland

[^1]: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecomm ons.org/licenses/by/4.0/.

