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Abstract
Purpose Intra-retinal delivery of novel sight-restoring therapies will require the precision of robotic systems accompanied by
excellent visualisation of retinal layers. Intra-operativeOpticalCoherenceTomography (iOCT) provides cross-sectional retinal
images in real time but at the cost of image quality that is insufficient for intra-retinal therapy delivery.This paper proposes a
super-resolution methodology that improves iOCT image quality leveraging spatiotemporal consistency of incoming iOCT
video streams.
Methods To overcome the absence of ground truth high-resolution (HR) images, we first generate HR iOCT images by
fusing spatially aligned iOCT video frames. Then, we automatically assess the quality of the HR images on key retinal layers
using a deep semantic segmentation model. Finally, we use image-to-image translation models (Pix2Pix and CycleGAN) to
enhance the quality of LR images via quality transfer from the estimated HR domain.
Results Our proposed methodology generates iOCT images of improved quality according to both full-reference and no-
referencemetrics.Aqualitative studywith expert clinicians also confirms the improvement in the delineation of pertinent layers
and in the reduction of artefacts. Furthermore, our approach outperforms conventional denoising filters and the learning-based
state-of-the-art.
Conclusions The results indicate that the learning-based methods using the estimated, through our pipeline, HR domain can
be used to enhance the iOCT image quality. Therefore, the proposed method can computationally augment the capabilities
of iOCT imaging helping this modality support the vitreoretinal surgical interventions of the future.
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Introduction

Regenerative therapies (e.g. [1,2]) are emerging as treatments
for blinding retinal diseases such as Age-Related Macu-
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lar Degeneration [3]. Their efficiency, however, will depend
on their precise injection in the sub-retinal and intra-retinal
space. High-resolution cross-sectional (B-scans) images of
the retina are required so that the retinal layers of interest
can be visualised with quality adequate for injection guid-
ance. Optical Coherence Tomography (OCT) captures such
cross-sectional retinal images.

Intra-operative OCT (iOCT), acquired through recently
introduced modified biomicroscopy systems such as Zeiss
OPMI/Lumera and Leica Proveo/Enfocus, can be delivered
in real time but at the expense of image quality (low signal
strength and increased speckle noise [4]) with regard to pre-
operative OCT. The produced iOCT scans are ambiguous
and with limited interventional utility. While complemen-
tary research develops higher-quality iOCT systems, e.g. [5],
we focus on computationally enhancing the capabilities of
already deployed clinical systems.
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An established approach to OCT quality enhancement
is denoising. Spatially adaptive wavelets [6], Wiener filters
[4], diffusion-based [7] and registration-based techniques [8]
reduce speckle noise while preserving edges and image fea-
tures. Unfortunately, these methods are limited by prolonged
scanning periods, alignment errors and high computational
cost, which limit their effectiveness for real-time interven-
tions and iOCT.

Within the deep learning domain, Generative Adversarial
Networks (GANs, [9]) can achieve image quality enhance-
ment1 in natural images ([10–12]).Many of these approaches
have been adopted for medical image quality enhancement
[13] and cross-modality image synthesis [14]. Research has
also been conducted for OCT denoising including [15–18],
but these works do not focus on intra-operatively acquired
OCT images.

Despite its superior quality, pre-operativeOCT is acquired
under different protocols (date, patient position, device) than
iOCT, implying a domain gap in addition to deformations
that may lead to generated images with artefacts. Therefore,
our paper considers iOCT information only. We propose a
methodology that uses high-resolution (HR) iOCT images
generated offline through registered and fused low-resolution
(LR) iOCT video frames (B-scans). Generated HR images
are ranked for quality consideringmetrics that incorporate the
quality of segmented retinal layers. High-scoring HR images
comprise the target domain for image-to-image translation.
Several image quality metrics and a complementary qualita-
tive survey showcase that our super-resolution methodology
improves iOCT image quality outperforming filter-based
denoising methods and the learning-based state-of-the-art
[19].

Methods

This section presents the process of creating HR iOCT
images, validating their quality and generating SR iOCT
images through image-to-image translation.

Data

Our data are derived from an internal Moorfields Eye
Hospital database of vitreoretinal surgery videos, includ-
ing intra-operative and pre-operative OCTs. We use a
data-complete subset comprising 42 intra-operative retinal
surgery videos acquired from 22 subjects. The data con-
tain the surgical microscope view captured by a Zeiss OPMI
LUMERA 700 with embedded LR iOCT frames (resolution
of 440x300) acquired by RESCAN 700 (see Fig. 1). These

1 As is common in the literature,we interchange “quality enhancement”
and “super-resolution”.

Fig. 1 a Surgery video frame. Left: Biomicroscope view. Right: iOCT
B-scans. b From top to bottom: intra-operative and pre-operative OCT
images

intra-operative sequences are used to generate HR iOCT
images (̂HR), which are the target domain for the examined
super-resolution models.

̂HR iOCT generation

GeneratinĝHR iOCT images is based on fusing registered
iOCT video frames that are acquired from the same retinal
position by averaging the temporal information. This process
is illustrated in Figs. 2 and 3.

First, for each surgery video (Fig. 1a), we identified the
time intervals wherein both iOCT scan position and retina
points positions remain constant. During such intervals, the
acquired iOCT B-scans can be considered as corresponding
to the same retinal location and can therefore be registered
and fused to acquire a HR B-scan.

The position of the iOCT scan is obtained by detecting
the white square depicted on the surgical microscope view
(see Fig. 1a), which illustrates the iOCT’s scanning region.
Detection starts with binary thresholding, Canny edge detec-
tion andHough line transformon themicroscope view image.
To improve the robustness of identifying the iOCT scan posi-
tion, we further detected the cyan and magenta arrows inside
the already detected square (see Fig. 2). Twopoints (one point
per arrow) were derived to represent the iOCT scan position.

Due to retina movement (patient breathing, surgical inter-
actions) we must verify that the retina is also stationary.
Therefore, we manually selected a point at the start of
each video sequence that corresponds to a strong feature
(e.g. vessel bifurcations), and tracked it using Lucas-Kanade
method2.

If the aforementioned positions remained constant for
more than eight consecutive video frames (number empir-
ically selected), the corresponding iOCT B-scans were then
rigidly registered to the first B-scan and averaged to generate
the correspondinĝHR iOCT frame (Fig. 3).We applied rigid
registration as we wanted to avoid unrealistic deformations
(e.g. folding) that non-rigid registration might introduce,

2 https://opencv.org/,calcOpticalFlowPyrLK.
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Fig. 2 Overview of the proposed tracking methods for identifying the iOCT frames extracted from the same retina position

Fig. 3 Fusion of multiple registered LR iOCT images through averaging and automatic extraction of ROIs for SNR, CNR and ENL calculation

damaging the quality and realism of the final averaged image.
The fusion process led to a total of 1966̂HR images.

As the videos depict actual surgical procedures, many
incoming LR iOCT images have low signal strength, cal-
culated as signal to noise ratio (SNR) [20]. Thus, their
corresponding fused̂HR images will be of low SNR as well.
Furthermore, imperfections in tracking retina points and reg-
istration errors between the LR iOCT images could lead to
blurry averaged ̂HR iOCT scans. These factors affect the
quality of many ̂HR images, which as a result lessens the
robustness of the estimated ̂HR domain in terms of SNR
and contrast.

To assess the quality of the generated images and define
which ones should be included in thêHR dataset, we used
three different metrics, i.e. SNR, Equivalent Number of
Looks (ENL) and Contrast to Noise Ratio (CNR) [4]:

SN R = 10log(max{F2
lin}/σ 2

lin) (1)

ENL = (1/H)�H
h=1(μ

2
h/σ

2
h ) (2)

CN R = (1/R)�R
r=1(μr − μb)/

√
σ 2
r + σ 2

b (3)

where Flin is the linear magnitude image, σlin the standard
deviation of Flin in a background noise region, μb, μh, μr ,

σb, σh, σr are the mean and standard deviations for back-
ground region (b), homogeneous regions (h) and all regions
of interest (r), respectively. In our image quality assessment,
we empirically used H = 2 and R = 4 (see Fig. 3). To
obtain metrics describing image quality on key anatomical
landmarks, namely, retinal layers, we compute retinal layer
masks using a deep semantic segmentation model. Then,
metric computation takes place for regions of interest (ROI)
tightly cropped around retinal layers.
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Retinal layer segmentation

The segmentation model utilizes the architecture introduced
in [21] and is trained using theLovász-Softmax loss [22].Due
to the lack of large public pixel-level annotated datasets, we
first pretrain the model for retinal fluid segmentation on the
RETOUCH3 dataset, which contains 3200 images (72 sub-
jects). The model was then fine-tuned for the task of retinal
layer segmentation on the DUKE dataset4, which com-
prises 610 images (10 subjects). We qualitatively observed
acceptable generalization of the segmentation model to our
intra-operative OCT dataset. It is also worth mentioning that
our aim is not a perfect segmentation of retinal layers but an
acceptable approximation of the background area and perti-
nent retinal layers in the iOCT image in order to extract ROIs
for the calculation of SNR, CNR and ENL.

Given the output label maps of the segmentation model,
fiveROIs are chosen (see Fig. 3): a backgroundROI (red rect-
angle), two small homogeneous ROIs on the second and the
last retinal layers (blue rectangles), and two large ROIs on the
first and the last retinal layers (green rectangles). The centre
of the ROIs is random in the B-scan, so long as the aforemen-
tioned location constraints are respected, which stem from
the requirements of the qualitymetrics themselves. Using (1–
3), the ROIs, and considering empirically defined thresholds
of 70.0, 3.0 and 10.0 for SNR, CNR and ENL, respectively,
we identified 962̂HR images of acceptable quality to form
thêHR dataset.

Deep learningmodels

To perform super-resolution (SR), we used two state-of-the-
art image-to-image translation models: CycleGAN [11] and
Pix2Pix [12]. These models belong to the family of GANs
which alternately train a generator G and a discriminator D
in an adversarial manner. Pix2Pix requires supervision in the
form of aligned image pairs to update its generator G as it
minimizes the L1 loss between images of source (LR) and tar-
get (̂HR) domain. On the contrary, CycleGAN can be trained
without the need of paired examples using cycle consistency
to enforce mappings between forward (G : LR → ̂HR)
and backward (G : ̂HR → LR) direction. Preliminary
experiments, however, revealed that CycleGAN produced
inconsistent results on unpaired images. We therefore also
include L1 supervised losses for training CycleGAN.

Implementation details

The dataset (962 image pairs of LR and̂HR iOCT images)
was split into three subsets: training set (70%), validation

3 https://doi.org/10.1109/TMI.2019.2901398.
4 https://doi.org/10.1364/BOE.6.001172.

set (10%) and test set (20%). We performed online data
augmentation for the training set through rotation (±5◦),
translation(±30 width, ±20 height), horizontal flip (with
a probability of 0.5), scale (1 ± 0.2) and the Albumenta-
tions5 ‘colorjitter’ augmentationwith brightness and contrast
between [2/3, 3/2]. Our implementations of Pix2Pix and
CycleGAN are based on the code available online6, and
both networks useCycleGAN’sResNet-based generator [10]
with 9 residual blocks. Our networks are trained using Adam
Optimizer, for 200 epochs, with a batch size of 4 and input
resolutions of 440x300 for Pix2Pix and CycleGAN. Our
experiments ran on an NVIDIA Quadro P6000 GPU with
24 GB memory.

Results

This section presents the results of the quantitative and quali-
tative analysis that we performed to validate our SR pipeline.
We also validate themerit of employing deep learning for this
task by comparingourmodelswith classical filter-basedOCT
denoising techniques and the learning-based state-of-the-art.

Quantitative analysis

We quantitatively validate the quality enhancement of the
SR images compared to the LR iOCT images. As our ground
truth (HR) images are estimated by our methodology, full-
reference metrics alone are not sufficient in image quality
evaluation. Therefore, our analysis uses six different metrics
including two full-referencemetrics, i.e. Peak signal-to-noise
ratio (PSNR) andStructural Similarity Index (SSIM) and four
no-reference metrics, i.e. perceptual loss function (� f eat )
[10], Frechet Inception Distance (FID) [23], Global Con-
trast Factor (GCF) [24] and Natural Image Quality Evaluator
(NIQE) [25]. The metric values were calculated on the test
images of LR iOCT, SR using the state-of-the-art method of
[19], SR using Pix2Pix [12] (SR-Pix) and SR using Cycle-
GAN [11] (SR-Cyc). The evaluation metrics were computed
on the original resolution (440x300px) for both Pix2Pix and
CycleGAN outputs. The results are reported in Table 1. We
assessed the statistical significance of the pairwise compar-
isons using paired t test. All p-values were p < 0.001 except
for pairwise comparisons between SR-Cyc and filter-based
methods for SSIM.

Reference metrics (PSNR, SSIM) were calculated using
̂HR as reference images. As far as no-reference metrics are
concerned, perceptual loss, � f eat , calculates the high-level
perceptual similarity between two image domains by com-
puting the distance of their feature representations extracted

5 https://albumentations.ai/.
6 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.
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Table 1 Quantitative analysis.
Arrows show whether
higher/lower is better

Full-Reference No-Reference

PSNR (↑) SSIM (↑) � f eat (↓) FID (↓) GCF (↑) NIQE (↓)

LR 21.99 ± 1.59 0.43 ± 0.12 291.35 144.75 7.52 ± 0.76 7.10 ± 1.48

[19] 22.11 ± 1.10 0.45 ± 0.08 334.63 179.97 7.14 ± 0.98 26.05 ± 2.16

SR-Cyc 25.83 ± 1.85 0.58 ± 0.10 120.99 56.64 5.9 ± 0.84 8.13 ± 1.07

SR-Pix 24.28 ± 1.65 0.48 ± 0.09 171.24 70.12 6.16 ± 0.80 12.76 ± 0.93

Wiener 24.49 ± 1.75 0.53 ± 0.10 307.43 254.20 5.49 ± 0.90 14.22 ± 3.64

BM3D 23.54 ± 1.76 0.54 ± 0.11 348.12 187.10 5.82 ± 0.95 14.99 ± 5.38

SNN 24.65 ± 1.81 0.56 ± 0.11 275.43 171.99 5.61 ± 0.88 14.62 ± 3.09

by Imagenet-pretrained Deep Convolutional Network [26].
We also used FID to capture how different are two image
sets through the distance of their distributions of features
extracted from the ImageNet-pretrained Inception-v3. Per-
ceptual loss � f eat and FID were calculated for the whole
test dataset (193 images) of each image domain (LR, SR-
Pix, etc.) with respect to the ̂HR domain. In addition, we
trained a NIQE model on the test database of ̂HR images
and assigned a NIQE score per test frame as well. The intu-
ition behind the above three reference-free quality criteria is
that if their values for SR images are lower than the corre-
sponding values for LR, then our SR methodology generates
images which are perceptually more similar to thêHR and
thus of better quality. Finally, we used GCF, a no-reference
metric which calculates the image contrast which is an essen-
tial characteristic for iOCT images.

As shown in Table 1, SR-Cyc ranks first in terms of PSNR,
SSIM � f eat and FID, which shows that the image quality has

been improved and is perceptually more similar tôHR (see
also Fig. 4). Regarding GCF, the more noisy images (LR
and SR output by [19]) exhibit higher values, probably due
to the appearance of high-frequency information (speckle
noise). Finally, for frames of size 440x300, SR-Cyc performs
at 18.17 frames per second (FPS), while Pix2Pix at 17.51
which both are appropriate for iOCT real-time requirements.

Qualitative analysis

To further validate our super-resolution pipeline, we per-
formed qualitative analysis. Our survey included 20 pairs of
LR and SR-Cyc images, randomly selected from the test set.
We asked 8 retinal doctors/surgeons to evaluate these image
pairs by assigning a score between 1 (strongly disagree) and
5 (strongly agree) on the following questions:

• Q1: Can you notice an improvement in the delineation of
RPE/Bruchs vs. IS/OS junction in the generated image?
(A1: 3.8±0.3)

• Q2: Can you notice a reduction of artefacts in the gener-
ated image?
(A2: 3.9±0.1)

• Q3: Can you notice an improvement in the delineation of
the ILMvs. RNFL in the generated image? (A3: 3.7±0.3)

Their answers, A1, A2, A3 (mean±standard deviation),
indicate that SR-Cyc images provide improved delineation of
RPE vs IS/OS junction (Q1), reduction of artefacts (Q2) and
improved delineation of ILM vs RNFL (Q3). Visual results
are shown in Fig. 4, confirming the findings of our survey.

Denoising results

Todemonstrate the denoising effect of ourwork, as part of the
broader aim of image quality enhancement, we compare our
optimal (according to the metrics) network (SR-Cyc) with
conventional denoising filters. We selected three different
state-of-the-art speckle reduction methods for OCT images:
Symmetric Nearest Neighbour (SNN) [27], adaptive Wiener
filter [28] and BM3D [29] whose denoising ability has been
assessed in several works [4,18].

All the filter-based methods demonstrated considerable
denoising capabilities, as shown in Fig 5. We can, however,
observe that those filters blurred the images (b,c,d) and that
retinal layers cannot be distinguished easily especially when
compared to the outputs of SR-Pix and SR-Cyc. The SR-Cyc
images, in particular, are visually more similar to thêHR.

Quantitative analysis using the aforementioned metrics
(see Table 1) shows that SR-Cyc achieved the best perfor-
mance according to all metrics compared to the Wiener,
BM3D and SNN filters. Among the filter-based techniques,
SNN has the best performance according to PSNR, SSIM,
� f eat , FID.

Discussion and conclusions

This paper addresses the challenge of super-resolution in
iOCT images. We overcome the absence of ground truth
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Fig. 4 From left to right: LR,
SR-Pix, SR-Cyc,̂HR

LR SR-Pix SR-Cyc ̂HR

Fig. 5 Visual results of different
denoising methods

(a)LR (b)Wiener (c) BM3D (d) SNN

(e) [19] (f) SR-Pix (g) SR-Cyc (h) ̂HR

HR images by a novel pipeline that leverages spatiotemporal
consistency of incoming iOCT B-scans to estimate thêHR
images. Furthermore, we automatically assess the quality of
thêHR images to accept only the high-scoring ones as target
domain for super-resolution. Our quantitative and qualita-
tive analysis demonstrated that the proposed super-resolution
pipeline can achieve convincing results for iOCT image
quality enhancement and outperform filter-based denois-
ing methods with statistical significance. Future work will
increase the sharpness of retinal layer delineations to pro-
duce iOCT images of quality even closer to pre-operative
OCT scans.
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