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Abstract
Purpose For the image classification problem, the construction of appropriate training data is important for improving the
generalization ability of the classifier in particular when the size of the training data is small. We propose a method that
quantitatively evaluates the typicality of a hematoxylin-and-eosin (H&E)-stained tissue slide from a set of immunohisto-
chemical (IHC) stains and applies the typicality to instance selection for the construction of classifiers that predict the subtype
of malignant lymphoma to improve the generalization ability.
Methods We define the typicality of the H&E-stained tissue slides by the ratio of the probability density of the IHC staining
patterns on low-dimensional embedded space. Employing a multiple-instance-learning-based convolutional neural network
for the construction of the subtype classifier without the annotations indicating cancerous regions in whole slide images,
we select the training data by referring to the evaluated typicality to improve the generalization ability. We demonstrate the
effectiveness of the instance selection based on the proposed typicality in a three-class subtype classification of 262 malignant
lymphoma cases.
Results In the experiment, we confirmed that the subtypes of typical instances could be predicted more accurately than
those of atypical instances. Furthermore, it was confirmed that instance selection for the training data based on the proposed
typicality improved the generalization ability of the classifier, wherein the classification accuracy was improved from 0.664
to 0.683 compared with the baseline method when the training data was constructed focusing on typical instances.
Conclusion The experimental results showed that the typicality of the H&E-stained tissue slides computed from IHC staining
patterns is useful as a criterion for instance selection to enhance the generalization ability, and this typicality could be employed
for instance selection under some practical limitations.
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Introduction

Malignant lymphomas have more than 70 subtypes, and
pathologists are required to identify the subtype from a
set of microscopic images of a specimen that is invasively
extracted from a patient to determine the treatment of the
patient [1]. In a pathological diagnosis of malignant lym-
phoma, a hematoxylin-and-eosin (H&E)-stained tissue slide
is first observed to infer the candidate subtypes, and a set
of immunohistochemical (IHC) stains that are required to
identify the subtype is then selected. The subtype is finally
identified by observing the tissue slides stained with the
selected IHC stains and by considering their expression pat-
terns. Currently, with the widespread use of whole slide
images (WSIs) and the development of machine learning
techniques, the image analysis of digital pathology has been
accelerated, and there have been studies conducted on image
classification [2–4], detection [5–7], segmentation [8–10],
and survival prediction [11,12]. The subtype classification
of digital pathological images would be helpful in practical
diagnoses as a computer-aided diagnosis application that can
provide pathologists with a second opinion. The objective of
this study is to construct a classifier that can predict sub-
types for a given WSI of an H&E-stained tissue specimen of
malignant lymphoma.

For the construction of the subtype classifier, we use a set
of WSIs of H&E-stained tissue specimens with slide-level
subtype labels. The generalization ability of the classifica-
tion model depends on the training data, and the constructed
classifier often overfits the training data such that the gener-
alization ability is degraded when the size of the training data
is small. To improve the generalization ability while using a
limited number of training data, it is necessary to construct
appropriate training data. In the context of instance selection,
it is known that the removal of atypical instances from the
training data of a classification model can enhance the gen-
eralization ability [13,14]. Even in the subtype classification
of pathological images, it is assumed that an instance, whose
H&E-stained tissue image shows the atypical appearance,
can degrade the generalization ability of the classification
model. In our classification problem that predicts subtypes
for a WSI of an H&E-stained tissue slide, each case cor-
responds to instance in the context of instance selection. If
the criterion indicating how typical the H&E-stained tissue
slide of each instance is known, the instance selection can be
applied to the training data based on such typicalitymeasures.
In this paper, we propose a method that selects appropriate
training data based on the typicality of the H&E-stained tis-
sue slides of malignant lymphomas.

In general, a database for digital pathology manages
information of each instance as a pair of a WSI and the cor-
responding medical record wherein patient metadata, the set
of names of IHC stains used for the diagnosis, the identified

subtype, and other findings are described by pathologists.
Although thesemedical records include no information about
the typicality of the morphological features in observing
H&E-stained tissue slides, the set of IHC stains used for the
definitive diagnosis is determined based on the candidates
of the subtypes that are inferred by the first observation of
the H&E-stained tissue slide. We note that the same set of
IHC stains is not always used to diagnose instances wherein
the definitive diagnosis is of the same subtype. A specific
set of IHC stains is commonly used in almost all instances
wherein the definitive diagnosis is of the same subtype; how-
ever, some additional IHC stains are used in many of the
instances. Herein, we hypothesize that the morphological
features observed in theH&E-stained tissue slides are typical
for the corresponding subtypewhen only the set of IHC stains
that is common among the instances of the same subtype is
used for the definitive diagnosis. When the morphological
features are typical for the subtype and hence only the sub-
type is inferred as the candidate at the first observation of the
H&E-stained slide image, the pathologist then selects only
the optimal set of IHC stains that are required to confirm that
the candidate subtype is correct. In contrast, if the morpho-
logical features of the H&E-stained tissue slide are atypical
for the subtype, and hence, multiple subtypes are inferred as
candidates at the first observation, additional IHC stains are
required to identify the subtype for the definitive diagnosis.
Based on this hypothesis, we quantitatively evaluate how typ-
ical the H&E-stained tissue slide is by the set of IHC stains
used in the diagnosis and employ the evaluated typicality as
the criterion for the instance selection of the training data.

In this paper, we propose a method that quantitatively
evaluates the typicality of the H&E-stained tissue slides
and selects the training data for the construction of subtype
classifiers by referring to the evaluated typicality in order
to improve the generalization ability. We demonstrate that
instance selection based on the proposed typicality improves
the generalization ability of the subtype classification model
by a three-class classification experiment with 262 cases of
malignant lymphoma. In the experiment, WSIs of the H&E-
stained tissue sections were used, wherein a partial region
of the tissue specimen was cancerous, and the WSIs had
no pathologist annotation indicating cancerous regions. We
employed a multiple-instance-learning-based (MIL-based)
convolutional neural network (CNN) that could automati-
cally focus on image patches of cancerous portions from
bags that comprised sets of image patches extracted from
the entire tissue slides, and the proposed method provided
the criteria for selecting the appropriate training data for the
MIL-based subtype classification.

The contributions of this paper are as follows:

• We proposed a method for evaluating the typicality of
H&E-stained tissue slides for the criteria in the instance
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selection, which was derived from the sets of IHC stains
used in the pathological diagnosis of malignant lym-
phomas.

• We analyzed the sets of IHC stains in the dataset con-
sisting of clinical lymphoma cases and revealed the
relationship between the subtypes and the sets of IHC
stains, wherein we could observe similar sets of IHC
stains between different subtypes and various sets of IHC
stains within a subtype.

• We demonstrated an MIL-based CNN for classifying
three types of malignant lymphoma tissues, of diffuse
large B cell lymphoma (DLBCL), angioimmunoblas-
tic T-cell lymphoma (AITL), and classical Hodgkin’s
lymphoma (CHL) to confirm the effectiveness of the
typicality-based instance selection.

Preliminaries

Related works

Malignant lymphoma in digital pathology

Malignant lymphomas comprise a group of blood cancers
that develop from lymphocytes—a type of white blood cell
[1]—and their pathological diagnosis is complicated. It is
known that predicting the subtypes of lymphomas from an
H&E-stained tissue slide is quite difficult even for expert
pathologists because of the various subtypes and the diver-
sity in the subtype-specific appearance in tissue specimens of
malignant lymphomas. To the best of our knowledge, there
have been only a few studies on the subtype classification
of malignant lymphomas, which is in contrast to the sev-
eral studies conducted on the subtype classification of other
diseases [2–4]. The literature [15] reported the automated
image classification of B cell lymphomas, wherein the clas-
sifier was trained for benign, DLBCL, Burkitt lymphoma,
and small lymphocytic lymphoma using a set of annotated
image patches. Miyoshi [16] performed the classification of
DLBCL, follicular lymphoma, and reactive lymphoid hyper-
plasia with patch-level annotated images. In both studies,
high classification performanceswere realized for lymphoma
subtypes, but the problem settings were relatively simple,
wherein the image patches were extracted from an entire
WSI based on the pathologist’s annotation. A WSI, which
is a digitized pathological image of the entire glass slide, is
large (approximately 100,000×100,000 pixels), and in gen-
eral, only some regions in the image are cancerous. Although
the image classification has to be performed based on cancer-
ous regions that have class-specific features, it is prohibitively
time-consuming to annotate the cancerous regions in many
images. In the case of clinical applications, it is expected
that the subtype classification of the pathological images is

performed on WSIs that have no annotations for cancerous
regions. We employ an MIL technique to classify WSIs as
weakly annotated images, and the explanation of the MIL-
based classification is described in the next section.

Multiple instance learning In cases without a patholo-
gist’s annotation of the cancerous regions in the WSIs,
MIL techniques have demonstrated excellent performance
in pathological image analyses [17–22]. MIL-based classifi-
cation conducts label prediction on each bag, which includes
multiple image patches sampled from the WSI. The label
provided for each bag denotes the subtype of the WSI from
that image patches of the bag are sampled. In binary classifi-
cation, a positive bag that is generated from a positive-class
WSI has at least one positive image patch, and a negative bag
that is generated from a negative-classWSI only has negative
image patches. The subtype identification in this study is a
problem of multi-class classification, and it is assumed that
each bag has at least one image patch that has class-specific
features. Using MIL, we can construct a subtype classifier
that can automatically select image patches in the bag that
contribute to subtype identification.

Several MIL methods for aggregating features of the
image patches in a bag into the bag’s features have been pro-
posed [19,23]. We employ an attention-based method that
can obtain explainable results and visualize tumor-specific
regions in the WSI [19]. The attention-based MIL has also
been applied to the subtype classification of malignant lym-
phomas, and a better result was reported for discriminating
DLBCLs [24]. They performed a two-class classification of
malignant lymphomas [24], and amore complicated problem
setting was expected in clinical applications. When theMIL-
based techniques are applied to multi-class classification, the
selection of image features that contribute to classification is
more difficult, and atypical instances would degrade the gen-
eralization ability more strongly owing to the heterogeneity
of morphological features in the H&E-stained tissue slides.
The instance selection for the training data is therefore more
important in our problem setting.

Problem setup

Let N be the number of instances of malignant lymphoma,
and we define [N ] := {1, . . . , N }. The lymphoma dataset
is represented as T = {(Xn,Yn,Sn)}Nn=1, where Xn is a
WSI for a patient, and n ∈ [N ]. Each patient’s data has two
types of labels corresponding to Xn : Yn is a K -dimensional
one-hot vector for the multi-class label of K subtypes, and
Sn is an L-dimensional multi-label binary vector that repre-
sents the IHC staining patterns, i.e., the combination of IHC
stains used for the definitive diagnosis. In a medical record
of malignant lymphomas, a list of IHC stains used in the
definitive diagnosis is provided for each instance, and their
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expression patterns are described in the form of positive or
negative. Each element of Sn corresponds to a different IHC
stain, where a value of 1 indicates that the corresponding IHC
stains were used in the diagnosis, while 0 indicates that they
were not used. For example, we consider the case wherein
we use three types of IHC stains CD20, CD3, and CD30 (in
this example, L = 3), and each element of the multi-label
vector Sn corresponds to [CD20, CD3, CD30]. Here, if a
medical record for an n-th patient indicates that CD20 and
CD30 were used in the diagnosis, the multi-label vector Sn
is given as [1, 0, 1]. In our experimental dataset, 87 types of
IHC stains are originally considered as candidates and 9.84
IHC stains are used for an instance on average.

Our classification problem is to predict the subtype label
Yn for an input WSI Xn . To test our hypothesis, we com-
pute the subtype typicality of each H&E-stained tissue slide
from the corresponding IHC staining pattern and perform
a classification experiment with instance selection based on
the calculated typicality. It should be noted that Sn is used
only for calculating typicality and instance selection, and the
subtype is predicted from only WSIsXn using the MIL clas-
sification model. A set of indices of the bags obtained from
the n-thWSI are denoted by Bn , and the set of image patches
in the b-th bag (b ∈ Bn) is denoted by {xi }i∈Ib , where Ib
denotes a set of indices of the image patches.

Methods

Our proposed method improves the generalization ability of
the subtype classifier by selecting instances that have a typi-
cal appearance for each subtype and using them for training.
In this section, we explain the definition of subtype typicality
and instance selection using subtype typicality. An MIL-
based CNN model for classifying the subtypes of malignant
lymphoma is also described.

Typicality of subtypes

The proposed method evaluates the typicality of the H&E-
stained tissue slides using the similarity of IHC staining
patterns used in the definitive diagnosis. Although there are
differences in usage frequency for the pathological diagnoses
of malignant lymphomas, more than 100 IHC antibodies are
considered as candidates for the IHC stains. A set of IHC
stains can have a variety of instances even if the subtypes
of their malignant lymphomas are the same because H&E-
stained tissue slides have various appearances even among
the same subtype. If the subtypes can be identified with high
confidence using only H&E-stainedWSIs, then only the IHC
stains that are common in each subtypewouldbeused. In con-
trast, if there is confusion in inferring the subtypes from the
H&E-stained WSIs, all the IHC stains that are required for

the identification of each of the candidate subtypes are used.
It is assumed that IHC staining patterns described in medi-
cal records latently have the typicality of the appearance of
H&E-stainedWSIs. The proposedmethod, therefore, quanti-
tatively evaluates how typical the appearance ofH&E-stained
WSIs is for each subtype by referring to a set of IHC stains
used for realizing a definitive diagnosis.

First, we define the distance between two sets of IHC
stains, and all the IHC staining patterns Sn in the data T are
embedded in a low-dimensional space via multi-dimensional
scaling (MDS) [25] based on the defined distance. It should
be noted that no information of the subtypes is used for the
embedding, although each embedded instance has a label
of the subtype. The probability density distribution of IHC
staining patterns in the embedded space is then estimated for
each subtype using the embedded data that have the corre-
sponding subtype label. The typicality of each instance is
defined by the ratio of the probability density of the corre-
sponding subtype to those of all subtypes: a typical instance
has a higher probability density for the corresponding sub-
type without overlapping of the probability density of the
other subtypes, while an atypical instance has the overlap-
ping of probability density for the multiple subtypes.

The Hamming distance d(Sm,Sn), where m �= n ∈ [N ],
is used to measure the distance between the two IHC staining
patterns Sm and Sn :

d(Sm,Sn) = ‖Sm − Sn‖1. (1)

Let un ∈ R
M (M � L) denote the data embedded by MDS,

where {u1, u2, . . . , uN } = fMDS(S1,S2, . . . ,SN ; D),where
D denotes an N × N distance matrix, of which the (m, n)

component is d(Sm,Sn), and fMDS denotes a function that
maps L-dimensional vectors that represent the IHC staining
patterns in theM-dimensional space based on the distances in
order to make it easier to estimate probability density distri-
bution of IHC stains. BecauseMDS embeds the input feature
vectors into low-dimensional spacewhile preserving the rela-
tionship of the distances among instances, instances having
similar IHC stains become close to each other even in the
embedded space.

We employ kernel density estimation [26] to estimate the
probability density distributions of embedded IHC staining
patterns. The probability density distribution for the k-th sub-
type is computed from {u j } j∈Jk , where Jk is a set of indices
such that Jk = { j | (Y j )k = 1}, where (Y j )k denotes the
k-th component of the vector Y j . A kernel density estimator
for subtype k is represented as:

f̂k (un) = 1

|Jk |w
∑

i∈Jk

G

(
un − ui

w

)
, (2)
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where G is a Gaussian kernel function, andw is a bandwidth
parameter. When un is given as the embedded IHC staining
pattern of the n-th instance, its typicality tk(un) for subtype
k is calculated as the ratio of probability density for subtype
k to probability densities of all subtypes:

tk(un) = f̂k(un)∑K
k=1 f̂k(un)

. (3)

In our experiment, instance selection is performed for the
training and testing data based on the calculated typicality.

Instance selection

The typicality that we defined can be considered as the diffi-
culty measure of inferring subtype candidates only from the
H&E-stained tissue slide in the diagnosis. Typical instances
would have the classifiable subtype-specific features in the
H&E-stainedWSIs because the pathologist could accurately
infer the candidate subtype. This quantitative measure can be
employed as a typicality criterion for instance selection. As
mentioned in Section 1, if we knowhow typical each instance
is, we can apply instance selection to a pathological image
dataset to improve the generalization ability of the subtype
classification, in which instances having the atypical appear-
ance of H&E-stained WSIs are removed from the training
data [13,14]. In this paper, the calculation of typicality from
the sets of IHC stains is the main novelty. Thus, we employ a
simple method for the instance selection using the proposed
typicality, whereinwe changewhich typicality is focused and
change the ratio of the typical and atypical instances in the
training data. The details of instance selection are explained
in the experimental setting.

Attention-basedMIL

In our classification experiment, we employ an attention-
based MIL-CNN as the classification model [19,24]. The
attention-based MIL-CNN is known to be successful for
unannotated WSIs, and it was also shown in the subtype
classification of malignant lymphoma. In the subtype clas-
sification, the subtype of each patient is identified based on
the WSI of the H&E-stained tissue slide by aggregating the
predicted class labels of the bags obtained from the WSI.
Specifically, given a WSI Xn , the class label probability is
simply predicted as P(Ŷn = k | Xn) = pk/

∑
i∈K pi , where

pk = exp

⎛

⎝ 1

|Bn|
∑

b∈Bn

log P(Ŷb = k)

⎞

⎠ . (4)

Here, P(Ŷb = k) are the class label probabilities of bags
b ∈ Bn for subtype k. Figure 1 illustrates the structure of our

classification network, which consists of the three compo-
nents. A feature extractor fenc : x �→ h is a CNN that maps
a 224 × 224-pixel image patch x into a Q-dimensional fea-
ture vector h. An attention network fatt : h �→ a is a simple
multilayer perceptron that outputs the attention weight of an
input feature vector h. Feature vectors in a bag b are aggre-
gated as a weighted sum, and the feature vector is obtained as
z = ∑

i∈Ib aihi . A fully connected layer fclf : z �→ P(Ŷb)

outputs the probability of an input bag’s class label. During
the training of the model, the parameters θenc, θatt, and θclf
for functions fenc, fatt, and fclf are optimized by minimizing
the following problem:

(
θ̂enc, θ̂att, θ̂clf

)
← argmin

θenc,θatt,θclf

N∑

n=1

∑

b∈Bn

L(Yn, P(Ŷb)), (5)

where

P(Ŷb) = fclf

⎛

⎝
∑

i∈Ib
fatt ( fenc(xi )) fenc(xi )

⎞

⎠ . (6)

In Eq. (5), L is the cross-entropy loss function for the bag
class prediction.

Experiments

We first apply MDS to IHC staining patterns for embed-
ding them to a low-dimensional space and typicalities of
all the instances are then calculated. In the classification
experiments, we select instances according to the calculated
typicality, and the classification performances with several
instance selections are compared.

Experimental setup

Database Our database of malignant lymphomas comprises
N = 262 clinical cases, which include three subtypes: 67,
97, and 98 cases of AITL, DLBCL, and CHL, respectively.
There are strictly two types of CHL—nodular sclerosis and
mixed cellularity types—but they are regarded as one type
in this study. The pathological tissue specimens used in our
experiments consist of sections from both lymphatic tissues
and extranodal organs; the former includes the lymph node,
tonsil, and spleen, and the latter includes the stomach, colon,
bone marrow, and skin. All the tissue slides were collected
from over 80 different institutions for diagnostic consulta-
tion, and they had the definitive diagnoses and lists of the
IHC stains used in the diagnosis of an expert hematopathol-
ogist.

Calculation of typicality In this work, we considered 35 types
of IHC stains, which were used for at least 10 instances
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Fig. 1 The illustration of the
attention-based MIL-CNN used
in our classification experiment.
In the model, training is
performed using a bag as an
input, where an attention
network can automatically
compute the contribution of each
image patch to the classification

Fig. 2 A histogram of the usage
of each IHC stain, wherein we
can observe that important IHC
stains such as CD20 are used
often

because the IHC stains that were hardly used in the diagnos-
tic routine could result in noise in the typicality calculation.
That is, the size of the IHC staining pattern Sn was set
as L = 35. A histogram indicating the frequency of each
IHC stain is presented in Fig. 2. In the histogram, we can
observe that important IHC stains such as CD20, EBERISH,
CD5, and CD3 were often used for many instances in the
diagnosis and that there were existing IHC stains that were
rarely used as compared with CD20. As mentioned in the
previous section, we employ MDS for the low-dimensional
embeddingmethod. IHC staining patterns are embedded into
three-dimensional vectors in this study (M = 3), and the typ-
icality is calculated using the three-dimensional values un .
In computing typicality, we experimentally adjust the band-
width parameterw for the kernel density estimation such that
the probability density of each subtype is distributed evenly
between the low and high values. Wemanually adjustedw in
this study, but it should be automatically adjusted for a much
larger dataset.

Subtype classification by MIL-CNN We perform multi-class
image classification, wherein each of the 262 slides is clas-
sified as AITL, DLBCL, or CHL. All the glass slides were
digitized using a WSI scanner Aperio ScanScopeXT (Leica
Biosystems, Germany) at 20x original magnification (0.50
μm/pixel). We used ResNet50 [27] as the feature extractor
in fenc, and the output 2048-dimensional vector was reduced
to a 512-dimensional vector h (Q = 512) through the fully
connected layer. In the experiments, in each training epoch, at
most 5,000 image patches were randomly extracted from the
tissue regions of a single WSI, and 50 bags were generated
wherein each bag has 100 image patches.

Figure 3 illustrates the typicality-based instance selection
methods in the classification experiments. In Experiment I,
we investigate the relationship between the typicality com-
puted from the IHC staining patterns and the difficulty
of subtype identification based on the H&E-stained tissue
images. Through this experiment, we aim to confirm that
the typical instances are more classifiable when the classi-
fication model is trained with the same training dataset. All
262 slides are divided into three subsets (K = 3) according
to the labeled subtypes, and the data in each of the subsets
are sorted according to the calculated typicality measures.
We then split the data in each subset into three groups evenly
according to typicality: typical, intermediately typical (called
intermediate), and atypical groups. Each group is randomly
divided into five subgroups, as shown in Fig. 3, and five-
fold cross-validation is performed, wherein we compare the
classification accuracy for the different testing data based on
the group of typicality. All typical and atypical instances are
used as testing data through fivefold cross-validation.

In Experiment II, we investigate whether we could
improve the generalization ability of the subtype identifica-
tion by changing the ratio of the number of datawith different
typicality in the training data. In contrast to Experiment I, we
intend to confirm that the instance selection for the training
slides based on their typicality improves the generalization
ability of the subtype classification. In this experiment, first,
all the dataset is randomly divided into five subgroups for
fivefold cross-validation, as shown in Fig. 3. After calcu-
lating typicality and splitting all the data into three groups
similarly toExperiment I, i.e., typical, intermediate, and atyp-
ical, we construct the training dataset by selecting data from
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Fig. 3 The instance selection
method in our classification
experiments. a Instance
selection for testing data to
validate the difficulty criteria of
the classification using the same
training data. b Instance
selection for training data to
confirm the improvement in
generalization ability using
typicality. c The baseline to be
compared, that uses all the
training data after the data
splitting without any instance
selection. Herein, the number of
training data in (c) becomes
larger than that in (b)

(a)

(b)

(c)

A

B

C
D

E

F

Fig. 4 Left: The plots of low-dimensional IHC staining patterns embed-
ded by MDS. The color of each dot indicates the subtype of each
instance. We can observe that instances of the same subtype are clus-

tered together, while the clusters of different subtypes are partially
overlapped. The data in the overlapped regions have lower values of typ-
icality. Right: The data corresponding to the instances listed in Table 1

each of the three groups. To obtain a superior training dataset,
we vary the ratio of the number of data selected from each
group under the condition that the resultant set should include
data from all the groups. We experimentally determined that
at least one-third of instances of each typicality group are
used for the training dataset. For the baseline setting in this
experiment, no instance selection is applied to the training
data after the data splitting for fivefold cross-validation. All
262 instances are used as testing data through fivefold cross-
validation in Experiment II.

In all the classification experiments, the training dataset is
split into 75% training and 25% validation instances. During

the testing, the trained models at epochs at which the model
demonstrates the smallest losses for the validation data are
employed.

Results

Analysis of IHC staining pattern

We applied MDS to all 262 instances, and Fig. 4 presents
the two-dimensional distribution of the embedded data plot-
ted in the space spanned by the first and second components
obtained via MDS, while all the embedded data comprise
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Table 1 The examples of
typical and atypical instances
for each subtype

Instance Subtype Typicality IHC stains

A AITL Typical CD20, CD3, CD10, CD30, CD3epsilon,

CD79a, CD8, CD4, CD56

B AITL Atypical CD20, CD5, CD10, CD30, BCL2,

CD15, BCL6, CD3epsilon, MIB1,CD79a,

CCND1, CD7

C DLBCL Typical CD20, CD5, CD3, CD10, BCL2, BCL6,

MUM1, cmyc

D DLBCL Atypical CD20, EBERISH, CD5, CD10, CD30,

CD15, MUM1, PAX5

E CHL Typical CD20, EBERISH, CD3, CD30, CD15,

TIA1, FDC, fascin, PAX5,granzymeB,

ALK1, perforin

F CHL Atypical CD20, EBERISH, CD5, CD10, CD30,

BCL2, CD15, TIA1, CD3epsilon,FDC,

fascin, CD79a, CCND1, granzymeB

The first column “Instance” indicates the instance in Fig. 4. Generally, atypical instances have redundant IHC
stains owing to the difficulty of selecting IHC stains in the observation of H&E-stained tissue images

the three-dimensional vectors. It should be noted that sub-
type labels were not used in applying the MDS to the IHC
staining patterns, while the instances of the same subtype
were clustered together in the distribution of the embedded
IHC stains. An embedded instance in a cluster would have a
higher value of the typicality measure if the data is located
far from the clusters of the other subtypes according to the
definition of typicality in Eq. 3.

Table 1 lists examples of IHC staining patterns that have
higher and lower typicality. The right panel of Fig. 4 presents
the locations of the embedded data listed in Table 1. It can
be observed that the IHC staining patterns were quite differ-
ent even if the subtypes of those instances were the same.We
found that atypical instances showed a tendency to havemore
IHC staining than typical instances. This is partly because
more IHC stains were needed for the diagnosis of malignant
lymphomas, as it was difficult to correctly predict the sub-
types by referring to only the corresponding H&E-stained
tissue images. Although the number of IHC stains for an
atypical instance D is similar to that of a typical instance C,
CD30, CD15, and PAX5 were used for the atypical instance.
These IHC stains are usually used for identifying CHL, and
it is assumed that an H&E-stained tissue slide of this DLBCL
instance had a similar appearance to that of CHL. The dis-
tribution of the data embedded based on the distance of the
IHC staining patterns changes depending on the difficulty of
subtype identification based only on the H&E-stained tissue
images.

Table 2 The comparison of the classification accuracy and macro-F1
score by fivefold cross-validation, wherein the testing data was selected
based on typicality

Testing Typical Atypical

Accuracy 0.698 0.640

Macro-F1 0.680 0.618

Bold values in tables are the higher or highest evaluation measures in
each setting

Classification with typicality-based instance selection

Experiment I

With the instance selection mentioned in the experimen-
tal setting, we performed subtype identification of AITL,
DLBCL, and CHL using only H&E-stained tissue images.
Table 2 lists the classification accuracy and macro-F1 score
by fivefold cross-validation in Experiment I, wherein only
typical or atypical slides were used for testing. As a result,
the typical slides were identified more accurately than the
atypical slides.

Table 3 shows the confusion matrices for both the classi-
fication results. It is thus revealed that the typical instances
sampled based on typicality were more classifiable than the
atypical ones, where recall was particularly improved for all
the subtypes. Based on this experimental result, we can say
that typical slides would have typical subtype-specific fea-
tures in the images, while atypical slides have insufficient
image features for subtype identification. It was confirmed
that the typicality measure computed from the IHC staining
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Table 3 Theconfusionmatrices of the classification resultwith instance
selection for the testing data,wherein the classification performancewas
improved in the case comprising the use of typical WSIs as the testing
data

Predict

AITL DLBCL CHL

Testing data: Typical

AITL 12 2 8

Correct DLBCL 2 28 2

CHL 7 5 20

Testing data: Atypical

AITL 10 6 6

Correct DLBCL 3 26 3

CHL 10 3 19

patterns had a certain relationship with the difficulty of the
subtype classification from H&E-stained WSIs.

Experiment II Next, the second instance selection presented
in Fig. 3 was performed, wherein the slides for all typical-
ities were used for testing. Here, we changed the ratio of
the number of data with different typicalities in the train-
ing data. In this experiment, we aimed to sample a superior
training dataset that improves the generalization ability of
the subtype identification even if the number of sampled
data is reduced by varying the ratio of different typicalities
included in the sampled data set. Table 4 lists the classifica-
tion results obtained when the ratio of the instance selection
was changed. Here, the instance selection “3:2:1” means that
the resultant training dataset consists of all the data in the typ-
ical group, two-thirds of the data in the intermediate group,
and one-third the data in the atypical group, where two-thirds
and one-third of the slides were randomly sampled from the
corresponding group, respectively. Table 4 shows that the
classifier had the best accuracy when the training data was
selected based on the typicality, especially when the training
dataset included more typical instances and removed atyp-
ical instances. Note that the baseline method used a larger
number of the training data than the method using instance
selections. Although themethod using instance selection had
less training data than the baseline method, the method using

Table 5 Theconfusionmatrices of the classification resultwith instance
selection for the training data, wherein the classification performance
was improved in the case of the focus on typical WSIs in the instance
selection of the training data

Predict

AITL DLBCL CHL

Typical:Intermediate:Atypical = 3:2:1

AITL 38 8 21

Correct DLBCL 7 81 9

CHL 25 13 60

Typical:Intermediate:Atypical = 1:2:3

AITL 35 6 26

Correct DLBCL 8 74 15

CHL 25 12 61

the instance selection “3:2:1” achieved the best classification
performance of all the settings.

Table 5 lists the confusion matrices for two results of ratio
“3:2:1” and “1:2:3,” which are the settings that focus on typ-
ical and atypical instances. In the comparison of these two
confusion matrices, the classification performance for the
DLBCL was found to be significantly improved. This result
could be obtained because atypical DLBCL instances, that
had the similar appearance of H&E-stained tissue slides to
CHL instances as mentioned in Sect. 4.2.1, were removed
from the training data by the proposed instance selection.
Using typicality as a criterion for the instance selection to
construct the training dataset, we can improve the general-
ization ability of the subtype classifier. As the typicality can
be calculated from only the IHC staining patterns that are
obtained frommedical records, the typicality measure would
help construct appropriate training data for better subtype
classifiers.
Visualization of attention weight We visualized the attention
weights computed by our best classifier in Experiment II. The
validity of attention-basedMIL for DLBCL has already been
confirmed in the literature [24]. Figure 5 presents the visual-
ization results of attention weights for CHL. The images in
the middle column present the visualized attention weights
as heat maps, wherein the attention weights were normalized
between 0 and 1 in each bag and blue-to-red heat maps were

Table 4 The comparison of the
classification accuracy and
macro-F1 score in fivefold
cross-validation, wherein all
instances in the dataset were
tested

Training Baseline Typical:Intermediate:Atypical

3:2:1 3:1:2 2:3:1 2:1:3 1:3:2 1:2:3

Accuracy 0.664 0.683 0.611 0.637 0.634 0.630 0.649

Macro-F1 0.648 0.669 0.596 0.619 0.615 0.609 0.637

Slides with different typicality were selected for the training data by changing the ratio of their number.
“Typical:Intermediate:Atypical” denotes the ratio of the typical, intermediate, and atypical slides in the training
data
Bold values in tables are the higher or highest evaluation measures in each setting
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Fig. 5 The visualization results
of the attention weights as heat
maps. For each instance, an
H&E-stained tissue image, a
visualized attention weight, and
a CD30 IHC-stained tissue
image are presented, wherein
the highly attention-weighted
regions in the heat map
correspond to the positive
regions in the CD30
IHC-stained tissue image

0 1

generated. The right column presents the CD30 IHC stained
tissue images of serial sections of the same patients. The
CD30 antibody is often used for CHL tissue specimens and
reacts positively. We can observe that the brown regions in
theCD30-stained tissue images havehigher attentionweights
in the corresponding regions of heat maps, and it was con-
firmed that the attention network could focus on the important
regions in the entire tissue slides.

Conclusion

In this paper, we proposed a method for improving the gen-
eralization ability of a classification model that classifies the
subtypes from H&E-stainedWSIs of malignant lymphomas.
We defined the typicality of an H&E-stained WSI from a set
of IHC stains described in a medical record that indicates
how typical its appearance is. The proposed typicality can be
employed as a criterion in the instance selection to improve
the generalization ability of the subtype classification. We
performed subtype classification of malignant lymphomas
wherein datasets were selected according to the computed
typicality in order to investigate the relationship between
the typicality calculated from the IHC staining pattern and
the subtype classification difficulty and improve the gener-
alization ability. The results confirmed that the typicality of
subtypes was related to the classification performance, and
we showed that instance selection based on typicality would
be useful for better construction of the subtype classifier.
By considering the typicality of the case, we constructed
an appropriate dataset for realizing a higher classification
performance with the small number of training data as com-
pared to the baseline. For the application of the proposed
typicality, instance selection on a large dataset is considered
for reducing costs for the scanning of WSIs and the train-
ing of models. Another application is the instance selection
for class-imbalance dataset such that large-class instances

are sampled to adjust to the small class, wherein random
sampling can degrade the model performance by sampling
atypical instances. The proposed typicality, which is calcu-
lated from a set of IHC stains, can be used as a measure in
various instance selections.
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