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Abstract
Purpose This study aims at exploiting artificial intelligence (AI) for the identification, segmentation and quantification
of COVID-19 pulmonary lesions. The limited data availability and the annotation quality are relevant factors in training
AI-methods. We investigated the effects of using multiple datasets, heterogeneously populated and annotated according to
different criteria.
Methods We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets. The
first one (U-net1) is devoted to the identification of the lung parenchyma; the second one (U-net2) acts on a bounding box
enclosing the segmented lungs to identify the areas affected by COVID-19 lesions. Different public datasets were used to
train the U-nets and to evaluate their segmentation performances, which have been quantified in terms of the Dice Similarity
Coefficients. The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
Results Both the volumetric DSC (vDSC) and the accuracy showed a dependency on the annotation quality of the released
data samples. On an independent dataset (COVID-19-CT-Seg), both the vDSC and the surface DSC (sDSC) were measured
between the masks predicted by LungQuant system and the reference ones. The vDSC (sDSC) values of 0.95±0.01 and
0.66±0.13 (0.95±0.02 and 0.76±0.18, with 5 mm tolerance) were obtained for the segmentation of lungs and COVID-19
lesions, respectively. The system achieved an accuracy of 90% in CT-SS identification on this benchmark dataset.
Conclusion We analysed the impact of using data samples with different annotation criteria in training an AI-based quan-
tification system for pulmonary involvement in COVID-19 pneumonia. In terms of vDSC measures, the U-net segmentation
strongly depends on the quality of the lesion annotations. Nevertheless, the CT-SS can be accurately predicted on independent
test sets, demonstrating the satisfactory generalization ability of the LungQuant .
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Introduction

The task of segmenting the abnormalities of the lung
parenchyma related to COVID-19 infection is a typical seg-
mentation problem that can be addressed with methods
based on Deep Learning (DL). CT findings of patients with
COVID-19 infection may include bilateral distribution of
ground-glass opacifications (GGO), consolidations, crazy-
paving patterns, reversed halo sign and vascular enlarge-
ment [2]. Due to the extremely heterogeneous appearance
of COVID-19 lesions in density, textural pattern, global
shape and location in the lung, an analytical approach is
definitely hard to code. The potential of DL-based seg-
mentation approaches is particularly suited in this case,
provided that a sufficient number of annotated examples are
available for training the models. Few fully automated soft-
ware tools devoted to this task have been recently proposed
[4,10,11]. Lessmann et al. [10] developed a U-net model for
lesion segmentation trained on semi-automatically annotated
COVID-19 cases. The output of this system was then com-
bined with the lung lobe segmentation algorithm reported
in Xie et al. [14]. The approach proposed in Fang et al. [4]
implements the automated lung segmentation method pro-
vided in the work of Hofmanninger et al. [7], together with
a lesion segmentation strategy based on multiscale feature
extraction [5]. The specific problem related to the develop-
ment of fully automated DL-based segmentation strategies
with limited annotated data samples has been explicitly tack-
led by Ma et al. [11]. The authors studied how to train and
evaluate a DL-based system for lung and COVID-19 lesion
segmentation on poorly populated samples ofCT scans. They
alsomade the data publicly available, allowing for a fair com-
parison with their system.

In this work, we present a DL-based fully automated
system to segment both lungs and lesions associated with
COVID-19 pneumonia, the LungQuant system, which pro-
vides the part of lung volume compromised by the infection.
We extended the study proposed by Ma et al. [11] focus-
ing our efforts in investigating and discussing the impact of
using different datasets and different labelling styles. Data
can be highly variable in terms of acquisition protocols and
machineswhen they are gathered fromdifferent sources. This
poses a serious problem of dependence of the segmentation
performances on the training sample characteristics. Despite
that advanced data harmonization strategies could mitigate
this problem [6], this approach is not applicable in absence of
data acquisition information, as it is in this study for the avail-
able CT data. Nevertheless, DL methods, when trained with
sufficiently large samples of heterogeneous data, can acquire
the desired generalization ability by themselves. In our analy-
sis,we implemented an inter-sample cross-validationmethod
to train, test and evaluate the generalization ability of the
LungQuant DL-based segmentation pipeline across differ-

ent available datasets. Finally, we also quantified the effect
of using larger datasets to train, validate and test this kind of
algorithm.

Material andMethods

Datasets

We used only publicly available datasets in order to make
our results easily verifiable and reproducible. Five different
datasets have been used to train and evaluate our segmenta-
tion pipeline. Most of them include image annotations, but
each annotation has been associated with patients using dif-
ferent criteria. In Table 1, a summary of available labels for
each dataset is reported.

The lung segmentation problem has been tackled using
a wide representation of the population and three different
datasets: the Plethora, the Lung CT Segmentation Challenge
and a subset of the MosMed dataset. On the other hand, the
number of samples that are publicly available for COVID-19
infection segmentation may not be sufficient to obtain good
performances on this task. The currently available data, pro-
vided along with infection annotations, have been labelled
following different guidelines and released in NifTI format.
They do not contain complete acquisition and population
information, and they have been stored according to different
criteria (see the SupplementaryMaterials for further details).
Some of the choices made during the DICOM to NifTI con-
version may strongly affect the quality of data. For example,
the MosMed dataset as described by Morozov et al. [12]
preserves only one slice out of ten during this conversion.
This operation results in a significantly loss of resolution
with respect to the COVID-19 Challenge dataset. Question-
ing how much such conversion influences the quantitative
analysis is important to improve not only the performance
but also the possibility of comparing DL algorithm in a fair
modality.

LungQuant: a DL based quantification analysis
pipeline

The analysis pipeline, which is hereafter referred to as
the LungQuant system, provides in output the lung and
COVID-19 infection segmentation masks, the percentage P
of lung volume affected by COVID-19 lesions and the cor-
responding CT-SS (CT-SS = 1 for P< 5%, CT-SS = 2 for
5% ≤ P< 25%, CT-SS = 3 for 25% ≤ P< 50%, CT-SS = 4
for 50% ≤ P< 75%, CT-SS = 5 for P ≥ 75%).

A summary of our image analysis pipeline is reported in
Fig. 1. The central analysis module is a U-net for image
segmentation [13] (see Sec. U-net), which is implemented in
a cascade of two different U-nets: the first network, U-net1,
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Table 1 A summary of the
datasets used in this study. The
CT Severity Score (CT-SS)
information is not available for
all datasets, but it can be
computed for data which has
both lung masks and
ground-glass opacification
(GGO) masks

Dataset name Lung GGO CT-SS N. of
mask mask cases

Plethora [8] Yes No No 402

Lung CT Segmentation Challenge [15] Yes No No 60

COVID-19 Challenge [1] No Yes No 199

MosMed [12] No No No 1110

MosMed (annotated subsample) No Yes Inferable 50

MosMed (in-house annotated subsample) Yes No No 91

COVID-19-CT-Seg [11] Yes Yes Inferable 10

Fig. 1 A summary of the whole analysis pipeline: the input CT scans
are used to train U-net1, which is devoted to lung segmentation; its
output is refined by a morphology-based method. A bounding box con-
taining the segmented lungs is made and applied to all CT scans for
training U-net2, which is devoted to COVID-19 lesion segmentation.

Finally, the output of U-net2 is the definitive COVID-19 lesion mask,
whereas the definitive lung mask is obtained as the union between the
outputs of U-net1 and U-net2. The ratio between the COVID-19 lesion
mask and the lung mask provides the CT-SS for each patient

is trained to segment the lung and the second one, U-net2, is
trained to segment the COVID lesions in the CT scans.

U-net

For both lung andCOVID-19 lesion segmentation, we imple-
mented a U-net using Keras [3], a Python DL API that uses
Tensorflow as backend. In Fig. 2, a simplified scheme of our
U-net is reported.

Each block of layers in the compression path (left) is
made by 3 convolutional layers, ReLu activation functions
and instance normalization layers. The input of each block
is added to the block output in order to implement a residual
connection. In the decompression path (right), one convolu-
tional layer has been replaced by a de-convolutional layer to
upsample the images to the input size. In the last layer of
the U-nets, a softmax is applied to the final feature map, and
then, the loss is computed.

The U-net cascade for lesion quantification and severity
score assignment

The input CT scans, whose number of slices is highly vari-
able, have been resampled to matrices of 200 × 150 × 100
voxels and then used to train U-net1, which is devoted to
lung segmentation, using the three datasets containing orig-
inal CT scans and lung masks (see Table 1). The output of
U-net1 was refined using a connected component labelling
strategy to remove small regions of the segmented mask not
connected with the main objects identified as the lungs. We
identified the connected components in the lung masks gen-
erated by U-net1, and we excluded those components whose
number of voxels was below an empirically fixed threshold
(see Supplementary Materials for further details). We then
built for each CT a bounding box enclosing the refined seg-
mented lungs, adding a conservative padding of 2.5 cm. The
bounding boxes were used to crop the training images for
U-net2, which has the same architecture as U-net1. Training
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Fig. 2 U-net scheme: the neural network is made of 6 levels of depth. In
the compression path (left), the input is processed through convolutions,
activation layers (ReLu) and instance normalization layers, while in the

decompression one (right), in addition to those already mentioned, 3D
Transpose Convolution (de-convolution) layers are also introduced

U-net2 to recognize the COVID-19 lesions on a conservative
bounding box has two main advantages: it allows to restrict
the action volume of the U-net to the region where the lung
parenchyma is supposed to be, thus avoiding false-positive
findings outside the chest; it facilitates the U-net training
phase, as the dimensions of the lungs of different patients
are standardized to focus the U-net learning process on the
textural patterns characterizing the COVID-19 lesions. The
cropped images were resized to a matrix of 200× 150× 100
voxels. We applied a windowing on the grey-level values of
the CT scans to optimize the image contrast for the two seg-
mentation problems: the [− 1000, 1000] HU window range
for the U-net1 and the [− 1000, 300] HU range for U-net2.
The first window highlights the contrast between the lung
parenchyma and the surrounding tissues, whereas the second
one enhances the heterogeneous structure of the lung abnor-
malities related to the COVID-19 infection.We implemented
a data augmentation strategy, relying on the most commonly
used data augmentation techniques for DL (see Supplemen-
tary Materials for further details) to overcome the problem
of having a limited amount of labelled data. We transformed
the images with rotations, zooming, elastic transformations
and adding Gaussian noise.

The LungQuant system returns the infection mask as
the output of U-net2 and the lung mask as the union between
the output of U-net1 and U-net2. This choice has been made
a priori by design, as U-net1 has been trained to segment

the lungs relying on the available annotated data, which are
almost totally of patients not affected by COVID-19 pneu-
monia. Thus, U-net1 is expected to be unable to accurately
segment the areas affected by GGO or consolidations; as
also these areas are part of the lungs, they should be instead
included in the mask.

Lastly, once lung and lesion masks have been identified,
the LungQuant systemcomputes the percentageof lungvol-
ume affected by COVID-19 lesions as the ratio between the
volumeof the infectionmask and the volumeof the lungmask
and converts it into the corresponding CT severity score.

Training details and evaluation strategy for the
U-nets

Both U-net1 and U-net2 have been evaluated using the volu-
metric Dice Similarity Coefficients (vDSC). U-net1 has been
trainedwith the vDSCas loss function,whileU-net2 has been
trained using the sum of the vDSC and a weighted cross-
entropy as error function in order to balance the number of
voxels representing lesions and the background (see Supple-
mentary Materials for further details). The performances of
the whole system have been evaluated also with the surface
Dice Similarity Coefficient (sDSC) for different values of
tolerance [9].
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Table 2 Number of CT scans assigned to the train, validation (val) and
test sets used during the training and performance assessment of the
U-net1 and the U-net2 networks

U-net1 Train Val Test

Plethora 319 40 40

MosMed (91 CT-0) 55 18 18

LCTSC 36 12 12

COVID-19-CT-Seg – – 10

U-net60%2 Train (60%) Val (20%) Test

COVID-19 Challenge 119 40 40

MosMed (50 CT-1) 30 10 10

COVID-19-CT-Seg – – 10

U-net90%2 Train (90%) Val (10%) Test

COVID-19 Challenge 179 20 –

MosMed (50 CT-1) 45 5 –

COVID-19-CT-Seg – – 10

Cross-validation strategy

To train, validate and test the performances of the two U-
nets, we partitioned the datasets into training, validation and
test sets. We then evaluated the network performance sep-
arately and globally. U-net2 has been trained twice, i.e. on
the 60% and 90% of the CT scans of COVID-19-Challenge
and Mosmed datasets to investigate the effect of maximizing
the training set size on the lesion segmentation. The amount
of CT scan used for train, validation and test sets for each
U-net is reported in Table 2. To evaluate the ability of the
trained networks to predict the percentage of the affected
lung parenchyma and thus the CT-SS classification, we used
a completely independent set consisting of 10 CT scans from
the COVID-19-CT-Seg dataset, which is the only publicly
available dataset containing both lung and infection mask
annotations.

Results

In this section, we report, first, the performance achieved
by U-net1 and U-net2, then, the quantification performance
of the integrated LungQuant system, evaluated on a com-
pletely independent test set. We trained both the U-nets for
300 epochs on a NVIDIA V100 GPU using ADAM as opti-
mizer and we kept the models trained at the epoch where the
best evaluation metric on the validation set was obtained.

U-net1: Lung segmentation performance

U-net1 for lung segmentationwas trained and validated using
three different datasets, as specified in Table 2. Then, we
tested U-net1 on each of the three independent test sets and
we reported in Table 3 the performance achieved in terms
of vDSC, computed between the segmented masks and the
reference ones, both separately for each dataset and globally.

The evaluation of the lung segmentation performances
was made in three cases: (1) on CT scans and masks resized
to the 200×150×100 voxel array size; (2) on CT scans and
masks in the original size before undergoing themorphologi-
cal refinement; (3) on CT scans andmasks in the original size
and after themorphological refinement. Even if segmentation
refinement has a small effect on vDSC, since it is a volume-
based metric, as shown in Table 3, it is a fundamental step to
allow the definition of precise bounding boxes enclosing the
lungs and thus to facilitate the U-net2 learning process.

U-net2: COVID-19 lesion segmentation performance

U-net2 for COVID-19 lesion segmentation has been trained
andevaluated separately on theCOVID-19-Challengedataset
and on the annotated subset of the MosMed dataset, follow-
ing the train/validation/test partitioning reported in Table 2.
The segmentation performances achieved on the test sets are
reported in terms of the vDSC in Table 4, according to the
cross-sample validation scheme.

As expected, the U-net2 performances are higher when
both the training set and independent test sets belong to the
same data cohort. By contrast, when a U-net2 is trained on
COVID-19-Challenge data and tested on Mosmed (and the
otherway around), performances significantly decrease. This
effect is related to different criteria used to both collect and
annotate the data. We obtained a better result with the U-net2
trained on the COVID-19 Challenge dataset and tested on
the MosMed test set, since the network has been trained on
a larger data sample and hence it has a higher generalization
capability. The best segmentation performances have been
obtained by the U-net2 trained using the 90% of the available
data, U-net90%2 , which reaches a vDSC of 0.65 ± 0.23 on the
test set. This result suggests the need to trainU-netmodels on
the largest possible data samples in order to achieve higher
segmentation performance.

Evaluation of the quantification performance of the
LungQuant system on a completely independent set

Evaluation of lung and COVID-19 lesion segmentations

Once the twoU-nets have been trained and thewhole analysis
pipeline has been integrated into the LungQuant system,we
tested it on a completely independent set (COVID-19-CT-Seg
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Table 3 Performances achieved
by U-net1 in lung segmentation
on different test sets, evaluated
in terms of the vDSC at three
successive stages of the
segmentation procedure

Test set Masks of U-net size Masks before refinement Masks after refinement
vDSC vDSC vDSC

Plethora 0.96 ± 0.02 0.95 ± 0.02 0.95 ± 0.04

MosMed 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02

LCTSC 0.96 ± 0.03 0.95 ± 0.03 0.96 ± 0.01

COVID-19-CT-Seg 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01

Table 4 Performances achieved
by U-net2 in COVID-19 lesion
segmentation, evaluated in terms
of the vDSC

U-net Trained on Test set U-net size Original CT size
(vDSC) (vDSC)

U-net60%2 COVID-19 challenge COVID-19 challenge 0.51 ± 0.24 0.51 ± 0.25

COVID-19 Challenge MosMed 0.39 ± 0.19 0.40 ± 0.19

MosMed MosMed 0.54 ± 0.22 0.55 ± 0.22

MosMed COVID-19 challenge 0.25 ± 0.23 0.25 ± 0.23

COVID-19 challenge COVID-19 challenge 0.49 ± 0.21 0.50 ± 0.21

+ MosMed + MosMed

U-net90%2 COVID-19 challenge COVID-19 challenge 0.64 ± 0.23 0.65 ± 0.23

+ MosMed + MosMed

The composition of the train and test sets is reported in Table 2

Table 5 Performances of the
LungQuant system on the
independent COVID-19-CT-Seg
test dataset. The vDSC and
sDSC computed between the
lung and lesion reference masks
and those predicted by the
LunQuant system are reported

Metrics Lung segmentation

vDSC sDSC (1 mm) sDSC (5 mm) sDSC (10 mm)

LungQuant (U-net60%2 ) 0.96 ± 0.01 0.66 ± 0.09 0.95 ± 0.02 0.98 ± 0.01

LungQuant (U-net90%2 ) 0.95 ± 0.01 0.65 ± 0.09 0.95 ± 0.02 0.98 ± 0.01

Infection Segmentation

LungQuant (U-net60%2 ) 0.62 ± 0.09 0.29 ± 0.06 0.75 ± 0.11 0.90 ± 0.09

LungQuant (U-net90%2 ) 0.66 ± 0.13 0.36 ± 0.13 0.76 ± 0.18 0.87 ± 0.13

dataset) of CT scans. The performances of the whole process
were quantified both in terms of vDSC and sDSC with toler-
ance values of 1, 5 and 10mm (Table 5). A very good overlap
between the predicted and reference lung masks is observ-
able in terms of vDSC, whereas the sDSC values are highly
dependent on tolerance values, ranging from moderate to
very good agreement measures. Regarding the lesion masks,
a moderate overlap is measured between the predicted and
reference lesion masks in terms of vDSC, whereas the sDSC
returns measures extremely dependent on tolerance values
that span from limited tomoderately good and ultimately sat-
isfactory performances for tolerance values of 1 mm, 5 mm
and 10 mm, respectively.. Figure 3 allows for a visual com-
parison between the lung and lesion masks provided by the
LungQuant system integrating U-net90%2 and the reference
ones.

Percentage of affected lung volume and CT-SS estimation

The lung and lesion masks provided by the LungQuant sys-
tem can be further processed to derive the physical volumes

of each mask and the ratios between the lesion and lung
volumes.We show in Fig. 4 the relationship between the per-
centage of lung involvement as predicted by the LungQuant
system vs. the corresponding values for the reference masks
of the fully independent test set COVID-19-CT-Seg, for
both the LungQuant systems with the U-net60%2 and the U-
net90%2 . Despite the limited range of samples to carry out this
test, an agreement between the LungQuant system output
and the reference values is observed for both U-net60%2 and
U-net90%2 . In terms of the mean absolute error (MAE) among
the estimated and the reference percentages of affected lung
volume (P), we obtained a Mean Absolute Error equal to
MAE = 4.6% for the LungQuant system with U-net60%2 and
MAE = 4.2% for the system with U-net90%2 .

The accuracy in assigning the correct CT-SS class is
reported in Table 6, together with the number of misclassi-
fied cases, for the 10 cases of the COVID-19-CT-Seg dataset.
The best accuracy achieved by LungQuant is of 90% with
U-net90%2 . In all cases, the system misclassifies the examples
by 1 class at most.
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Fig. 3 On the rows: three axial
slices of the first CT scan on the
COVID-19-CT-Seg test dataset
(coronacases001.nii) are
shown. On the columns: original
images (left); overlays between
the predicted and the reference
lung (centre) and COVID-19
lesion (right) masks. The
reference masks are in green,
while the predicted ones,
obtained by the LungQuant
system integrating U-net90%2 ,are
in blue

Fig. 4 Estimated percentages P of affected lung volume versus the
ground truth percentages, as obtained by the LungQuant system inte-
grating U-net60%2 (left) and U-net90%2 (right). The grey areas in the plot

backgrounds guide the eye to recognize the CT-SS values assigned to
each value of P (from left to right: CT-SS = 1, CT-SS = 2, CT-SS = 3)
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Table 6 Classification
performances of the whole
system in predicting CT
Severity Score on MosMed and
COVID-19-CT-Seg datasets.
The number of misclassified
cases is reported

U-net Dataset Accuracy Misclassified Misclassified
by 1 class by 2 classes

U-net60%2 COVID-19-CT-Seg 6/10 4/10 0

U-net90%2 COVID-19-CT-Seg 9/10 1/10 0

Discussion and Conclusion

We developed a fully automated quantification pipeline, the
LungQuant system, for the identification and segmentation
of lungs and pulmonary lesions related to COVID-19 pneu-
monia inCT scans. The system returns theCOVID-19 related
lesions, the lung mask and the ratio between their volumes,
which is converted into a CT Severity Score. The perfor-
mance obtained against a voxel-wise segmentation ground
truth was evaluated in terms of the vDSC, which provides
a measure of the overlap between the predicted and the ref-
erence masks. The LungQuant system achieved a vDSC
of 0.95 ± 0.01 in the lung segmentation task and of 0.66 ±
0.13 in segmenting theCOVID-19 related lesions on the fully
annotated publicly available benchmark COVID-19-CT-Seg
dataset of 10 CT scans. The LungQuant has been evaluated
also in terms of sDSC for different values of tolerance. The
results obtained at a tolerance of 5 mm equal to 0.76± 0.18
are satisfactory for our purpose, given the heterogeneity of
the labelling process. Regarding the correct assignment of the
CT-SS, the LungQuant system showed an accuracy of 90%
on the completely independent test set COVID-19-CT-Seg.
Despite that this result is encouraging, it was obtained on a
rather small independent test set; thus, a broader validation on
larger data sample with more heterogeneous composition in
terms of disease severity is required. Training DL algorithms
requires a huge amount of labelled data. The lung segmen-
tation task has been made feasible in this work thanks to the
use of lung CT datasets collected for purposes different from
the study of COVID-19 pneumonia. Training a segmentation
system on these samples had the effect that when we use
the trained network to process the CT scan of a patient with
COVID-19 lesions, especially in case ground glass opaci-
ties and consolidation are very severe, the lung segmentation
is not accurate anymore. In order to overcome this prob-
lem, the proposed LungQuant system returns a lung mask
which is the logical union between the output mask of the
U-net1 and the infection mask generated by the U-net2. The
LungQuant system can actually be improved whether lung
masks annotation are available on subjects with COVID-
19 lesions. A similar problem occurs for the segmentation
of ground glass opacities and consolidations. The available
data, in fact, are very unbalanced with respect to the severity
of COVID-19 disease, and hence, the accuracy in segment-
ing the most severe case is worse. The current lack of a large

dataset, collected by paying attention to adequately represent
all categories of disease severity, limits the possibility to carry
out accurate training of AI-based models. Finally, we found
that the difference in the annotation and collection guide-
lines among datasets is an issue. Processing aggregated data
from different sources can be difficult if labelling has been
performed using different guidelines. CT scans should con-
tain the acquisition parameters, usually stored in the DICOM
header, when they are published. The lack of this informa-
tion is a drawback of our study. If we had that data, we could
study more in detail the dependence of the LungQuant per-
formances on specific acquisition protocols or scanners. On
the contrary, even with this information, it would not be
possible to standardize the different annotation styles. The
results of LungQuant (last 2 rows of Table 4) demonstrate its
robustness across different datasets even without a dedicated
preprocessing step to account for this information.
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