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Abstract
Purpose Artificial intelligence-enabled techniques can process large amounts of surgical data and may be utilized for clinical 
decision support to recognize or forecast adverse events in an actual intraoperative scenario. To develop an image-guided 
navigation technology that will help in surgical education, we explored the performance of a convolutional neural network 
(CNN)-based computer vision system in detecting intraoperative objects.
Methods The surgical videos used for annotation were recorded during surgeries conducted in the Department of Surgery of 
Tokyo Women’s Medical University from 2019 to 2020. Abdominal endoscopic images were cut out from manually captured 
surgical videos. An open-source programming framework for CNN was used to design a model that could recognize and 
segment objects in real time through IBM Visual Insights. The model was used to detect the GI tract, blood, vessels, uterus, 
forceps, ports, gauze and clips in the surgical images.
Results The accuracy, precision and recall of the model were 83%, 80% and 92%, respectively. The mean average precision 
(mAP), the calculated mean of the precision for each object, was 91%. Among surgical tools, the highest recall and preci-
sion of 96.3% and 97.9%, respectively, were achieved for forceps. Among the anatomical structures, the highest recall and 
precision of 92.9% and 91.3%, respectively, were achieved for the GI tract.
Conclusion The proposed model could detect objects in operative images with high accuracy, highlighting the possibility of 
using AI-based object recognition techniques for intraoperative navigation. Real-time object recognition will play a major 
role in navigation surgery and surgical education.

Keywords Image-guided navigation technology · Surgical education · Convolutional neural network · Computer vision · 
Object detection

Introduction

Optimal and safe surgical methods and effective surgical 
education for young surgeons are challenges in surgical 
practice. Surgical techniques in open surgery have been 

considered tacit knowledge and are not available on storage 
devices. Digitizing surgical techniques using the latest tech-
nology is expected to play a major role in surgical evaluation 
and education.

With rising costs and lack of resources, the medical com-
munity is facing a challenge in providing medical practi-
tioners with high-quality training materials. Dealing with 
the inadequacy of the training process, young surgeons as 
well as experts are relying more on alternative preparatory 
resources, such as surgical videos, to develop and improve 
their skills [1, 2]. Though the utility of video recordings is 
proven, their manual annotation and analysis require consid-
erable experience, take a relatively long time and are asso-
ciated with a high cost [3, 4]. Moreover, the handcrafted 
method cannot work with high performance on raw, pre-
processed samples. With the advent of artificial intelligence 
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(AI), a shift in workflow and productivity in the medical 
field has begun and surgical practices and education stand 
to gain from the current technological revolution [4, 5]. Sev-
eral groups have demonstrated the feasibility of different 
AI-based automatization approaches for video and medical 
image analysis for varying purposes, such as recognition 
of operative steps, identifying and tracking surgical tools 
and diagnosis [6–8]. As AI-enabled approaches can process 
huge amounts of surgical data, they can be used to recognize 
or predict adverse events, enable “navigation in surgery” 
by addressing various anatomical orientation questions and 
important decision-making tools and contribute to training 
and education. [9].

Computer vision (CV) includes the study of machine-
mediated understanding of images. It includes image acqui-
sition and interpretation and has been explored in areas such 
as image-guided diagnosis and surgery or virtual colonos-
copy [10]. However, the success of medical image analysis 
remains limited by large variations in occlusions, viewpoints 
and lighting conditions during surgical processes. In the field 
of CV, deep learning technology substantially improved the 
traditional machine learning process [11]. The convolutional 
neural network (CNN), a prominent representative network 
of models in the field of deep learning, is gaining impor-
tance in current medical image processing, recognition and 
classification [12–14]. A review of the literature indicates a 
requirement for further studies on machine learning applica-
tions for intraoperative image analysis.

To explore the possibility of AI-driven applications in 
surgical education, our group developed an image-guided 
surgical navigation technology. This study investigated 
whether CNN-based CV could be utilized for efficient detec-
tion of both specific anatomical features and surgical tools 
during surgery.

Methods

Institutional approval

All datasets were deidentified, and the study protocol was 
exempt from institutional review board review at Tokyo 
Women’s Medical University.

Datasets

The surgical videos used for annotation were recorded dur-
ing surgeries carried out in the Department of Surgery, 
Institute of Gastroenterology at Tokyo Women’s Medical 
University from January 2019–August 2020. Abdominal 
endoscopic images were cut out from 9 manually captured 
surgical videos for the training model, and additional images 
were cut out from other videos for validation (Fig. 1). The 

images varied in nature, representing different surgeries 
(colorectomy, rectal surgery, hernia, sigmoid resection), and 
duplicate images were excluded from the assessment. Any 
frame from a video in the training set was excluded from the 
test set. The images were manually annotated one by one by 
marking each visible tool or anatomical feature. During the 
annotation process, polygons were drawn, delimiting each 
object or anatomical feature in every video image. During 
the training process, every polygon signified a foreground 
mask and the rest of the image represented the background. 
The annotations were validated by experts in the field.

A total of 1070 images were cut out for training in an 
object recognition model, using IBM Visual Insights 
(Power SystemAC922), which includes 400 images from 
2 right colorectomies, 510 images from 4 rectal surgeries, 
110 images from 2 hernia surgeries and 50 images from 1 
sigmoid resection surgery. Eight objects were selected for 
this annotation. The objects and the numbers of each object 
annotated in the images were as follows: GI tract, 1781; port, 
861; forceps, 1873; gauze, 1016; vessels, 352; blood, 208; 
clips, 760; and uterus, 63 (Table 1 and Fig. 2 a, b). Instead 
of using similar images, we used a wide variety of images 
from various situations when selecting items for both train-
ing and validation. The model was deployed, and the other 
200 images were used as input in the deployed model to 
verify its diagnostic accuracy. A surgical video with a 40 s 
run time was extracted from the other videos and used to 
verify the model.

Deep neural network training for automated object 
identification.

Deep neural networks are the most effective available tech-
niques for solving object detection and instance segmen-
tation tasks. In this study, an open-source programming 
framework for CNN was used to design a model that could 
recognize and segment objects in real time. The model was 
trained by and implemented through IBM Visual Insights 
(Power SystemAC922).

Analysis

IBM Visual Insights includes the most popular open-source 
deep learning frameworks and tools. The model types 
included in the software are GoogLeNet, Faster R-CNN, 
tiny YOLO V2, YOLO V3, Detectron, Single Shot Detector 
(SSD) and structured segment network (SSN). The model 
is built for easy and rapid deployment. Moreover, it also 
provides complete end-to-end workflow support for CV deep 
learning models that includes complete lifecycle manage-
ment from installation and configuration, data labeling and 
model training, to inference and moving models into produc-
tion. The default value of the ratio is 80/20, resulting in 80% 
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of the test data (at random) being used for training and 20% 
being used for measurement/validation. Figure 3 shows the 
flow of analysis using IBM Visual Insights.

Evaluation criteria

To quantitatively assess the performance of the designed 
network, accuracy, recall and precision were used as evalu-
ation criteria in the image recognition field.

Accuracy is defined as the measurement of the percent-
age of correct image labels. It is calculated by (true posi-
tives + true negatives)/all cases. Recall is the percentage 
of images labeled as an object compared to all images that 
contain the object. It is calculated as true positives/(true 
positives + false negatives). Precision is the percentage of 
images that were correctly labeled as an object compared 
to all images labeled as that object. It is calculated by true 
positives/(true positives + false positives). Mean average pre-
cision (mAP) is the calculated mean of the precision for each 

Fig. 1  Process of making still images for data labeling. A total of 
1070 images were cut out from 9 surgical videos including 2 right 
colorectomies, 4 rectal surgeries, 2 hernia surgeries and 1 sigmoid 

resection surgery performed in the Department of Surgery at Tokyo 
Women’s Medical University. Objects are labeled in these images

Table 1  Objects and numbers of individual objects annotated in the images

Right colo-
rectomy 1

Right colo-
rectomy 2

Rectal surgery 1 Rectal surgery 2 Rectal 
surgery 3

Rectal 
surgery 4

Hernia 1 Hernia 2 Sigmoid 
resection

Total

GI tract 182 478 418 334 68 61 65 123 52 1781
Port 431 346 18 25 14 0 7 15 5 861
Forceps 426 376 353 366 93 64 61 88 46 1873
Gauze 107 95 204 413 4 46 6 94 47 1016
Vessel 49 125 34 95 0 6 0 0 43 352
Blood 25 15 8 0 7 89 12 0 52 208
Clip 122 457 126 17 0 4 0 0 34 760
Uterus 0 0 7 0 48 8 0 0 0 63
Total 1342 1892 1168 1250 234 278 151 320 279
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Fig. 2  Example images of 
labeling objects. A total of 
8 objects, forceps, GI tract, 
port, gauze, clip, blood, ves-
sel and uterus, were selected 
and labeled in the images to 
create an object recognition 
model. The left-side images 
are original, and the right-side 
images show labeled objects. 
Each object was surrounded 
carefully with a line for shape 
recognition. a GI tract and port 
are labeled. b GI tract, forceps, 
gauze and blood are labeled. c 
Blood, forceps and uterus are 
labeled. d Clip, forceps and ves-
sel are labeled

Fig. 3  Flow of analysis using 
IBM Visual Insights. The 8 
selected objects were labeled 
in a total of 1070 images that 
were cut out for creating an 
object recognition model. The 
other 200 images for validation 
were input into the model to 
verify whether each object was 
recognized accurately
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object. Intersection over union (IoU), the location accuracy 
of the image label boxes, is calculated by the intersection 
(overlap) between a hand-drawn bounding box and a pre-
dicted bonding box divided by the union (combined area) 
of both bounding boxes.

Other hyperparameters in Fig. 4 set during the training 
process were Max iteration (the maximum number of times 
the data are passed through the training algorithm), weight 

decay (specifies regularization in the network, protects 
against over-fitting and is used to multiply the weights when 
training), momentum (increases the step size used when try-
ing to find the minimum value of the error curve; a larger 
step size can keep the algorithm from stopping at a local 
minimum instead of finding the global minimum), learning 
rate (determines how much the weights in the network are 
adjusted with respect to the loss gradient; a correctly tuned 
value can result in a shorter training time) and segmenta-
tion (specifies whether segmentation was used to train the 
model).

Results

Figure 4 shows the details of the training model with 1070 
images cut out. The accuracy of the model was 83%. Preci-
sion was 80%. Recall, the percentage of the images that were 
labeled as an object compared to all images that contain 
that object, was 92%. The mAP, the calculated mean of the 
precision for each object, was 91%. The IoU, the location 
accuracy of the image label boxes, was 56%.

The recall and precision for the detection of each object 
category in the model are shown in Table 2. 913 objects in 
eight categories were detected in 200 test images. Among 
the total number of detected objects, 834 objects were 
detected correctly. The number of objects not detected was 
79. The number of false positives was 59. Figure 5 shows 

Fig. 4  Details of the training model. a Accuracy. b Max iteration. c 
Ratio. d Weight decay. e Momentum. f Learning rate. g Segmenta-
tion. h Mean average precision. i Precision. j Recall. k Intersection 
over union

Table 2  Recall and precision for each object

False negative: Number of objects not identified
False positive: Number of objects identified despite absence of the objects

Object Number of objects iden-
tified in images

Number of objects iden-
tified correctly

False negative False positive Recall 
%
(95% CI)

Precision 
%
(95% CI)

Forceps 347 334 13 7 96.3
(94.3–98.3)

97.9
(96.4–99.5)

GI tract 282 262 20 25 92.9
(89.9–95.9)

91.3
(88.0–94.6)

Port 31 27 4 4 87.1
(75.3–98.9)

87.1
(75.3–98.9)

Gauze 78 67 11 9 85.9
(78.2–93.6)

88.2
(80.9–95.4)

Clip 126 108 18 7 85.7
(79.6–91.8)

93.9
(89.5–98.3)

Blood 8 4 4 1 50.0
(15.4–84.6)

80.0
(44.9–115.1)

Vessel 29 23 6 5 79.3
(64.6–94.1)

82.1
(68.0–96.3)

Uterus 12 9 3 1 75.0
(50.5–99.5)

90.0
(71.3–108.6)

Total 913 834 79 59 91.3
(89.5–93.2)

93.4
(91.8–95.0)
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examples of correct detection of objects in various catego-
ries. Figure 6 shows examples of false negative detection 
error, when the object was present in the image but was not 
detected. Figure 7 shows examples of detection error when 
one object was identified as another object.

A surgical video with a 40 s run time was used to test 
the model, with the results indicating that the object was 
detected accurately.

Discussion

This study demonstrated object recognition in surgical 
images using deep learning. In most cases, all objects were 
identified correctly (Fig. 5 a, b, c). The recall and preci-
sion of each object showed high accuracy (Table 2). The 
general framework for video image analysis involves struc-
tural-units segmentation, feature extraction for presenting 

Fig. 5  Examples of object 
detection in surgical images. 
(5a, Ex. 1) The GI tract and 
port were recognized accurately. 
(5a, Ex. 2) The GI tract, forceps 
and gauze were recognized 
accurately. (5b, Ex. 3) The GI 
tract, forceps and clips were 
recognized accurately. (5b, Ex. 
4) The GI tract, forceps, gauze 
and clips were recognized 
accurately. (5c, Ex. 5) The 
forceps, vessel and clips were 
recognized accurately. (5c, Ex. 
6) The GI tract, forceps, gauze 
and clips were recognized 
accurately
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a specific object or activity using the extracted features 
for data mining, annotation/classification for developing a 
semantic video index and searching the video database with 
a distance similarity measure [4]. In our study, a CNN-based 
algorithm was designed and verified for its applicability in 
identification of both anatomical features and surgical tools. 
In comparison with other techniques, CNN can deal with a 
larger number of features during training. When compared 
to recent studies that also used CNN-based surgical image 
or action detection/classification, our method showed com-
parable or superior results. For example, in a study that 
analyzed laparoscopic intraoperative videos, the automatic 
surgical phase and action classification task showed overall 
accuracies of 81.0% and 83.2%, respectively, and the mean 
IoU for the automatic tool segmentation task for surgical 
tools was 51.2% [15]. A greater or similar value of these 
parameters was achieved. This is conceivable, because IBM 
Visual Insights is made from complex models to achieve bet-
ter results. This is a preliminary report, and future research 
is needed. Our results support the view that surgeons can 
rely on AI-based analysis of population and patient-specific 
data to improve each phase of intervention and care and to 

provide a rapid analysis of large numbers of preoperative 
images and intraoperative scenes to improve the decision-
making process dramatically [6].

Analysis of anatomic structures during surgery or diag-
nosis is relevant for documenting the details of a disease 
and its treatment and also for medical research and teach-
ing purposes. Based on the videos of colorectal and her-
nia surgeries, the GI tract, blood, vessels and uterus were 
studied. For the GI tract, recall and precision were 92.9% 
and 91.3%, respectively. Twenty GI tracts were not iden-
tified due to unsharp images and somewhat darker colors 
than in other images. In most false positive cases of the GI 
tract, the peritonea are recognized as the GI tract when their 
color and gloss are similar (Fig. 7 a, Ex.1). In most of the 
recent research on the GI tract, the objective was limited 
to identification of a specific disease, such as early gastric 
cancer or the existence of polyps [16–20] instead of ana-
tomical detection of the GI tract. However, the success of 
the CNN structure is highly correlated with the number of 
samples used for training [21]. For blood, recall and preci-
sion were 50% and 80%, respectively. Blood is not pointed 
out, perhaps, when there are fewer heliotropes than in the 

Fig. 6  Example of false nega-
tive detection error when the 
object present in the image was 
not detected. (6a, Ex. 1) An 
example with a mistake. There 
are 4 forceps in the image, but 
the 4th one was not identified. 
(6a, Ex. 2) There are 2 ports 
in the image, but one of them 
was not identified (6b, Ex. 3) 
An example with a mistake. 
There is a clip in the image, but 
it is recognized as a part of a 
forceps. (6b, Ex. 4) There is a 
whitish vessel in the image, but 
it was not identified
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model. In most false positive cases of blood, blood-tinted fat 
is recognized incorrectly as blood (Fig. 7 b, Ex. 3). In con-
trast, a few state-of-the-art deep learning-based systems have 
recently been reported to be capable of automatic detection 
of gastrointestinal bleeding with more than 98% recall by 
individual still image analysis [19]. For vessels, recall and 
precision were 79.3% and 82.1%, respectively. Vessels are 
not identified if their color is different from those in the 
training model (Fig. 6 b, Ex. 4). In false positive cases of 
vessels, reddish fat is also recognized incorrectly as a vessel. 
For the uterus, recall and precision were 75.0% and 90.0%, 
respectively. The uterus was not identified or mistakenly 
recognized if the GI tract or other organ had similar color 
and gloss (Fig. 7 b, Ex. 4). A previous study that explored 
the performance of two well-known CNN architectures, 
AlexNet and GoogLeNet, for detecting anatomical struc-
tures during gynecologic surgery including the uterus, the 
mean recall value was 78.2% and 61.5%, respectively and 
for the uterus, the recall value was 80.1% [22]. Our study 
showed a higher average recall value than that study. In a 
study of gynecological shot classifications using CNN-based 
architecture, the average precision and recall values were 

42% and 43%, respectively. The accuracy achieved in that 
study was 48.67%, which was much lower than the accu-
racy of our method [23]. In a surgical action video scene, 
the interaction of various surgical instruments with tissues 
and organs represented the technicalities of the process and 
the analysis of these scenes is important for documentation 
and quality control, as well as training. Our study included 
gauze, clips, forceps and ports, some of the most frequently 
used tools, for detection. The common challenges encoun-
tered with image-based methods for the identification and 
tracking of surgical instruments are high deformation or 
artifacts, blurred surgical scenes due to camera movement 
and gas generated by the equipment and occlusion due to 
blood stains on the camera lens [24]. The initial methods 
depended on low-level handcrafted features, such as the 
amalgamation of features related to shape, color and texture 
[25]. Recent studies have focused on exploring the usage of 
CNNs in learning more discriminative visual features. When 
the performance on intraoperative tool detection in terms 
of the mAP in previous studies was compared with that in 
the current study, our model showed better performance. 
mAPs achieved in the earlier studies were 63.8% [26], 54.5% 

Fig. 7  Example of false positive 
detection error when one object 
was detected as another object. 
(7a, Ex. 1) All GI tracts were 
recognized accurately, but an 
intestinal wall was also identi-
fied as a GI tract. (7a, Ex. 2) 
There is no gauze in the image, 
but a part of the netlike fat is 
recognized as gauze. (7b, Ex. 3) 
Part of the fat is recognized as 
blood (7b, Ex. 4) The uterus is 
recognized as the GI tract and 
vice versa
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[27], 52.5% [28]), 81% [29], 81.8% [30], 72.26% [31], 84.7% 
[32], which are lower than the mAP of 91% achieved in our 
study. In our study, for forceps, recall and precision were 
96.3% and 98%, respectively. Thirteen forceps were not 
identified due to slightly blurred images or only a small part 
of the forceps being visible in the image (Fig. 6 a, Ex.1). 
Examples of forceps false positives were ports, long and 
narrow-shaped fat, or clips, which tended to be recognized 
as forceps. For port, both recall and precision were 87.1%. 
Four ports were not identified because they were transparent 
and were assimilated into other objects (Fig. 6 a, Ex. 2). In 
false positive cases of ports, reflection of light affected false 
recognition as other objects. For gauze, recall and precision 
were 85.9% and 88.2%, respectively. Eleven gauzes were 
not identified when the mesh of the gauze was not clear due 
to unsharp images. There were some false identifications of 
gauze when the shapes of other objects like fat were similar 
to gauze (whitish and netlike) (Fig. 7 a, Ex. 2). For clips, 
recall and precision were 85.7% and 93.9%, respectively. 
Eighteen clips were not identified; in most cases, they were 
recognized as a part of a forceps (Fig. 6 b, Ex. 3). In false 
positive cases of clips, other objects like fat and vessels 
were recognized incorrectly as clips because of their colors 
and shapes. We observed that the quality of the prediction 
varied based on the sharpness (clearness) of images, which 
considerably affected the outcome of validation. The more 
samples we enter into the model, the better the results that 
can be achieved.

This study aimed to build a navigation or object detection 
system during surgery. Given the promising results of our 
study, we believe that the model could ultimately be used to 
automatically evaluate surgical skills using CV analysis. The 
results of our study can contribute to the field of automati-
zation of surgical assistance that can manage, deliver and 
retrieve surgical instruments for surgeons upon request [7]. 
Moreover, as the current coronavirus 2019 (COVID-19) cri-
sis has accelerated and enhanced the requirement of e-learn-
ing solutions, our study contributes to the global effort of 
developing new training methods to optimize complex surgi-
cal education [33].

This study has several limitations. First, it was retrospec-
tive in nature. Second, it was performed with a limited num-
ber of surgical videos of colorectal and hernia surgeries. 
Despite these limitations, our results add substantial value 
to the field of intraoperative detection of anatomical features 
and surgical tools.

Conclusion

We propose a real-time detection model for identifying 
surgical instruments and anatomical features during vari-
ous gastrointestinal surgeries with a CNN system. The 

proposed model could detect objects with high accuracy 
and performed comparably to other studies. Real-time object 
recognition will play a major role in surgical education and 
navigation surgery, and the technology has the potential 
to expand significantly by storing large amounts of data, 
although we encountered the problem of erroneous object 
detection due to the limited number of images used. Further 
studies are warranted to improve the data preprocessing and 
augment the tracking algorithm.
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