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Abstract
Purpose Automatic identification of interventional devices in X-ray (XR) fluoroscopy offers the potential of improved navi-
gation during transcatheter endovascular procedures. This paper presents a prototype implementation of fully automatic 3D 
reconstruction of a cryo-balloon catheter during pulmonary vein isolation (PVI) procedures by deep learning approaches.
Methods We employ convolutional neural networks (CNN) to automatically identify the cryo-balloon XR marker and 
catheter shaft in 2D fluoroscopy during PVI. Training data are generated exploiting established semiautomatic techniques, 
including template-matching and analytical graph building. A first network of U-net architecture uses a single grayscale 
XR image as input and yields the mask of the XR marker. A second network of the similar architecture is trained using the 
mask of the XR marker as additional input to the grayscale XR image for the segmentation of the cryo-balloon catheter shaft 
mask. The structures automatically identified in two 2D images with different angulations are then used to reconstruct the 
cryo-balloon in 3D.
Results Automatic identification of the XR marker was successful in 78% of test cases and in 100% for the catheter shaft. 
Training of the model for prediction of the XR marker mask was successful with 3426 training samples. Incorporation of 
the XR marker mask as additional input for the model predicting the catheter shaft allowed to achieve good training result 
with only 805 training samples. The average prediction time per frame was 14.47 ms for the XR marker and 78.22 ms for 
the catheter shaft. Localization accuracy for the XR marker yielded on average 1.52 pixels or 0.56 mm.
Conclusions In this paper, we report a novel method for automatic detection and 3D reconstruction of the cryo-balloon 
catheter shaft and marker from 2D fluoroscopic images. Initial evaluation yields promising results thus indicating the high 
potential of CNNs as alternatives to the current state-of-the-art solutions.
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Introduction

Atrial fibrillation is a common heart arrhythmia associated 
with an increased risk of stroke. The current state-of-the-
art treatment option is minimally invasive catheter ablation. 
Cryo-balloon catheters isolate a pulmonary vein by freezing 

the tissue annularly around its ostium using liquid nitrogen 
injected into the balloon device. The planning of cryo-bal-
loon ablations of atrial fibrillation is a crucial task for a phy-
sician as determining the correct size of the balloon catheter 
is required for successful isolation of each pulmonary vein 
(PV). The radio-opaque marker of the cryo-balloon local-
ized in the biplane X-ray (XR) fluoroscopy facilitates the 
verification of the balloon catheter position with respect 
to the preoperative data set of the left atrium [1]. Further 
intra-procedural support can be provided by visualizing the 
position and dimensions of the cryo-balloon catheter over-
laid onto the fluoroscopic images using overlay guidance 
systems (OGS) [2, 3]. Based on the knowledge of its 3D XR 
marker position, vector of the catheter shaft, and diameter, 
several methods for the reconstruction of a 3D model of the 
cryo-balloon have been introduced with reported submil-
limeter levels of accuracy for sphere reconstruction [1, 4, 5]. 
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Also, methods to reconstruct ellipsoids requiring three views 
[6] or spheroids from even a single image plane [7] have 
been reported. The previously addressed 3D reconstruction 
methods will significantly benefit from automatic detec-
tion of the radio-opaque marker and the catheter shaft in 
the fluoroscopic images, as it has been shown for automatic 
3D catheter tracking inside the patient’s vascular tree [8] 
or in electrophysiology (EP) procedures [9, 10]. Therefore, 
the purpose of this work is to fully automatically identify 
the cryo-balloon marker and the catheter shaft in 2D XR 
fluoroscopy to be further used for initialization of the 3D 
reconstruction method of the cryo-balloon, exemplarily 
addressed in this paper.

Although convolutional neural networks (CNN) are 
extensively used for catheter detection and tracking, a large 
amount of annotated training data is required for all deep 
learning approaches for pixel-level segmentation. Man-
ual pixel-level labeling is laborious and time-consuming; 
thus, methods reducing the required manual interaction 
will greatly facilitate the development of CNN models for 
semantic segmentation [11].

In this work, we propose to use networks of similar 
encoder-decoder U-net architecture to detect separately the 
XR marker and the cryo-balloon catheter shaft in the XR 
images from cryo-balloon pulmonary vein isolation (PVI) 
procedures. For training of the networks, semiautomatically 
annotated training data were used. The annotated training 
data for marker prediction were used additionally to the cath-
eter shaft training data for further improvement of predic-
tion capability and simultaneous reduction of the required 
amount of training data.

Methods

CNN model

The proposed method utilizes an adapted CNN model of 
the well-known U-net architecture to segment the radio-
opaque marker (U-netmarker) and the cryo-balloon catheter 
shaft (U-netshaft) separately in the XR images from PVI pro-
cedures. The adapted U-net model consists of a convolu-
tional part downsampled with the maxpool layer and strided 
transposed convolutional upsampling part in combination 
with dropout regularization and residual connection to the 
output and was previously described by our group [12]. Both 
models were implemented in Keras and trained on a GeForce 
GTX 1060 6 GB GPU for 50 epochs with a batch size of 8 
(U-netmarker) or 4 (U-netshaft) samples per pass with the adap-
tive moment estimation algorithm. U-netmarker uses a lossless 
grayscale XR image as input and predicts the radio-opaque 
marker as a mask  (maskmarker). U-netshaft consists of two 
inputs: current lossless grayscale XR image and  maskmarker, 

and predicts the catheter shaft mask  (maskshaft). The imple-
mented algorithm showing the annotation and training steps 
with corresponding inputs/outputs, as well as predicted out-
puts of both models is sketched in Fig. 1.

All available XR data were pre-processed and annotated 
semiautomatically as described below in Annotation.

Data

Eighty-nine fluoroscopic runs from 15 different PVI patients 
acquired on biplane C-arm X-ray system (Allura Xper, 
Philips Healthcare, Best, The Netherlands) were used for 
development and evaluation of the proposed method. Two 
patients’ data were acquired in monoplane mode (44 runs in 
total), 13 patients’ data—in biplane mode (45 runs in total, 
on average 2 frontal and 2 lateral runs per patient). A total 
of 3426 XR images of 512 × 512 pixels resolution (all 76 
available runs from 11 patients) were successfully annotated 
and used for training/validation of U-netmarker. A total of 805 
images (32 biplane runs from 10 patients and 2 monoplane 
runs from 1 patient) were used to train/validate the U-netshaft. 
A total of 508 XR images (13 biplane runs from 4 patients) 
were used for testing both models.

Annotation

The radio-opaque marker mask  (maskmarker) was created by 
thresholding the signal intensity values of the XR image 
(Fig. 2a) within a 10 × 10 pixels region of interest (ROI) 
around the marker (Fig. 2b). A threshold value for marker 
detection was identified individually for each run based on 
the intensity values of the marker in the first frame. A single 
point within the marker was manually set in the first frame 
of each run and extended to the rectangular shaped template. 
ROI position through the run was automatically adjusted 
applying template-matching using the local sums to normal-
ize the cross-correlation in MATLAB. Finally, a series of 
binary masks of the XR marker corresponding to each frame 
in the XR run was created (Fig. 2c). For each frame in the 
XR run, the created binary mask was overlaid on the XR 
image and reviewed visually for accuracy (Fig. 2b, close-
up); the outliers were removed.

Catheter shaft binary mask  (maskshaft ctrl) was created 
from a centerline model build similarly as described in [4, 
13] as the analytical representation of the cryo-balloon cath-
eter shaft part close to the XR marker. First, the following 
image pre-processing steps were undertaken: each 8-bit inte-
ger grayscale XR image (Fig. 3a) was inverted, histogram 
equalized, enhanced applying a hybrid Hessian-based filter 
[14], binarized, and skeletonized. The resulting image can 
be seen in Fig. 3b.

After pre-processing, the search area for the catheter shaft 
in the skeletonized image was reduced to 50 × 50 pixels ROI 
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Fig. 1  Method processing algorithm subdivided into annotation, 
training, and output steps. Annotation step: the mask of the cryo-
balloon marker  maskmarker is obtained from the original XR image to 
be processed by the U-netmarker; the mask of the cryo-balloon catheter 
shaft centerline  maskshaft ctrl is obtained from the original XR image 
and its corresponding  maskmarker to be processed by the U-netshaft. 
Training step: U-netmarker is trained on the image sample consisting of 

original XR image and its corresponding  maskmarker as ground truth; 
U-netshaft is trained on the image sample consisting of original XR 
image and its corresponding  maskmarker as inputs and  maskshaft ctrl as 
ground truth. Output step:  maskmarker and  maskshaft are predicted by 
the U-netmarker and U-netshaft correspondingly as images containing 
contours of specific pixel values against background

Fig. 2  Semiautomatic anno-
tation of the cryo-balloon 
marker: a original XR image; 
b XR frame with a rectangular 
template of 10 × 10 pixels set 
around the XR marker (red box) 
and overlaid thresholded pixels 
corresponding to the segmented 
marker (incl. close-up of the 
respective region of interest); c 
resulting binary mask  maskmarker

Fig. 3  Semiautomatic annotation of the cryo-balloon catheter shaft: a 
original XR image; b skeletonized binary image with the analytical 
graph (magenta) built within the 50 × 50 pixels ROI (red rectangu-
lar box) around the seed point (red point) and two end nodes (white 

points) indicating the longest path closest to the seed point and inter-
preted as a catheter shaft; c XR frame with overlaid resulting spline 
fitted longest path providing the centerline of the catheter shaft; d 
resulting binary mask  maskshaft ctrl
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around the marker (Fig. 3b, red rectangular box). The ROI 
center is given by the center of the minimum-area bounding 
rectangle of the contour provided by the  maskmarker and will 
be further considered as a seed point (Fig. 3b, red point). 
To close small gaps, a closing operation was performed 
before skeletonization. The skeleton within the search area 
was then transformed into a single gapless graph (Fig. 3b, 
magenta points) initialized by the seed point. The shortest 
paths between all end nodes of the graph were computed 
by Dijkstra’s algorithm. From the resulting paths, the long-
est path closest to the seed point located within an initially 
predefined catheter orientation dependent interval was con-
sidered as estimate for the catheter shaft (Fig. 3b, all nodes 
between two white points). The resulting centerline was then 
obtained by spline fitting of the computed path and overlaid 
onto the XR image for visual reviewing of the segmenta-
tion accuracy (Fig. 3c). In case of failure, the procedure was 
redone with another pre-defined interval. An exemplarily 
resulting binary mask  maskshaft ctrl generated for the training 
of U-netshaft is shown in Fig. 3d. The complete algorithm was 
implemented in Python using OpenCV and SciPy libraries 
for image processing and NetworkX library for building the 
graphs.

Post‑processing and evaluation

Generated outputs of both models—maskmarker and 
 maskshaft—are images with detected contours given by the 

specific nonzero pixel values on the black background. To 
obtain a single seed point corresponding to XR marker 
from predicted  maskmarker thresholded at 20% of maximum 
intensity, the centroid of the detected contour was calculated 
using image moments in OpenCV. For accuracy evaluation, 
the average Euclidean distance between the calculated seed 
point and centroid of the annotated marker contour was 
calculated. To compute the catheter shaft centerline, the 
 maskshaft was thresholded at 1.5% of maximum intensity and 
skeletonized. Resulting centerline coordinates were obtained 
by spline fitting of the longest path computed for a graph 
built for the contour initialized by the computed seed point.

3D reconstruction

The resulting seed point and spline fitted centerline for each 
XR image were used for 3D reconstruction of the cryo-
balloon marker and catheter shaft from two views. The 
reconstructed 3D marker position and catheter shaft direc-
tion vector were aligned with the previously constructed 3D 
model of the 28 mm-sized cryo-balloon designed according 
to Arctic Front Advance Pro™ specifications (Medtronic, 
Minneapolis, USA), including the balloon ellipsoid, cath-
eter shaft with tip, and radio-opaque marker (Fig. 4). With 
the known geometry of the XR system for each specific 
view, the 3D position of the radio-opaque marker given 
by the seed point in each view (Fig. 4, black points) was 
reconstructed based on epipolar geometry [15]. Created 

Fig. 4.  3D reconstruction of the automatically detected seed points 
(black points in both XR images) and catheter shaft centerlines (white 
lines in both XR images) from frontal view acquired in RAO30° ori-
entation (red lines) and lateral view acquired in LAO40° orientation 
(yellow lines) and alignment with the previously constructed 28 mm-
sized cryo-balloon model. Solid red and yellow lines represent pro-
jection vectors for frontal and lateral views, respectively. Light red 
and yellow lines on both XR images represent respective line fitted 

centerlines. Dashed red and yellow lines on both XR images repre-
sent respective orthonormals, whereas dotted red and yellow lines 
represent transferred orthonormals initialized by the reconstructed 
3D marker position aligned with the cryo-balloon model marker (dark 
blue small ellipsoid). Solid orange line represents resulting catheter 
orientation vector aligned with the cryo-balloon model shaft (dark 
blue line)
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centerlines in both biplane images (Fig. 4, white lines) were 
line fitted (Fig. 4, red light vector on frontal view and yel-
low light vector on lateral view) using minimal averaged 
Euclidean distance to obtain the associated unit direction 
vector. Applying the cross-product on the fitted lines and 
the corresponding projection vector (Fig. 4, red and yellow 
solid lines correspondingly), orthonormals (Fig. 4, red and 
yellow dashed lines) were obtained. The catheter orienta-
tion (Fig. 4, orange) resulted from the cross-product of both 
orthonormals, transferred according to projection geometry 
to the previously determined 3D marker position (Fig. 4, red 
and yellow dotted lines).

Since no 3D data were available as ground truth, the result 
of 3D reconstruction was back-projected into the image 
planes and the deviation of the re-projected XR marker and 
direction vector was calculated using the Euclidean distance 
between the seed points and re-projected reconstructed XR 
markers.

Results

The XR marker of the cryo-balloon could be visually 
detected in 394 (78% of cases) test samples, whereas 3426 
image samples were used for training and validation. A total 
of 805 training/validation samples were required to achieve 
100% visual detectability of the catheter shaft (Table 1). 
As expected, the accuracy of the method is limited by the 
presence of interfering features, e.g., injected contrast agent 

overlaying the target structures, other catheters, vessel-like 
structures, and electrodes, in the image field of view.

Even if the marker could not be detected automatically 
with U-netmarker (Table 1, Test runs 2, 3, 9, and 13), incor-
porating the annotated  maskmarker as additional input for 
U-netshaft yielded accurate detection of the part of the cryo-
balloon catheter shaft close to the seed point.

The average time to predict the whole mask of 512 × 512 
pixels resolution was 14.47 ms for the XR marker and 
78.22 ms for the catheter shaft.

Despite an average deviation of 1.52 pixels or 0.56 mm, 
an accurate overlap between the centroids of the contours 
provided by the predicted XR marker mask and the ground 
truth mask could be achieved for all test data sets where the 
XR marker was detected (Fig. 5).

In direct comparison with the image processing algo-
rithms utilized for the creation of the annotated training 
data, where the Hessian filter was often not able to manage 
the appearance of gaps in the near vicinity of the seed point, 
the detection of the catheter shaft with U-net was flawless 
(Fig. 6).

Figure 7 demonstrates an example of projection of the 
constructed cryo-balloon model aligned to the 3D struc-
tures (XR marker and direction vector) reconstructed from 
the automatically detected seed points and catheter cen-
terlines in two views acquired in RAO30° on the frontal 
C-arm (Fig. 7a) and LAO40° on the lateral C-arm (Fig. 7b) 
onto these views. The aligned 28 mm-sized cryo-balloon 
model fits the corresponding marker and catheter shaft in the 
XR images with the deviation of back-projected marker of 

Table 1  Summary of the results from test runs provided by U-netmarker and U-netshaft

XR test run 
number

C-arm Projection 
orienta-
tion

Number of 
frames in XR 
run

U-netmarker U-netshaft

Number of 
frames with 
detected marker

Prediction time 
per frame (ms)

Average Euclid-
ean distance 
(pxl)

Number of 
frames with 
detected cath-
eter shaft

Prediction time 
per frame (ms)

1 frontal RAO30° 58 58 11.58 1.22 58 58.73
2 frontal RAO30° 49 0 12.12 – 49 63.78
3 lateral LAO40° 19 0 14.80 – 19 93.75
4 lateral LAO40° 54 54 11.86 1.12 54 60.76
5 frontal RAO30° 33 33 13.73 1.15 33 77.18
6 frontal RAO30° 19 19 15.63 2.77 19 94.57
7 lateral LAO40° 36 36 13.02 1.38 36 74.22
8 lateral LAO40° 10 10 28.13 1.5 10 148.44
9 frontal RAO30° 41 17 12.58 2.6 41 70.88
10 frontal RAO30° 87 87 11.85 1.19 87 44.72
11 lateral LAO40° 42 42 12.28 0.78 42 66.59
12 frontal RAO30° 38 38 15.63 1.5 38 72.37
13 lateral LAO40° 22 0 14.91 – 22 90.91
Average 14.47 1.52 78.22
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0.33 mm or 0.9 pixels in frontal and 0.28 mm or 0.77 pixels 
in lateral view in this concrete example.

Discussion and conclusions

The introduced method yields the possibility of automatic 
detection of the cryo-balloon catheter shaft and its marker 
in 2D fluoroscopic images using convolutional neural net-
works for localization of the cryo-balloon in 3D. The pro-
posed annotation methods enable an automatic generation of 
the training data. However, for ensuring annotation fidelity, 

manual reviewing of the accuracy is required. Especially 
in the case of centerline generation, the review implicates 
time-consuming manual effort. This effort could be, how-
ever, reduced by incorporating the  maskmarker as additional 
input for the U-netshaft and thus generation of less annotated 
data required for successful end-to-end training of U-netshaft.

The method is still facing some limitations in the detec-
tion of XR marker and catheter shaft in case of injected 
contrast agent overlaying the target structures and difficult 
catheter orientations (e.g., highly angulated catheters). This 
is most likely due to the very limited availability of simi-
lar training data in which proper annotation was neither 

Fig. 5  Evaluation of the XR marker prediction accuracy from test 
run 1: cutout of the annotated  maskmarker (a) or predicted  maskmarker 
(c) overlaid on original XR image with the colored point indicating 
the centroid of the annotated marker contour as ground truth (blue) 

or the centroid of the predicted contour (red); plot of the predicted 
centroid’s horizontal (b) and vertical (d) coordinates overlaid on the 
ground truth coordinates
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successful with the automatic approach nor manually. 
Moreover, the approach to uniquely identify the respective 
XR marker and catheter shaft in case of multiple detected 
regions in the predicted masks should be developed.

3D reconstruction of the cryo-balloon was successful 
by combining the 3D reconstruction of the XR marker 
using epipolar geometry with the reconstruction of the 
3D directional vector of the catheter shaft. For successful 

3D reconstruction, detection of the XR marker and cath-
eter shaft in both views should be guaranteed by the neu-
ral networks. The accuracy of the reconstruction method 
is limited by the calibration accuracy of the biplane XR 
system and is restricted to no or very low catheter shaft 
angulation, as only a direction vector fitted to the center-
line spline is considered for reconstruction.

Fig. 6  Exemplary results of test run 1 (a–d) and test run 4 (e–h): a, 
e output of U-netmarker overlaid on original XR image; b, f output 
of U-netshaft overlaid on original XR image; c, g the post-processed 
binary image representing the skeleton of the image outputted by 

U-netshaft with the overlaid graph and a center of the contour detected 
by U-netmarker (red point); d, h resulting seed point and spline fitted 
centerline overlaid on original XR image

Fig. 7  Projection of the constructed 28 mm-sized cryo-balloon model 
with ellipsoidal balloon (light blue) and catheter shaft (dark blue) 
with the tip (dark blue cylinder) and XR marker (dark blue small 
ellipsoid) onto RAO30° view acquired on the frontal C-arm (a) 

and LAO40° view acquired on the lateral C-arm (b). Automatically 
detected seed points are shown as black points in both XR images; 
catheter shaft centerlines are shown as white lines in both XR images
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