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Abstract
Purpose As the spectrum of X-ray procedures has increased both for diagnostic and for interventional cases, more attention
is paid to X-ray dose management.While the medical benefit to the patient outweighs the risk of radiation injuries in almost all
cases, reproducible studies on organ dose values help to plan preventive measures helping both patient as well as staff. Dose
studies are either carried out retrospectively, experimentally using anthropomorphic phantoms, or computationally. When
performed experimentally, it is helpful to combine themwith simulations validating the measurements. In this paper, we show
how such a dose simulation method, carried out together with actual X-ray experiments, can be realized to obtain reliable
organ dose values efficiently.
Methods A Monte Carlo simulation technique was developed combining down-sampling and super-resolution techniques
for accelerated processing accompanying X-ray dose measurements. The target volume is down-sampled using the statistical
mode first. The estimated dose distribution is then up-sampled using guided filtering and the high-resolution target volume as
guidance image. Second, we present a comparison of dose estimates calculated with our Monte Carlo code experimentally
obtained values for an anthropomorphic phantom using metal oxide semiconductor field effect transistor dosimeters.
Results We reconstructed high-resolution dose distributions from coarse ones (down-sampling factor 2 to 16) with error rates
ranging from 1.62 % to 4.91 %. Using down-sampled target volumes further reduced the computation time by 30 % to 60 %.
Comparison of measured results to simulated dose values demonstrated high agreement with an average percentage error of
under 10% for all measurement points.
Conclusions Our results indicate thatMonte Carlomethods can be accelerated hardware-independently and still yield reliable
results. This facilitates empirical dose studies that make use of online Monte Carlo simulations to easily cross-validate dose
estimates on-site.
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Introduction

Due to the growing number of fluoroscopically guided inter-
ventions (FGI), the importance for X-ray dose management
has increased [1–3]. In the vast majority of cases, the antic-
ipated medical benefit to the patient far outweighs any
potentially high radiation exposure and associated risks.Nev-
ertheless, assessing the applied dose critically is helpful to
take preventive actions to avoid or treat radiation-induced
injuries, if possible. While diagnostic reference levels [4]
serve as a guidance for the expected overall exposure of
the patient, it is difficult to draw conclusions on organ
dose levels from them. However, for complicated FGIs, e.g.,
neuro-interventional procedures, repeatedly acquired digital
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subtraction angiography acquisitions, cone-beam CT recon-
structions, and biplane imaging can lead to high dose values
[5–9]. They may cause DNA damage [10] or cataract [11].
To alert physicians of potential deterministic injuries, such
as local skin rashes or hair loss [6,12–14], today’s interven-
tional X-ray systems are equipped with skin entrance dose
tracking techniques based on a patient model [15].

However, in contrast to skin dose monitoring, assess-
ing organ dose requires much more prior information about
the patient anatomy. Sophisticated algorithms are needed to
solve the photon transport equation, such as Monte Carlo
(MC)methods [16], finite differences [17], or deep-learning-
based approaches [18]. While the task group report 195
(TG-195) of the American Association of Physicists in
Medicine (AAPM) proposes a protocol to ensure the valid-
ity of such algorithms [19], uncertainties concerning patient
anatomy and alignment, or material composition remain
[20,21]. Unfortunately, the high inter- and intra-procedure
variance of organ dose values concerning complicated FGIs,
therefore, demands for individualized patient-specific dose
metrics [22,23] and procedure-specific dose studies. Con-
sequently, for most procedures, a high uncertainty remains
when estimating organ or effective dose from the total air
kerma using either simulation or experimental phantom stud-
ies [21,24,25].

If carried out correctly, both simulations and measure-
ments can yield reliable reference values.However, they need
to be conducted carefully to arrive at meaningful results.
Experimentally obtained measurements are, for example,
prone to discretization errors since there is usually only a lim-
ited number of dosimeters available and, because there is only
limited time to do all measurements, a rather coarse sampling
is unavoidable. In addition to the systematic errors caused
by the coarse sampling, it is also challenging to reproducibly
carry out sufficiently many measurement series to minimize
stochastic uncertainties. In contrast, simulation approaches
are easy to repeat, but it is difficult to model the imaging
setting accurately. This is why we propose to combine both
approaches to arrive at a more accurate result by leverag-
ing the specific advantages of each technique [21]. However,
joint experimental and computational studies often require
manual effort to adapt simulation parameters and to properly
account for the imaging settings. In other words, it can be
very tedious to conduct them, in particular, when MC simu-
lations take so long that they are only available afterward.

To facilitate such combined studies, we propose a frame-
work with which to carry out associated MC simulations
during experimental measurements on-site: XDose. The idea
behind XDose is to avoid any manual parameter fine-tuning
by utilizing a Jacobian inverse kinematics solver yielding
position, and orientation of each tracked object in the test
suite entering the MC simulation. The X-ray system itself
provides physics parameters such as the air kerma and the

tube voltage as inputs to the MC simulation. To keep the
computational complexity of the MC code manageable, we
apply a recently presented filtering-based variance reduction
technique [26].

Materials andmethods

Figure 1 depicts an overview of theXDose framework. Based
on the internal messaging protocol of an X-ray system, the
spatial relationship between the X-ray tube, flat-panel detec-
tor, and the assumed patient model position is read out. Using
an in-house inverse kinematics solver, a digital twin of the
imaging setting, including a patient model, is created. The
MC kernel uses this digital twin and additional parameters
provided by the X-ray system to estimate a coarse dose dis-
tribution inside of the patient model. Our filtering approach
is then used to reconstruct a smooth dose distribution, which
can be compared locally to dose values experimentally mea-
sured using MOSFET X-ray dosimeters. In the following,
we describe the computational dose estimation.

Computational dose estimation

Model of the imaging setting

An accurate geometric model of the imaging setting is at
the heart of our computational dose estimation pipeline.
The X-ray system continuously streams the current isocenter
coordinate systemPiso

pat ∈ SE(3) in patient coordinates.Based

on Piso
pat, our in-house inverse kinematics solver code calcu-

lates the position and orientation of each system component
Pi
ref ∈ SE(3) in the reference or world coordinate system.

Given a patientmodel placedon the system’s patient table and
registered, its position and orientation get updated implicitly.
Multiple sources for such a patient model are conceivable:
(a) shape and organ meshes based on meta-parameters [27],
(b) segmented and labeled CT scans [28,29], or (c) estab-
lished reference phantoms as proposed by the ICRP [30] or
the XCAT family [31]. Since we are currently using this pro-
totype for phantom studies only, we manually aligned the
phantom on the patient table based on distinct features. For
future applications in a clinical setting, a robust registration
step is needed.

Monte Carlo simulation

Our MC code is based on the Geant4 toolkit [32]. To provide
physical plausibility, we employed the Geant4 configura-
tion used in the TG-195 report [19] and a previous study
[21]. Besides accurately capturing the spatial relationship
between all components of the imaging settings, mapping the
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Fig. 1 Overview of the XDose workflow. The X-ray system provides
the spatial relationship between the X-ray source and the assumed
phantom position Piso

pat in the patient/table coordinate system. Using
an inverse kinematics (IK) solver, we can find the position and the ori-
entation of each system component and the phantom Pi

ref ∈ SE(3) in a
shared reference coordinate system.Based on the known imaging geom-

etry, air kerma Kair, tube peak voltage Up, and X-ray opening angles ϕ

and ϑ , a MC simulation is carried out that yields a noisy patient dose
estimate. Our model-based filtering eventually gives a smooth dose dis-
tribution inside the patient Dpat. In addition to the computational dose
estimation, we simultaneously measure the applied dose using MOS-
FET dosimeters at predefined measurement points d j

physics’ characteristics is critical to obtain accurate results in
the MC simulation. Assuming a tungsten anode with 2.3mm
aluminum-equivalent inherent filtration,we calculated theX-
ray spectrum based on the tube peak voltage Up and copper
pre-filtration using in-house software (Siemens Healthcare
GmbH, Forchheim, Germany) based on Boone’s algorithm
[33]. To account for X-ray beam collimation, the associated
cone opening angles ϕ and ϑ were determined based on
system settings. Primary dose and scatter dose were scored
separately inside the patient model and at the interventional
reference point. The ratio between the air kerma Kair pro-
vided by the X-ray system and the estimated primary dose
at the interventional reference point was used to scale the
calculated dose distributions.

Filtering-based variance reduction

Unfortunately, the flexibility of Geant4 requires to run it on a
CPU.Although there existGPU-accelerated photon and elec-
tron transport codes [16], they provide rather rigid interfaces
to define experimental setups. To still arrive at smooth results
in a reasonable run-time, filtering-based variance reduction
techniques can be used. Perona–Malik anisotropic diffusion
[34,35] and Savitzky–Golay filtering [36,37] have both been
applied successfully to the denoising of coarse MC simula-
tions. Also, down-sampling of the target volume is a common
approach to reduce the simulation time. To cross-validate
computed dose values and measured results obtained at dis-
crete spatial positions, a high-resolution dose distribution is
needed. Based on the concepts of down-sampling and fil-
tering, we recently presented a similar strategy to speed up
MC simulations [26]. However, instead of directly applying

a denoising algorithm to coarseMC simulations, we first pro-
posed to down-sample the target volume to further reduce the
number of primary particles needed to arrive at an accept-
able accuracy [26]. The down-sampling was performed by
grouping neighborhoods of voxels to hybrid mixture mate-
rials based on the fraction of mass (FoM) of each individual
voxel. In a proof-of-concept study,we showed that this down-
sampling could be inverted for dose distributions using the
2-D guided filter [38] and a voxelized absorption guidance
map based on the patient model. Following the FoM, down-
sampling of a neighborhood N in the target volume f to a
single voxel f ′

N is given by

f ′
N =

∑
x∈N V · ρx · fx
∑

x∈N V · ρx
=

∑
x∈N mx fx

∑
x∈N mx

=
∑

x∈N

mx

mN
fx

=
∑

x∈N
wFoM
x fx , (1)

with the voxel volume V [cm3], mass density ρ [gcm−3],
mass m [g], the FoM weight wFoM, and the linearized voxel
index x . Unfortunately, the straightforward implementation
of this idea inGeant4 scales exponentiallywith the resolution
of the target volume rendering the approach impracticable
[26]. Therefore, this method cannot be applied to real-world
scenarios. However, the FoM down-sampling merely relates
to the weighted average or expected value of the neighbor-
hood Ew[f ]. Since, for the human anatomy, we encounter
mostly uniformly or logarithmic-normally distributed neigh-
borhoods of voxels, we can approximate the (weighted)
average value with the associated statistical mode M. Using
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Fig. 2 Filtering algorithmused to reconstruct smooth dose distributions
D from coarse ones Dn (see Fig. 1). First, the coarse dose distribution
Dn is simulated based on a down-sampled patient model (Phantom).
Element-wise division � of Dn by the down-sampled mass-energy
absorption (μen/ρ)n yields a coarse estimate of the photon energy flu-
ence ψn. Using a guided filter with (μen/ρ) guidance, we obtain the
smooth high-resolution photon fluence ψ . Element-wise multiplication
⊗ with (μen/ρ) yields the associated dose distribution D

themode, we can ensure that at least themost often occurring
tissue is well represented.

Figure 2 depicts an overview of the resulting simula-
tion and 2-D slice-wise filtering approach. Based on the
assumption that the macroscopic properties of X-rays are
approximately equal in small neighborhoods, we down-
sample the target volumeusing the statisticalmode↓M. In the
isotropic 2-D case, the neighborhoodN is a quadratic win-
dow of size s. MC simulation of this volume yields the coarse
dose distribution Dn. To reconstruct a high-resolution dose
distribution D from this coarse Dn, we apply our proposed
up-sampling scheme [26]. Although the human anatomy
comprises both homogeneous aswell as anatomically diverse
areas, in dosimetry applications averaged interaction coeffi-
cients and mass densities are typically used. This is why we
further assume a charged particle equilibrium (CPE), under
which the absorbed dose D [Jg−1] in a volume corresponds
to the collision kerma Kcol [Jg−1] for low-energy X-rays
and relates proportionally to the photon energy fluence ψ

[Jcm−2]:

D
CPE= Kcol =

(
μen

ρ

)

· ψ, (2)

with themass-energy absorption coefficient (μen/ρ) [cm2g−1].
This relationship allows us to decouple material properties
and absorbed dose. Thus, we transform the coarse dose distri-
bution Dn to its associated photon energy fluence ψn, before
applying guided filter up-sampling ↑GF [26,38]. The overall

denoising step is defined by

D =
(

μen

ρ

)

· ↑GF

((
μen

ρ

)

,
Dn

↓M (μen/ρ)
, r

)

, (3)

with the filtering radius r . Although variable, in the follow-
ing, the radius is dependent on the down-sample window
size s and defined as r(s) = �0.5s	 + 1, where �·	 denotes
rounding to the next integer value.

Experiments

To be comparable to our proof-of-concept study, we used
the same extent from the Visible Human (Vishum) [39] used
before [26]. Originally, the Vishum phantom has an axial res-
olution of 512×512 voxels with 0.91mm×0.94mm×5mm
spacing. Each phantom organ label is either assigned to air,
soft tissue, adipose tissue, or bone tissue. Down-sampling
was performed slice-wise by s ∈ {2, 4, 8, 16} using the sta-
tistical mode. In a first experiment, to assess the general
reconstruction capabilities of our method, we simulated dose
distributions comprising 10× 108 primary photons sampled
from a 120kV peak voltage spectrum for all down-sampled
phantoms. As a reference, we performed a simulation of the
original spatial scale with 20 × 108 primary photons and
otherwise identical parameters. The voxel-wise statistical
uncertainty (2σ ) was in the range of 4.9 % to 19.6 % (X-
ray entrance to exit) for 10 × 108 primary photons, and in
the range of 3.4 % to 13.7 % for 20 × 108 primary photons,
respectively.

Experimental dose estimation

Anthropomorphic phantom

We used the anthropomorphic ATOM phantom (ATOM
Adult Male Model 701, Computerized Imaging Reference
Systems, Inc., Norfolk, VA, USA) to emulate in vivo dose
measurements. It consists of 39 slices with 2cm thickness
of tissue-equivalent materials for average bones, lung, brain,
and soft tissue (deviation with respect to the linear attenua-
tion is 1 % to 3 % in the energy range of 50keV to 15MeV).
To create the same conditions in the simulation, we scanned
the phantom using a CT system (SOMATOM Definition
Edge, Siemens Healthcare GmbH, Forchheim, Germany)
and reconstructed it with a 0.6 × 1.0 × 1.0mm voxel size.
Therefore, one physical slice corresponds to approximately
33 digital slices. Afterward, we segmented and labeled the
reconstructedCTvolume using thresholding andmanual cor-
rections.
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Fig. 3 Experimental setup and one corresponding X-ray projection
image. To avoid uncertainties due to the table material, we place the
phantom in a way that the table was not in the field of view when taking
dose measurements. We investigated positioner primary angles of 0◦
(posteroanterior), 45◦, and 90◦ (lateral), which are commonly used in
neuro-interventional procedures

Fig. 4 Measurement points inside the brain taken for the experimental
as well as for the computational study and associated examples of dose
distribution overlays estimated using MC simulation

MOSFET dosimeters

For experimental dose measurements, we used 13 high-
sensitivity metal oxide semiconductor field effect transis-
tor (MOSFET) dosimeters (TN 1002RD-H, Best Medical
Canada Ltd., Ottawa, ON, Canada). To enable online mon-
itoring, up to five probes can be hooked up to a mobile
readout system (mobileMOSFET system,model TN-RD-70-
W, Best Medical Canada Ltd., Ottawa, ON, Canada). The
mobile readout system can be connected to a computer via
a Bluetooth wireless transceiver and an associated remote
monitoring dose verification software. The same software
is used to calibrate the MOSFET probes individually. To
this end, each probe is irradiated with a pre-defined ref-
erence dose level. The reference dose level is estimated
using a 530 cm3 ionization chamber (PM500-CII 52.8210,
Capintec Inc., Ramsey, NJ, USA) in combination with the
Unidos dosimeter (PTW, Freiburg, Germany). The ioniza-
tion chamber is biannually calibrated by PTW accredited
by the German National Accreditation Body (D-K 15059-
01-00) as a calibration laboratory in the German calibration
service (Deutscher Kalibrierdienst). Based on the reference
dose value, the monitoring software estimates a calibration

factor for each MOSFET probe. The manufacturer ensures
an uncertainty under 0.8 % to 3 % in the range of 20cGy to
200cGy.Themanufacturer also specifies an angle-dependent
uncertainty of 2%, which, however, is negligible concerning
the overall uncertainty for low exposure of the probes.

Experiments

To assess our variance reduction method, we first analyze
how well our general simulation framework is applicable to
experimental measurements using the ATOM phantom. To
this end, we set up an experiment that is fully reproducible in
our XDose MC framework. Since the ATOM phantom only
allows for rather coarse and discrete dose sampling patterns,
we decided to focus on the brain, an important large and
homogeneous organ. Therefore,we centered our experiments
around neuro-interventional applications. This also allowed
us to remove the table from the field of view/irradiation (see
Fig. 3).

From a clinical point of view, our example is also relevant
as, brain tissue is at certain risk for late tissue reactions and
(deterministic) effects [40]. Although not common, in com-
plex interventional procedures brain radiation doses above
the ICRP absorbed dose threshold of 500mGy have been
reported [41,42]. In addition, focusing on a large and mostly
homogeneous organgives an interesting comparisonbetween
measuring discrete dose values and simulating continuous
dose distributions. We used the same X-ray system (Artis
zeego, Siemens Healthcare GmbH, Forchheim, Germany)
for all measurements. In total, we covered three standard
neuroradiology projection angles, 0◦, 45◦, and 90◦, relating
to posteroanterior, oblique, and lateral view directions [43].
Furthermore, two peak tube voltages (70 kVp, 1.31mmAl
air kerma half-value layer, and 90 kVp, 1.68mmAl air kerma
half-value layer) were used in our experiments. The C-arm’s
isocenter was aligned with the center of the phantom’s head,
the source-to-isocenter distancewas80cm, and the source-to-
image distance was 120 cm, respectively. For each imaging
setting, we irradiated the phantom with 100mA tube cur-
rent for 20 s with 30 frames per second to ensure sufficient
exposure of all MOSFET probes; neither pre-filtration nor
collimation was applied. To account for the MOSFET uncer-
tainty and to ensure stable average dose values for each
measurement point, we repeated each acquisition five times.
After each irradiation, we waited 5min to ensure total dis-
charge of the MOSFET probes. Therefore, the measurement
protocol took 26min and 40 s (including 5 × 20 s acquisi-
tion time) for one imaging setting, leaving sufficient time to
run and finish our simulation in parallel (online). The aver-
age air kermawas 49.28±0.07mGy for the 70 kVp spectrum
and 84.66±0.10mGy for the 90 kVp spectrum, respectively.
The MOSFET probes were placed inside the ATOM phan-
tom as shown in Fig. 4. To affix the MOSFET probes, we
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Fig. 5 Low-resolution dose distributions using either an artificial down-
sampling [26] based on the fraction of mass (FoM) or the implemented
down-sampling based on the statistical mode (Mode), their associated
reconstructed high-resolution counterparts (Recon.), and the percentage
errormaps (Rel. error)with respect to the ground truth dose distributions
(Reference). The dose distributions are scaled to 0 mGy to 500mGy

(dark blue over purple to yellow); the error maps are in the range of 0 %
to 30 % (dark blue over green to yellow). The associated average abso-
lute percentage errors are also given for each error map. The parameter
s denotes the neighborhood size used for down-sampling. For example,
s = 2, means 2 × 2 neighborhood

encased them in soft tissue-equivalent holders of the same
size and shape of the drillings in the phantom. Since this
experiment focused on the overall agreement of the compu-
tational and the experimental approach, we carried out the
associated simulations offline using 25 × 108 primary pho-
tons and the high-resolution digitized phantom.

Results

We evaluated our approach from different perspectives. First,
we compared our results using the statisticalmode as a down-
sampling operator to our previous proof-of-concept study
[26]. Second, we assessed the potential to accelerate MC
simulations using our filtering-based variance reduction tech-
nique. We also point out sensible threshold values to obtain
meaningful dose estimates online, meaning in the same time
frame needed to collect all measurements, e.g., 25 minutes.
Third, we compared computationally estimated to experi-
mentally measured dose values using MOSFET dosimeters
and the anthropomorphic ATOM phantom to find how well
both methods agree.

Computational dose estimation

Figure 5 shows the initial results of the proof-of-concept
study (FoM) [26] and the results of our refined method
(Mode) accompanied by the associated average error rates.
Note that, previously, we considered only 10 × 108 primary
photons as ground truth, which yielded slightly higher error
rates [26]. Also, the low-resolution dose distributions for
the FoM method were obtained by directly down-sampling
high-resolution dose distributions, while we actually used
down-sampled target volumes for the Mode approach. The
FoM approach slightly outperformed our actual implementa-
tion, however, only by a small margin. For the FoM method,
we observed a scale-dependent error of 1.19 % to 3.07 %,
while for our implementation, the error ranged from 1.62 %
to 4.91 %. For spatial scales s of 2 to 8, high errors above
10% occurred mostly outside of the primary X-ray, while for
s = 16, the overall error distributions indicate a systematic
trend. Figure 6 shows plots of the relative error and runtime
performance measures of our method for a reduced number
of simulated primary particles ranging from1×106 to 1×108

for different scales s. Note that for 1× 107 and 1× 108 par-
ticles, the error increased with increasing the spatial scale
s, while for fewer particles, the error decreased again with
s = 8 and higher.
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Fig. 6 Performance measures of our approach for different scales s and
number of primary photons simulated. Top: Relative error compared to
the low-uncertainty reference dose distribution. Bottom: Normalized
runtime as function of the down-sampling scale s. All data refer to our
method using the Mode down-sampling strategy. Note that the data for
106 photons is superimposed by the data for 108 photons in the bottom
figure

Acceleration potential

Toassess thepotential to accelerateMCsimulations usingour
method, we compared the execution time for different down-
sampling scales s ∈ {2, 4, 8, 16} and number of particles

N ∈ {106, 107, 108}. In general, we observed an exponential
acceleration by up to 60% with doubling the spatial scale s
for an arbitrary number of simulated primary photons (see
Fig. 6). The average baseline runtimes (s = 1) were 236 s,
2328 s, and 23574 s for 1× 106 to 1× 108 particles, respec-
tively. All simulation runs were carried out using a single
Intel Xeon E3-1240 processors with four physical cores and
hyperthreading for parallelization. The execution time of
the down-sampling and up-sampling scheme is negligible.
The measured runtimes include the initialization of Geant4,
which took approximately 6 s. Depending on the desired
uncertainty of the MC simulation, our method, therefore,
enables online computational dose estimation. For instance,
a simulation of 1 × 107 primary particles can be carried in
under 10min using down-sampling by s = 8 and only yields
10% uncertainty.

Experimental dose estimation

Figure 7 summarizes the experimental dose values and the
simulated dose values at the measurement points specified in
Fig. 4. The simulated dose values were scaled according to
the associated average air kerma of the measurements. Over-
all, we achieved a high agreement between experimentally
and computationally estimated dose values at the measure-
ment points for both spectra and all three projection angles.
The estimated dose values using MC simulation were inside
the confidence interval (2σ ) of the MOSFET measurements
for most measurement points and experimental setups (see
Fig. 7).

Figure 8 shows plots of the slice-wise brain-equivalent
dose averaged over organ volume (wR = 1) for each experi-
ment setup. These values were obtained either from discrete

Fig. 7 Measured dose values, simulated dose values, and the associ-
ated absolute errors per measurement point for each imaging setting.
The simulations were scaled to the air kerma measured at the interven-

tional reference point. The area enclosed by dotted lines indicates the
2σ confidence interval of the measurements
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Fig. 8 Brain-equivalent dose values for selected slices of the phantom
(see Fig. 4) calculated based on either a MC simulation or obtained
using empiric measurements, respectively

measurements dose values or simulated, continuous dose dis-
tributions. While the overall trend in both approaches was
similar, the measured organ-equivalent dose values under-
estimated the simulated ones by up to 20 % to 50 %. This
finding substantiates our assumption that combining empiric
measurements with computational methods is necessary to
obtain accurate and representative organ dose values.

Discussion

Radiation exposure duringX-ray examinations should always
be as low as reasonably possible to prevent any risk to
either the patient or any other involved personnel. Metrics
for specific diagnostic and interventional procedures can
be retrospectively determined based on experimental mea-
surements or computational studies. Due to the high inter-
and intra-procedure variability for complicated FGIs, it is,
however, difficult to establish a general protocol to acquire
reference organ dose values. For example, it can be difficult to
accurately map clinical imaging settings to MC simulations
unless the underlying X-ray physics as well as the patient’s
anatomy and position relative to the X-ray device are known.
Empiric methods often lack reproducibility and are prone to
measurement uncertainties [21].

To arrive at consistent results, we, therefore, developed
a framework to combine both approaches using a self-
validating workflow—XDose. XDose integrates an in-house
inverse kinematics solver, the simulation toolkit Geant4, and
an optimized filtering-based variance reduction technique.

Concerning the computational dose estimation, we found
that our refined variance reduction technique was on par with

the one from a previous study [26]. We were able to recon-
struct high-resolution dose distributions from coarse ones
with an average absolute percentage error in the range of
1.62% to 4.91% for down-sampling factors s ∈ {2, 4, 8, 16}.
Error rates above 10%mostly occurred outside of the primary
X-ray and at interfaces of different tissues, which, however,
are negligible for organ equivalent dosimetry. Only for heavy
down-sampling of the target volume (s = 16), we observed
such errors over the whole target volume. With decreasing
the number of primary photons to 1 × 108 to 1 × 106, the
percentage error increases to 2 % to 20 %, depending on the
spatial scale s. With increasing down-sampling factor, the
computation time of the MC simulation dropped by 30 %
to 60 % regardless of the number of primary particles. For
instance, we found that a simulation of 1× 107 primary par-
ticles could be carried out in under 10min with only 10%
uncertainty using our down-sampling and super-resolution
approach. Our method can thus be used to simultaneously
measure and compute dose values with low uncertainty, as
our measurement protocol takes approximately 25min for
one imaging setting.

To compare our computational framework to our experi-
mental setup, we carried out both measurements and sim-
ulations for six different imaging settings of the head of
an anthropomorphic phantom tailored for patient dosime-
try. Overall, we found a strong correlation between physical
and computational measurement points for all settings. This
shows that, XDose can be used to facilitate the estima-
tion of organ-equivalent dose values. These values can be
simultaneously cross-validated or calibrated using empirical
measurements, without the need for potentially error-prone
manual parameter configurations. As such, XDose has the
potential to complement anthropomorphic phantom studies
with accurate MC simulations.

Since our variance reduction method relies on down-
sampling of the target volume, it is best suited for estimating
the dose in rather compact or convex organs. To what extent
XDose can be used for dosimetry related to interfaces, e.g.,
skin, or small organs, boils down to a trade-off between
simulation accuracy and acceleration. Our current approach
is based on classifying voxels into four major tissue types
to reach a good trade-off between computational complex-
ity and performance. This is a general simplification often
made in dosimetry. Future studies are needed to investigate
its application to more diverse tissue models.

Another important piece of future work is an in-depth
comparison betweenmeasured values and ourmethod. Since,
for organ-equivalent dose estimation, we can safely assume
mostly homogeneous regions of interest, merely tracking of
primary photons ignoring secondary electronsmight be accu-
rate enough for X-rays in the diagnostic energy regime. Also,
the integration with traditional variance reduction techniques
such as Woodcock tracking [44], or super Woodcock voxels
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[45] is conceivable. With additional models, the scope of
XDose can be easily extended to the whole interventional
suite, including peripheral devices and consequently staff
dose estimations.

Conclusion

Weproposed a filtering-based variance reduction approach to
speed up Monte Carlo simulations for interventional proce-
dures to facilitate the on-site combination of computational
and experimental methods. The performance of our down-
sampling and filtering-based variance reduction technique
demonstrated that empiric measurements and associated
simulations can be performed simultaneously in the same
setting. This combination has the potential to facilitate a
smooth workflow for estimating organ dose values or cross-
validation of measurements and simulations.
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