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Abstract
Purpose Robot-assisted surgery at the temporal bone utilizing a flexible drilling unit would allow safer access to clinical
targets such as the cochlea or the internal auditory canal by navigating along nonlinear trajectories. One key sub-step for
clinical realization of such a procedure is automated preoperative surgical planning that incorporates both segmentation of
risk structures and optimized trajectory planning.
Methods We automatically segment risk structures using 3D U-Nets with probabilistic active shape models. For nonlinear
trajectory planning, we adapt bidirectional rapidly exploring random trees on Bézier Splines followed by sequential convex
optimization. Functional evaluation, assessing segmentation quality based on the subsequent trajectory planning step, shows
the suitability of our novel segmentation approach for this two-step preoperative pipeline.
Results Based on 24 data sets of the temporal bone, we perform a functional evaluation of preoperative surgical planning.
Our experiments show that the automated segmentation provides safe and coherent surfacemodels that can be used in collision
detection during motion planning. The source code of the algorithms will be made publicly available.
Conclusion Optimized trajectory planning based on shape regularized segmentation leads to safe access canals for temporal
bone surgery. Functional evaluation shows the promising results for both 3D U-Net and Bézier Spline trajectories.

Keywords Functional segmentation · 3D U-Net · Active shape models · Temporal bone · Robot-assisted surgery · Trajectory
planning

Introduction

Novel robot-assisted interventions have the potential to min-
imize patient trauma, reduce risk of infection or enable new
surgical applications [2].At the temporal bone, existing solu-
tions focus on the drilling of linear access canals [4]. This
paper addresses a novel nonlinear approach with the poten-
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tial to increase safety as well as availability to more patients
[6] (Fig. 1).

These robot-assisted surgeries require a two-step preoper-
ative planning consisting of segmentation of risk structures
and computation of nonlinear trajectories for the instruments.
While surgeons currently rely on preoperative images and a
mental 3D model of the anatomy, computational assistance
for these new procedures will be fundamental due to the
added complexity from both image processing and motion
planning. Automation of tiresome and manually laborious
tasks is therefore crucial for successful clinical implementa-
tion.

Dahrough et al. [4] provided a good review on existing
systems and approaches for robotic temporal bone surgery.
Solutions for entire preoperative planning in temporal bone
surgery were presented by Noble et al. [13], Seitel et al. [5]
and Gerber et al. [10] for linear approaches to the cochlea.
More recently, nonlinear approaches to both cochlea and
internal auditory canal were investigated by us employing
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Fig. 1 Robotic drilling of a
nonlinear access canal through
the temporal bone requires
preoperative planning consisting
of two steps: segmentation of
risk structures within the
temporal bone (white bone on
the CT slice) and trajectory
planning for a collision-free
trajectory from the surface of
the skull (transparent) to the
clinical target (e.g., the cochlea)

Jugular vein Carotid artery Facial nerve Chorda tympani External auditory canal Internal
auditory canal Cochlea Semicircular canals Ossicles

nonlinear trajectories [8]. For the necessary segmentation
of risk structures, approaches used either semiautomatic
(Becker et al. [1]), traditional fully automaticmethods (Noble
et al. [12], Mangado et al. [11]) or deep learning approaches
(Fauser et al. [8]).

So far, existing solutions mostly rely on semiauto-
matic segmentation and linear planning, while automatic
approaches and nonlinear planning show insufficient preci-
sion leading to unsafe trajectories. We present a complete
preoperative planning pipeline combining segmentation and
nonlinear trajectory planning to a safeworkflow.We then per-
form a thorough in silico evaluation of the whole approach
on real patient data.

Wepropose anovel shape regularized3DU-Nets approach
for proper extraction of the tiny risk structures within the
temporal bone. For subsequent computation of nonlinear
trajectories, we adopt our sequential convex optimization
(SCO) approach of [9] to generate locally optimal solutions.
This two-step pipeline is evaluated in retrospective in silico
experiments on 24 patients, where trajectories are computed
on automatic segmentation results. Custom planning met-
rics assess robustness and safety of the process. These
metrics include the effect that segmentation has on path
planning and thus allow a more detailed analysis of the algo-
rithms’ performance than image processing scores such as
Dice alone. Quantitative evaluation of the complete pipeline
shows that our segmentation approach combined with opti-
mizedBézier Spline trajectories leads to collision-free access
canals for two different applications: cochlear implantation
and vestibular schwannoma removal.

Objective

Robot-assisted temporal bone surgery uses image guidance
based on a CT image, acquired shortly before surgery, to

preoperatively determine a safe access canal to the clini-
cal target. This could be the round window at the cochlea
for a cochlear implantation or the internal auditory canal
for vestibular schwannoma removal. An access canal is rep-
resented by a trajectory, constrained by the instrument’s
maximum curvature κmax ≥ 0 and a minimal safety dis-
tance to obstacles dmin > 0. It interpolates between a start
configuration qI ∈ R

3 × S
2 on the skull’s surface and a goal

configurations qG ∈ R
3 × S

2 at the target.
A preoperative pipeline first segments risk structures of

the temporal bone, in particular the internal and external
auditory canal (IAC, EAC), the internal carotid artery (ICA)
and jugular vein (JV), the ossicles (Oss), semicircular canals
(SCC) and the cochlea (Coc) as well as facial nerve (FN) and
chorda tympani (ChT). planning is necessary to guarantee
patient safety. In a second step, a motion planning algorithm
computes collision-free trajectories, where surface models
extracted from segmentation are interpreted as obstacles.

Two key challenges appear: First, achieving topologically
consistent segmentation, free from fragmented structures or
inaccurate delineation, because this would lead to unsafe
motion planning where successfully computed trajectories
are in fact too close to obstacles. Second, motion planning
for a collision-free nonlinear trajectory such that there is opti-
mal clearance to risk structures. This enhances patient safety
by increasing distance to obstacles and thus compensating
for segmentation inaccuracy. The task of planning such a
collision-free trajectory from the body’s surface to the clini-
cal target is shown in Fig. 2.

Methods

We make a multi-step approach for automatic segmentation
and nonlinear trajectory planning to solve this objective. A
global 3D U-Net [3] coarsely segments the risk structures
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Fig. 2 Sketch of surgical planning for an access canal from the skull’s
surface to the cochlea. First, segmentation based on a preoperative CT
imagegenerates a surface representation (black) of risk structures (green
objects). Then, motion planning computes collision-free trajectories
from start qI to goal qG . These trajectories are constrained by curva-

ture, distance to obstacles and predefined initial and final configurations
qI , qG ∈ R

3 × S
2, i.e., positions and direction. During intraoperative

navigation, displacement of the robot R might necessitate replanning
under the same constraints

Left/Middle: Input image 3×3×3 conv Batch Normalization + ReLU Max Pooling
Upsampling Softmax . Right: Cochlea Pixels U-Net Prediction Shape Model Initializaton

Fig. 3 Our segmentation pipeline: Two3DU-Nets of the same architec-
ture predict an initial segmentation: the first (left) being applied on the
input image, and the second (middle) on an extracted volume of interest.
Right: Resulting fragmented surface meshes of this second prediction

(purple) initialize probabilistic active shape models (black polygon) for
each structure. These generate topologically consistent segmentations
as final output

of the otobasis in a downsampled CT image. This gives an
initial prediction of the nine risk structures. A second 3D
U-Net of the same architecture predicts a finer segmentation
on a bounding box computed from these results. To guaran-
tee topologically consistent segmentation, we enforce shape
constraints by regularization with probabilistic active shape
models.

Clearance optimized trajectories are computed by a two-
step approach. A bidirectional rapidly exploring random tree
(Bi-RRT) on cubic Bézier Splines computes an initial solu-
tion. Because it will observe the characteristic stochastic
twists and curves of a random sampling algorithm, we per-
form sequential convex optimization [9] to compute locally
optimal solutions.

Segmentation

We adopt shape regularized deep learning, which has shown
great potential in combining state-of-the-art accuracy while
enforcing topological constraints [8,16]. Figure 3 shows

the segmentation pipeline. Both U-Nets consist of five typ-
ical layers of repeated convolution, batch normalization,
ReLU activation and poolingwith respective upsampling and
concatenation. We use combined Dice and weighted cross-
entropy losses, which are also applied on intermediate layers
following the approach of [18].During training,Adam’s opti-
mizer is used with a learning rate of 0.001 and two data sets
are used during validation for early stopping. The course U-
Net works on a 1283 cube created from a resampled version
of the original CT image using cubic interpolation. The sec-
ondU-Net is applied on themodified extracted bounding box
of all structures but the ICA. In a typical CT scan of the oto-
basis, the remaining structures nicely align with the image
axes, resulting in a major reduction of the original image’s
size, and allow this second network to capture more detail.
In particular, we only consider the largest connected compo-
nent of each structure for the computation of this bounding
box and create a volume of interest according to Algorithm
1, which leads to a volume of interest, that is square along
axes X and Y , includes information about the Chorda Tym-
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pani despite resampling and is large enough to yield spatial
information about all remaining risk structures. Shape regu-
larization is achieved by applying probabilistic active shape
model against the combined fine U-Net output, following the
approach of [7]. These are initialized by nonrigid registration
of themean shapes onto the finerU-Net output and adapted to
the image for several iterations. Unlike previous work [8], we
achieve robust enough initial segmentations such that non-
rigid registration does not collapse to irregular meshes.

Algorithm 1 Volume Of Interest
Parameters: Bounding Box B
c ← B.center()
d1 ← B.max − B.min
d2 ← max(d1.x, d1.y)
B.max.x, B.min.x ← c.x ± 0.75 ∗ d2
B.max.y, B.min.y ← c.y ± 0.75 ∗ d2
B.max.z, B.min.z ← c.z ± d1.z,

Trajectory planning

We adopt sampling-based motion planning, which allows
fast and robust initial planning [6,14] in complex environ-
ments and sequential convex optimization as a stable solver
for clearance optimization [9,15]. Figure 4 with Algorithm 2
shows the proposed adaptation of a Bi-RRT on cubic Bézier
Splines [6]. The search trees TI ,TG are initialized with the
initial and goal states qI , qG . For a given time Tmax, the algo-
rithm then tries to find a solution by alternately expandingTI

orTG . This is done by first sampling a random point qrand ∈
R
3 and computing the nearest neighbors in T around a ball

with radius rb > 0. For each neighbor with less than Nc child
nodes, the steering function extends the tree along this trajec-
tory using cubic Bézier Splines [17] with a step size of Δt .
If the trajectory is collision-free, the algorithm expands T
and investigates possible connections to the other search tree.
This is done using a cone with apex and direction defined by
qnext and with predefined parameters cr , ch > 0 for radius
and height. If successful, the result is an initial trajectory TI
consisting of W ≡ {Wi }i , 0 ≤ i ≤ NW , waypoints. Each
triple (Wj−1,Wj ,Wj+1); 1 ≤ j ≤ NS ≡ NW − 1, implic-
itly defines a Bézier Spline S j , a combination of two cubic
Bézier Spirals, that respects the curvature constraint κmax.
We refer the reader to [17] for a detailed description of the
construction algorithm and proofs of smoothness and inter-
polation guarantees.

To reduce the natural stochastic twist of this initial RRT-
solution, further optimization for smoothness and clearance
to obstacles is necessary. We therefore define a constrained
optimization objective over the set of waypoints W ⊂ R

3

that minimizes a cost function f while satisfying a set of NE

equality and NI inequality constraints hi , g j , i.e.,

minimize
W

f (W )

subject to hi (W ) = 0, i = 0, . . . , NE

g j (W ) ≤ 0, j = 0, . . . , NI .

Efficient numerical solvers require each of these functions to
be linear or quadratic convex functions. In our case, these
functions are, however, nonconvex and we thus consider
an approximation rather than the original problem. By for-
mulating adequate convex quadratic versions f , hi and g j ,
convexifications, of the respective cost and constraint func-
tions, we derive an approximation of our original problem
that is suitable for numerical solvers. Algorithm 3 shows the
proposed sequential convex optimization (SCO) approach
of [15] for Bézier Spline trajectories: This iterative method
repeatedly creates the convexified functions f , hi and g j

based on the current solution x and makes progress on this
approximated objective within a small trust region. Within
each loop, tolerance checks onmargins ε f , εx, εc for f , x and
hi , g j , respectively, trigger adjustment of the trust region’s
size, increase of penalty valueμ or report of convergence.We
refer the reader to [15] for a detailed description and show
one iteration of the proposed clearance optimization method
in Fig. 5 (right).

In particular, our cost function measures the quality of
trajectories by a weighted sum of its length fΓ and distance
to obstacles fi,O , 0 ≤ i ≤ NS , i.e.,

f = αΓ fΓ +
∑

i

αO fi,O ,

with αΓ , αO ∈ R
0+. We approximate the length as

fΓ =
NW −1∑

i=0

∑

k={x,y,z}
|Wi,k − Wi+1,k |2.

Similar to [15], we measure distance to obstacles via lin-
earized signed distances

sdSO(x) = sdSO(x0) + n(x0)	(x − x0),

where sdSO(x0) is the signed distance from a spline S to the
nearest obstacle O , x0 ∈ O is a point on the surface and n the
obstacle’s normal at x0. The point x0 stays fixed within an
inner convex iteration sequence and is computed by a nearest
neighbor search for x. The weighted convexified clearance
cost functions fi,O then try to match a distance threshold
θ ∈ R

+ on the central waypoint Wi of a spline Si , i.e.,

fi,O = θ − sdSi O(Wi ).

We add constraints to guarantee the upper curvature bound
κmax, the safety distance dmin and position and direction at
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Fig. 4 Left: Bi-RRT algorithm.
Right: Resulting trajectory,
consisting of waypoints
W1, . . . ,W9 and implicitly
defining cubic Bézier Splines
(blue and red pairs). Each spline
consists of two Bézier Spirals
with control points B0 . . . , B3
and E0, . . . , E3

Fig. 5 Left: Sequential convex
optimization algorithm. Right:
Schematic view of distance and
curvature functions. At (W6, the
spline is straightened by moving
(W5,W6,W7) to new positions
(W 5,W 6,W 7). At W3, the
distance cost is decreased by
moving it further from the
nearest neighbor N3

qS, qG . To ensure that the upper bound κmax on the curvature
and the minimal distance dmin to obstacles stay valid during
the optimizationwe introduce for each spline constraint func-
tions gi,κ and gi,O , 0 ≤ i ≤ NS . Each curvature constraint
gi,κ smooths its spline, if the upper bound κmax is exceeded,
by slightly translating the three corresponding waypoints.
With Pi = 1/2(Wi−1+Wi+1) and Qi = 1/2(Wi + Pi ), new
waypoints Wi−1,Wi ,Wi+1 are given as

Wi−1 = Qi + (Wi−1 − Pi ),

Wi = 1

2
(Wi + Qi ),

Wi+1 = Qi + (Wi+1 − Pi ).

A constraint gi,κ then penalizes the difference between the
original positions and these translations, i.e.,

gi,κ =
1∑

j=−1

∑

k={x,y,z}
|Wi+ j,k − Wi+ j,k |2.

The gi,O are defined like the distance cost functions via
signed distances. Note, that we have to set θ >> dmin to
achieve significant improvement on clearance. Finally, we
enforce that position and direction at start and goal stay the

same by disallowing any changes in position of the first and
last two waypoints.

We then use SCO [15] to solve for a locally optimal solu-
tion given the above costs and constraints.

Experimental results

Data & Code Experiments were performed on 24 real tem-
poral bone CT images of patients with an average resolution
of 0.2×0.2×0.4mm3.Corresponding label imageswere cre-
ated by two fully trained clinicians, each annotating one half
of the available images. Code of methods and experiments
will be made publicly available on GitHub. 1

Experiment Setup For each patient,we created surfacemod-
els of the different structures from the expert annotations. In
these environments, we manually placed start states qI at
the skull’s surface and goal states qG at the round window
of the cochlea as well as directly posterior and inferior to
the IAC. We then defined three different scenarios for pre-
operative surgical planning with the same parameter setup
as in [8]: one for a cochlear implantation (Access) with

1 https://github.com/MECLabTUDA/MUKNO.
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Table 1 Parameter setup for
motion planning algorithms

Tmax rb Δt cr , ch Nc

Bi-RRT 0.1 1.0 4.0 5.0, 18.0 10

NO
P , NO

C , NO
T τ+, τ− εx, ε f , εc k μ0, s0 θ αΓ αO

SCO 15, 50, 10 1.1, 0.9 1e−4, 1e−4, 0.25 1 0.5,0.1 5 1 10

Table 2 Segmentation
performance in Dice and HD
distances, mean (standard
deviation)

Organ Dice HD

3D U-Net ShapeReg Ref [8] 3D U-Net ShapeReg Ref [8]

ICA 0.81 (0.05) 0.87 (0.03) 0.84 (0.08) 3.32 (1.24) 2.66 (0.94) 2.98 (1.57)

JV 0.68 (0.16) 0.69 (0.16) 0.68 (0.14) 4.22 (4.87) 4.45 (4.82) 4.60 (4.84)

FN 0.63 (0.09) 0.63 (0.20) 0.69 (0.09) 4.18 (4.23) 3.88 (4.00) 3.00 (2.84)

Coc 0.82 (0.04) 0.87 (0.03) 0.85 (0.13) 1.36 (0.31) 1.29 (0.51) 1.67 (1.99)

ChT 0.25 (0.17) 0.39 (0.22) 0.36 (0.24) 5.48 (9.00) 5.61 (8.52) 6.01 (9.83)

Oss 0.69 (0.13) 0.79 (0.13) 0.82 (0.04) 1.70 (0.97) 1.79 (0.82) 2.00 (1.28)

SSC 0.78 (0.06) 0.85 (0.03) 0.84 (0.05) 1.97 (2.69) 4.16 (5.01) 4.73 (4.88)

IAC 0.80 (0.09) 0.84 (0.09) 0.83 (0.12) 5.02 (4.77) 5.03 (4.74) 5.23 (5.16)

EAC 0.81 (0.09) 0.80 (0.07) 0.81 (0.08) 3.60 (1.95) 3.89 (1.82) 4.12 (2.72)

Max/min values are in bold

κmax = 0.05, dmin = 0.8, and two for vestibular schwan-
noma removal (SSC-Access, through the superior SCC with
κmax = 0.05, dmin = 1.5, RL-Access, through the retro-
labyrinthine region with κmax = 0.05, dmin = 2.0). Table 1
lists the configurations for each of these scenarios.

We then performed a twofold cross-validation of the auto-
mated pipeline of Section 3 by dividing the 24 patient data
sets into two equally sized subsets. Training of U-Nets and
PASMs was performed on one set while testing was done on
the respective other. After the segmentation step, three dif-
ferent sets of label images were available, expert annotations
LGT , U-Net segmentations LU and shape regularized ver-
sions LS . From these images, we extracted surface models
SGT , SU , SS . The trajectory planning stepwas then executed
three times, once on each set of surfaces models, leading
to trajectories T GT , TU , T S . We also compared against the
shape regularized solution from [8] that uses a slice-by-slice
approach, leading to L2D , S2D, T 2D .

We computed Dice and Hausdorff distances of LU and
LS to measure segmentation performance independently.We
then performed a functional evaluation of the whole pipeline
using three metrics: The success rate rs , quantifying the
percental number of cases in which planning from surfaces
SGT , SU , SS , was possible. The mean minimal distance to
risk structures rd along trajectories T GT , TU , T S . Finally,
the failure rate r f for trajectories TU , T S , where the dis-
tance to risk structures of all paths was evaluated against
SGT instead SU , SS , respectively. This rate quantifies the
percental number a cases, where a trajectory planned on seg-
mentation (SU , SS) violated the safety distance dmin when
evaluated on SGT (the true position of risk structures). Con-

sequently, rs measures the robustness of segmentation, thus
detecting areas of oversegmentation. On the other hand, rd
and r f quantify its safety by capturing areas of undersegmen-
tation that lead to the computation of trajectories too close to
risk structures.

Results Dice and Hausdorff distances are shown in Table
2. Regularization improves Dice due to the shape model’s
ability to bridge missing parts of a structure or ignore partial
oversegmentation. This is noticeable especially for chorda
tympani, Oss and SCC with absolute Dice improvements
of about 14, 10 and 7%. We do not find major differences
in Hausdorff distances (HD). Except for a single case of the
SSC,where amediocre U-Net result prevented proper initial-
ization for the PASMmodel, these margins in HD are related
to the open boundaries of the structures ([8]). We emphasize
that due to our use of only the largest connected components
from LU , the 3D U-Net robustly detects the majority of indi-
vidual structures. In comparison to the 2D approach of [8],
we see a notable difference in performance for the FN.While
the slice-by-slice approach clearly offers better initialization
for this small tubular nerve, the advantage does not apply to
segmentation of its side branch, the chorda tympani.

Note 1 The 3D U-Net often outlined the clearly dis-
tinguishable structures such as cochlea or ossicles more
precisely. While this might be favorable in applications such
as electrode design, our shape regularized approach provides
amore general and stable solution for the path planning step.

Note 2 Our clinicians annotated some anatomical land-
marks such as the bulb of the jugular vein slightly differently.
However, both our neural networks and our active shape
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Table 3 Results on planning
metrics for each access canal
and method

Success rate Mean safety distance (dmin) Failure rate (d < dmin)

Coc SSC RL Coc (0.8) SSC (1.5) RL (2.0) Coc SSC RL

TGT 1 1 0.64 1.02 1.91 2.87 – – –

TU 1 0.88 0.48 1.05 2.05 3.41 0.04 0 0

T S 0.96 0.92 0.64 1.03 1.99 2.88 0.04 0 0

T 2D 0.96 0.76 0.56 1.05 2.24 3.07 0.04 0 0

Max/min values are in bold

Fig. 6 Segmented temporal
bone anatomy from 3D U-Net
(left) and regularization with
probabilistic active shape
models (right). The latter refines
oversegmentation (e.g., SCC,
FN), bridges small gaps (ChT)
and removes artifacts from
voxel-wise segmentation (JV),
resulting in more robust
trajectory planning

model regularization seem to cope with this issue well. In
future work, we plan to investigate this further on larger data
sets.

Planningmetrics are given in Table 3 with a representative
qualitative example in Fig. 6. The success rates are similar for
all three methods in case of the Cochlea- and SSC-Access.
The failing cases for shape regularization in both Cochlea-
and SSC-Access we traced back to a bad initial segmenta-
tion LU , resulting in inaccurate initialization of the PASM
model for the SCC. This is also visible in the rather large
HD for this organ. For the RL-Access, only our shape regu-
larized approach achieves the same performance like TGT .
We found that the 3D U-Net fails to adequately delineate the
high reaching jugular vein bulb (Fig. 6) and that general slight
oversegmentation of the structures reduces the available free
space. However, the rather low Dice of the JV comes again
from the open boundaries at the inferior part of the structure
([8]). Themean safety distances showonlyminor differences.
Although our SCO method provides locally optimal solu-
tions, we hypothesize that the slight oversegmentation of 3D
U-Net in contrast to the finer delineations of PASMs and
expert annotations leads to higher safety distances.

We achieve safe access canals for both approaches to
the internal auditory canal and a single failure case for the
Cochlea-Access. While capturing of the whole chorda tym-
pani was possible in the majority of cases, the 3D U-Net
found only a small part at its superior end in the remaining
cases. This then naturally applies to the shape regularized

version and thus interfereswith trajectory planning. Planning
was still successful in most cases, because trajectories pass at
the facial recess, but such segmentation is still not suitable for
a reliable procedure. However, we found that in these cases
the chorda tympani was still visually well distinguishable
from neighboring tissue. This might thus be an issue coming
from very low training data (10 cases) rather than a method-
ological problem. Finally, we note that failure rates for both
Cochlea- andRL-Access significantly improved (14%, 10%)
compared to former results of us [8]. The low failure rate for
T 2D indicates the effectiveness of convex optimization of tra-
jectories. Comparing the success rates of T S and T 2D shows
that the 3D approach reduces oversegmentation and leads to
better initialization of the PASMs, thus increasing robustness
of the procedure (Fig. 7).

Conclusion

Wepresent a complete preoperative surgical planningpipeline
for temporal bone surgery that computes nonlinear trajecto-
ries from the skull’s surface to the clinical target based on a
CT image of the patient. The necessary segmentation of risk
structures is automatically achieved by our novel approach
using an initial prediction from 3D U-Nets and a refinement
by probabilistic active shapemodels that regularizes the error
prone pixel-wise predictions. Nonlinear trajectory planning
follows a two-step approach [9] using bidirectional RRTs
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Fig. 7 Comparison between
shape regularized 3D U-Net
(ours, right) and the
slice-by-slice approach of [8]
for the Cochlea-Access. The 3D
U-Net provides preciser
initialization of the active shape
models, leading to robuster path
planning. For the chorda
tympani (cyan) in particular, it
better captures its end points at
the facial nerve and the
tympanic cavity

on cubic Bézier Splines that efficiently computes collision-
free paths. A sequential convex optimization scheme further
optimizes these trajectories regarding clearance to obstacles.
We showed the suitability of our segmentation approach in a
retrospective functional evaluation that includes both image
processing and custom planning metrics.

Future work will evaluate this pipeline in the clinical work
flow.Especially, themanual placement of start and goal states
requires intuitive and ergonomic interaction. Furthermore,
we plan to enrich the expert annotations with more label
information, such as the brain, the temporal bone itself or
the individual parts of the tympanic cavity. With a more
detailed 3D representation of this cluttered anatomy and
a suitable automatic segmentation method, this approach
might be extendable to other clinical applications in this
area. Additionally, a more diverse classification around the
chorda tympani might also benefit the accuracy in this deli-
cate region. Finally, we emphasize the 3DU-Net’s capability
of completely segmenting the chorda tympani, indicating that
with more available training data, shape regularized deep
learning solutions promise fast and accurate segmentation of
the complex temporal bone anatomy.
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