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Abstract
Purpose Minimally invasive surgery (MIS) has become the standard for many surgical procedures as it minimizes trauma,
reduces infection rates and shortens hospitalization. However, the manipulation of objects in the surgical workspace can be
difficult due to the unintuitive handling of instruments and limited range of motion. Apart from the advantages of robot-
assisted systems such as augmented view or improved dexterity, both robotic and MIS techniques introduce drawbacks such
as limited haptic perception and their major reliance on visual perception.
Methods In order to address the above-mentioned limitations, a perception study was conducted to investigate whether the
transmission of intra-abdominal acoustic signals can potentially improve the perception during MIS. To investigate whether
these acoustic signals can be used as a basis for further automated analysis, a large audio data set capturing the application
of electrosurgery on different types of porcine tissue was acquired. A sliding window technique was applied to compute
log-mel-spectrograms, which were fed to a pre-trained convolutional neural network for feature extraction. A fully connected
layer was trained on the intermediate feature representation to classify instrument–tissue interaction.
Results The perception study revealed that acoustic feedback has potential to improve the perception during MIS and to
serve as a basis for further automated analysis. The proposed classification pipeline yielded excellent performance for four
types of instrument–tissue interaction (muscle, fascia, liver and fatty tissue) and achieved top-1 accuracies of up to 89.9%.
Moreover, our model is able to distinguish electrosurgical operation modes with an overall classification accuracy of 86.40%.
Conclusion Our proof-of-principle indicates great application potential for guidance systems in MIS, such as controlled
tissue resection. Supported by a pilot perception study with surgeons, we believe that utilizing audio signals as an additional
information channel has great potential to improve the surgical performance and to partly compensate the loss of haptic
feedback.
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Introduction and related work

In the past decades, minimally invasive surgery has become
a standard technique in visceral interventions. Procedures
such as cholecystectomy, appendectomy or adrenalectomy
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Although nowadays systems such as 3D high-resolution
laparoscopes improve spatial perception and visualization
during MIS, it is not proven that these system reduce com-
plication rates [10]. Since surgeons rely mainly on visual-
and partly haptic perception, we postulate that surgical
performance could be improved by adding auditory feed-
back during laparoscopic interventions. More precisely, we
believe that a systemwhich is able to guide the surgeonduring
tissue resection by analyzing the acoustic emissions gener-
ated by instrument–tissue interaction during diathermy can
improve the safety and precision of interventions. In the fol-
lowing paragraphs, we briefly summarize the state of the art
of acoustic signal analysis for medical use-cases followed
by the preprocessing and machine learning methods utilized
for audio-based classification. This work does not claim to
present an operational solution ready to be deployed in the
surgical OR. Rather it is intended to present a novel con-
cept which combines audio signal processing and minimally
invasive surgery.

Acoustic emission analysis for medical applications

Acoustic signals are always present in the operating theater,
e.g., acoustic signals generated by the surgeon’s interaction
with the patient, such as diathermy sounds, continuous sig-
nals from surgical devices such as heart monitors or alarms
and notification sounds. By recording and analyzing acoustic
signals in a diagnostic or interventional environment, highly
dense information about the current state and events can be
captured using a low-cost sensor interface.

One example for a diagnostic use-case of acoustic sig-
nal analysis originates from chest medicine, using different
diagnosis techniques based on stethoscope signals. Shkelev
et al. [30] proposed a system for the automated analysis of
cardiosignals by recording the heart sounds with an elec-
tret microphone. They used temporal and spectral methods
to analyze the state of the cardiovascular system under nor-
mal conditions and increased loads. The system developed
by Marshall et al. [17] uses signal processing algorithms to
enable non-specialists to screen for pulmonary fibrosis. Fur-
thermore, algorithms were developed to compute vital body
function measures such as pulmonary arterial pressure from
recorded heart sounds with high accuracies [34].

Also in orthopedics, acoustic signals have been used for
diagnosis and guidance. Rangayyan et al. introduced a tech-
nique called Vibroarthography (VAG)which is characterized
by recording acoustic emissions from knee joints in order to
detect malicious joint conditions. They demonstrated that
various degrees of chondromalacia and meniscal lesions can
be detected by performing a frequency analysis on the audio
signal recorded with surface microphones from the patient’s
skin [26].Machine learning approaches have been introduced
to classify VAG signals with high accuracy rates [1,11,20].

Illanes et al. proposed a novelmethod to characterizemed-
ical interventional devices insertion events by attaching an
acoustic sensor to the proximal part of the apparatus [8].
They showed that the method allows to identify transitions
between different types of tissues during needle insertion.
This concept was applied in further research in an experi-
mental setup to analyze the influence of different insertion
depths and the interaction of the surrounding soft tissue with
the needle surface to the resulting measurements [16]. More-
over, the tissue-layer crossing identification capabilities of
the system were successfully tested with the application of
Veress needle placement forminimally invasive interventions
[28].

Machine learning for audio classification

Advances in the research field of Automatic Speech Recog-
nition (ASR), which has gained a lot of interest in recent
years, were also beneficial for the emerging field of sound
event classification. Machine learning algorithms were suc-
cessfully applied to detect sound events in everyday life, such
as urban sounds [23] or musical genres [21].

Recently, methods used for sound classification have
shifted from traditional approaches such as Gaussian Mix-
ture Models (GMMs) or Hidden Markov Models (HMMs)
with handcrafted features or Mel Frequency Cepstrum Coef-
ficients (MFCC) [6,22] to deep learning methods, such as
CNNs, and deep recurrent neural networks (RNNs). As these
new techniques outperformed the state-of-the-art models in
speech and language processing, deep learningmethodswere
also applied to acoustic scene recognition challenges. Li et
al. [13] and Dai et al. [3] tested various feature sets including
MFCCs with different deep learning algorithms such as deep
neural networks and deep RNNs.

Their results showed that with large feature sets, deep
learning methods outperform traditional classification meth-
ods and achieve best performances in comparison with
conventional algorithms. Cakir et al. used frame-based spec-
tral features to train a deep neural network classifier for
environmental sound detection [2] which improved the clas-
sification accuracy compared to a baseline HMM classifier
by 19%.

CNNs together with spectrogram features were first
applied by Zhang et al. [37] to the task of sound event
recognition. The spectrogram-based approach has the advan-
tage of naturally capturing the sound information in a
two-dimensional feature space. In contrast to conventional
frame-based one-dimensional features, more information
than just a slice of spectral information can be captured
[5]. While spectrogram-based features retain more infor-
mation about the original audio source compared to most
hand-crafted features, they are of lower dimension than raw
audio which is usually sampled with a rate of over 40 kHz
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[36]. Therefore, the approach is a good compromise between
dimensionality reduction and information preservation and
is nowadays widely adopted for audio classification tasks.

There are different types of auditory images used in audio
classification.Mel-spectrogram-based approaches have been
successfully applied to the task of musical genre and mood
recognition [14]. Constant-Q transform-based spectrograms
have been used to classify urban sounds [15]. Valada et al.
[35] implemented a Short-Time Fourier Transform (STFT)
spectrogram-based approach for robotic terrain classifica-
tion based on the interaction of the robot’s wheels with the
underground. They compared different window lengths for
spectrogram generation and achieved classification accura-
cies of up to 99%. Pons et al. showed that evenwith randomly
distributed weights, a CNN architecture is able to extract
meaningful features from an auditory image [24].

The following section presents the methodology of this
work and is separated into two subsections, a perception
study and a proof-of-concept system for instrument–tissue
interaction classification.

Methodology

The aim of the first experiment was to investigate whether
acoustic signals from the abdomen inside can,when transmit-
ted, improve the perception of the intervention. Therefore,
we conducted a user study by asking surgeons to identify
the transition between different types of issue by listen-
ing to audio recordings of a standardized acquisition setup
explained in “Perception study” section. Furthermore, all par-
ticipants were presented with a questionnaire consisting of
13 questions about the subjective perception of audio signals
in minimally invasive interventions.

The objective of the second experiment is to investigate
whether the signals, when recorded, can be used as basis
for a learning-based automated classification system which
can further support the surgeon during the intervention. This
twofold approach can be seen as an analogy to the visual
examination of conventional medical imaging, e.g., radio-
graphs, by a human observer and the automatic detection of
lesions by a learning-based system.

Perception study

Within its audible scope, the auditory system of human
beings is particularly sensitive regarding relative changes
in signals (e.g., changes in timbre, pitch, loudness) [27].
Hence, the first experiment focuses on the contextual percep-
tion of sounds caused by minimally invasive electrosurgical
procedures. Therefore, 27 specimens were prepared, each
consisting of two different tissue-type combinations with
various lengths aligned successively in a mold yielding to
different transition points. The porcine specimens included
liver, muscle and fatty tissue. The complete setup is shown
in Fig. 1.

While applying only little pressure, a monopolar biopsy
forceps was dragged along the surfaces of the specimens at
constant speed, coagulating the tissueswith thehighest power
setting available on the electrosurgical unit. A DPA d:screet
4060HeavyDutyminiature condensermicrophonewas posi-
tioned in the middle above the mold for the acquisition of
the audio signal with uncompressed high quality and a sam-
pling rate of 44.1kHz using the audio stream input/output
(ASIO) driver protocol. Subsequently, the audio recording
was manually synchronized with audio and video recordings
of an additional camera on a frame-based level (24 fps). The
videos served as a visual ground truth in order to individu-
ally determine the transition point within each specimen. The

Fatty Tissue

Liver Tissue

Muscle Tissue

Instrument movement across specimen

Audio-Video
 Recording

Instrument  

Microphone

Specimen 
Mold

Fig. 1 Experimental setup with a Franka Emika Panda robot and the
attached electrode, amicrophone aswell asmultiple tissue types aligned
to specimens within the specimen mold. The instrument, wired to a

electrosurgical unit, is dragged along the surface of each specimen
with constant speed. Additional audio and video for visual ground-truth
determination was recorded using a separate camera
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transition point, i.e., the ground truth, was noted as point in
time within each recording.

With an ASIO sound driver latency of approximately 16
ms for a buffer sample size of 512, generated audio record-
ingswere presenteddirectly andwithout anypreprocessing to
multiple surgeons who were asked to identify the transition
point between the two tissues types within each specimen
solely by listening to the audio signal through headphones.
Finally, transitionpoints identifiedby the surgeonswere com-
pared to the ground truth based on the captured camera feed
and differences were evaluated.

Subsequently, the participating surgeons were given a
questionnaire to answer 13 questions about acoustic per-
ception in minimally invasive interventions and identifying
instrument–tissue interaction in acoustic signals.

Acoustic-based instrument–tissue interaction
classification

In the following sections, we present a proof-of-concept
approach for a classification system which was implemented
to automatically detect and classify instrument–tissue inter-
action.Wepresent the experimental setup for data acquisition
and introduce a preprocessing and transfer-learning-based
classification pipeline. Deep learning-based audio classifi-
cation methods, presented in “Machine learning for audio
classification” section, have been reported to achieve great
results in the field of environmental sound classification,
especially under noisy conditions [35]. In the following sec-
tions, we present an approach to transfer the techniques to
the medical use-case of instrument–tissue interaction classi-
fication.

Data acquisition

For data acquisition, a similar setup as described in “Percep-
tion study” section was used to record the acoustic signals.
To simulate MIS, specimens of porcine tissue were placed
inside a surgical box trainer. With its diameter of 5.4 mm,
the miniature microphone is small enough to be inserted into
a surgical trocar which is necessary for recording audio sig-

nals from the inside of a cavity, such as the inflated human
abdomen during visceral MIS.

For a future-perspective application in surgical proce-
dures, sterility of all the utilized devices in contact with the
patient has to be considered. Despite its rugged construction,
the used microphone is not autoclavable. Therefore, several
sterile covers have been tested and evaluated with respect to
their acoustic transmission characteristics. A laparoscopic
ultrasound cover was chosen as it best preserves high-
frequency content in the recorded audio signal. To avoid
scratch and friction noise, before applying the cover, a foam
wind cover was placed over the microphone capsule. With
its sleeve-like shape, it fits the form of the microphone nicely
and enables easy intra-abdominal insertion through the tro-
car. In order to replicate the different basic tissues present in
the abdominal cavity, specimens of fascia and fatty tissue—
representative for connective tissue, liver tissue, as well as
muscular tissue were chosen. Figure 2 shows the experimen-
tal setup and illustrates the placement of microphone with
sterile cover, laparoscope, and forceps.

A standard laparoscopic biopsy forceps was connected to
the electrosurgery unit and used to apply current to the tissue
probe. To cover the operation range of the electrosurgical
device, three different power settings (low, mid-range and
high) were applied for both cutting and coagulation mode.
The sound clips were recorded with an average length of
about 2 s, which was chosen in accordance with the average
application length of electrosurgery found by Meeuwsen et
al. [19]. The final data set consists of 1758 individual sound
clips.

Signal processing

We chose a spectrogram feature-based approach, depicted
in Fig. 3, as auditory image features have been shown to
yield superior classification performances [25]. A rectangu-
lar sliding window function was applied to the individual
sound clips to compute log-mel-spectrograms from the data
set. The window length was thereby varied between 300, 500
and 1000 ms with an overlap of 75%which resulted in a total
number of 60.880, 34.052, and 13.970 samples, respectively.

Fig. 2 External view (left) and
internal view through
laparoscope (right) of the
experimental setup using a box
trainer. Microphone and sterile
cover, laparoscope and
laparoscopic forceps for the
coagulation of specimens are
inserted via trocars

Microphone

Forceps

Specimen

Laparoscope
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Fig. 3 Two example
spectrogram representations of
the classes fascia (left) and fat
(right); the x-axis represents
time in milliseconds, the y-axis
the Mel-frequency scales, the
pixel intensity the amplitude in
decibel (dB)
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Spectrograms are two-dimensional visualizations of spec-
tral sequences with time on the abscissa and frequency on the
ordinate. The color intensity of each pixel refers to the ampli-
tude of the respective frequency. In the first step, Short-Time
Fourier Transformation (STFT) was computed for each win-
dowed segment of the audio clip by applying:

X(i, j) =
N f −1∑

p=0

x[n]w[n − j] exp
(
−p

2πk

N f
n

)
,

p = 0, . . . , N f − 1 (1)

where x[n] denotes the signal consisting of N f samples,
w[n− j] the windowing function at frame n− j explained in
Eq. 2, p is the iterationvariable, and2πk is the frequency.The
result X is a matrix containing the magnitude of frequency
bin i at frame j . We used a window length of N f = 2048
samples for STFT computation. The step size of the sliding
window was set to 512 samples which results in a window
overlap of 75%. To compensate for the Gibbs effect, a Hann
windowing function was applied:

w[n] = 1

2

[
1− cos

(
2π

n

M − 1

)]
, n = 0, . . . , M − 1 (2)

Furthermore, the matrix was converted from energy to
power spectrogram by squaring the amplitude. Additionally,
the power spectrogram was mapped to a decibel scale by
computing:

Xpow(i, j) = 10 log10(X(i, j)2) (3)

The signal was filtered in the spectral domain with a
triangular-shaped Mel filter bank. These filters provide an
approximation to the nonlinearities of the human cochlea
and are also the basis for the computation of MFCCs. The
applied filters are spaced evenly on the Mel scale introduced
by Stevens et al. [31] which can be calculated from frequency
by:

fmel = 2595 log10

(
1+ f

700

)
(4)

The Mel filter bank can be seen as a simplified version of
the gammatone filter bankwhich has been shown to be highly

correlated with natural sound signals. Its application pro-
duces a sparse, high-resolution spectrogram from the audio
source [12]. A total number of 256Mel filter bandswere used
to combine the Fast Fourier Transform (FFT) bins into Mel-
frequency bins. We computed spectrograms for a frequency
range from 0 to 11,025 Hz. The spectrograms were normal-
ized by Xnorm,mel = (Xmel − μ)/σ , where (μ) is mean and
(σ ) is the standard deviation computed over the entire data
set.

Figure 3 illustrates example log-mel-spectrograms com-
puted from clips of the classes fascia and fat with a window
length of 500 ms.

Network architecture and training

For the proof-of-concept system, we applied a transfer learn-
ing approach which has been shown to work effectively for
CNN architectures [33]. We extracted log-mel-spectrograms
with dimensions 299× 299× 3 from the entire data set and
split the data into training, validation and test set with a dis-
tribution of 80%, 10% and 10%, respectively. We chose the
deep convolutional neural network architecture Inception-v3
[32] which has shown to yield excellent performance on log-
mel-spectrogram-based audio classification [7]. The network
was pre-trained on 14,197,122 images and 1000 classes of
ImageNet [4], and was used to extract a descriptive feature
vector from the intermediate spectrogram representation.We
used a mini-batch size of 32 according to Masters et al. [18]
to train a single fully connected layer with five output classes
on the CNN features with dimensions 1×2048.We applied a
RMSprop optimizer with fixed learning rate for minimizing
a softmax cross-entropy cost function H(y, p):

H(y, p) = −
M∑

c=1

yo,c log(po,c) (5)

where M denotes the total number of classes, y is a binary
indicator if class label c is the correct prediction for obser-
vation o and p is the predicted probability that observation o
is of class c. We implemented early stopping regularization
to avoid overfitting of the training routine.
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Results and evaluation

Evaluation of the perception study

For better comparability, all audio recordings were cut to a
length of 12 s per capture, i.e., representing the coagulation
sounds across the tissue samples. To learn about the potentials
of acoustic signals inMIS and to investigatewhether different
types of tissues can be discriminated, 6 surgeons, trained in
the field of MIS, estimated the transition points between the
two tissue types within each recording solely by listening. In
total average, theymissed the referencemarker, prior defined
by visual annotation, by 1079ms. However, the median of all
162 single measurements amounts only to 472ms, indicating
a rather precise distinguishability.

The evaluation of the questionnaire revealed that the sur-
geons rate the acoustic feedback in MIS significantly worse
than in traditional open surgery. They reported that acoustic
feedback has the potential to improve the perception of MIS.
Showing that surgeons are able to extract useful information
from acoustic signals recorded from the operation area sup-
ports the hypothesis that these signals can be used for further
automated analysis to support surgeons during challenging
interventions.

Evaluation of the classification pipeline

In the following paragraphs, we evaluate the performance
of the classifier applied to the problem of acoustic-based
instrument–tissue interaction classification. We compare
different spectrogram configurations and analyze the dis-
criminability of tissue types and electrosurgery operation
modes.

Comparison of spectrogram configurations

To analyze the performance of our model under different
preprocessing settings, we varied the length of the rectan-
gular sliding window. A detailed frequency analysis of the
raw audio signal showed that low-frequency content mostly
contained environmental noise. Therefore, we additionally
compared the performance of the networkwith full frequency
scale of 0–11 kHz and reduced frequency scale of 2–11 kHz.
Table 1 shows the results of our evaluation with the rows
corresponding to varying frequency scales and columns to
different sliding window lengths.

The trainedmodel achieves accuracies up to 89.90%on the
test set. With larger window length the accuracy improves,
but execution time of one classification step for the deployed
model increases, respectively. Therefore, a reasonable win-
dow length has to be chosen as a trade-off between execution
time andmodel performance. For further analysis,we defined
a window length of 500 ms and frequency scale 2–11 kHz to
balance execution time and classification accuracy.

Discriminability of tissue types

The classification results in terms of discriminability of
tissue types are condensed as confusion matrix in Fig. 4. The
network is able to distinguish between ‘idle’ state and appli-
cation of diathermy taking place with a high true-positive
rate of 100%. The class ‘fat’ also reaches fairly high values of
91%. Furthermore, it can be observed that themodel confuses
the classes ‘liver’ and ‘muscle’ with confusion probabilities
of 15% and 5%, respectively, for this spectrogram configura-
tion. The lowest true-positive rate was obtained for the ‘liver’
class.

Figure 5 compares per-class recall and precision for
the test data set. The network achieved an average recall
of 89.10% and an average precision of 89.04%. The F1-
score reaches a value of 89.07%, accuracy was measured
as 88.88%.
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Fig. 4 Confusion matrix of spectrogram configuration
[windowlength=500ms, fmin=2000Hz] for the test set

Table 1 Overall test accuracy
for different spectrogram
configurations

�t = 300 ms (%) �t = 500 ms (%) �t = 1000 ms (%)

fmin = 2 kHz 86.25 88.88 89.90

fmin = 0 kHz 84.62 88.17 89.56
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Fig. 5 Per-class recall and
precision of the network on a
spectrogram configuration with
window length of 500 ms and
reduced frequency range
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Discriminability of electrosurgery operation modes

Additionally, the model’s capability to distinguish between
cutting and coagulation mode for each class was evaluated,
which is illustrated in Fig. 6. During data acquisition, audio
recordings of both electrosurgical operationmodes have been
acquired with equal distribution. Therefore, no bias is intro-
duced by splitting the data set into 9 classes.

Taking the electrosurgery mode into account, the over-
all accuracy reaches a value of 86.40%. Average precision
equals to 86.75%, average recall to 85.27%, and F1-score to
86.01%. The confusion matrix reveals that the network per-
forms well on separating the operation modes. For example,
the network confuses the classes ‘liver’ and ‘muscle’ more
likely than cutting and coagulation.

Figure 7 illustrates per-class recall and precision for the
model trained on 9 classes.
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Fig. 6 Confusion matrix of spectrogram configuration
[windowlength = 500 ms, fmin = 2000Hz] with 9 classes rep-
resenting different tissue types and electrosurgical operation modes

Discussion

Theperception study suggests that tissue-related acoustic dif-
ferences during diathermy are detectablemerely by listening.
Even though the estimated time stamps deviate slightly from
the references and individual reaction time has to be consid-
ered as an additional delay of less than 250 ms on average,
surgeons could derive additional information through audio
signals which are currently not provided duringMIS [9]. The
evaluation of the questionnaires revealed that acoustic signals
recorded in MIS have the potential to both improve the per-
ception of the intervention and serve as the basis for further
supportive automated analysis. Because coagulation sounds
are audible for traditional open surgery and supported by the
perception study, we believe that the transmission of sound
from inside the abdomen is not irritating but rather a useful
augmentation in a minimally invasive surgical scenario.

The results of the classification framework look promis-
ing in terms of discriminability of tissue and operation
modes. However, to transfer our experimental methodology
to surgery, certain shortcomings of our experimental setup
have to be addressed. Inter alia the acoustic properties of the
used box trainer are different to a CO2-insufflated human
abdomen in respect to insulation, shape, volume, material,
reflective areas and potential sound sources. An in-depth
analysis of the differences can only be achieved through in-
vivo experiments. Such in-vivo animal studies are one of
our major next steps, while this present work will form the
scientific basis for a ethical approval application of animal
experiments.

Further research is required to determine which physi-
cal tissue properties influence the sound generation during
diathermy.

As we had to limit our experimental setup to a box trainer
for now, the weak acoustic insulation of the latter brings a
few drawbacks to the experiment.

Regulations demand activation and alarm tones for elec-
trosurgical generators which cannot be turned down arbi-
trarily and are slightly audible in the recordings from the
experimental setup (“Data acquisition” section). We ana-
lyzed the recordings and found the characteristic alarm tones
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Fig. 7 Per-class recall and
precision of the network on a
spectrogram configuration with
window length of 500 ms and
reduced frequency range for a
data set configuration with 9
classes
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to be sine waves with 2020Hz and 3035Hz for cutting and
1380Hz and 2270Hz for coagulation mode. We added an
additional preprocessing step to filter out the beeps with
IIR-based notch filters but could not observe increasing clas-
sification performance.

Since also environmental noise is audible on the record-
ings, we applied a hard low-cut at 2kHz and used only the
signal above this frequency threshold. The spatial resolu-
tion in the spectrogram representation is hence increased
for the remaining 163 Mel-bins. The filtering of the back-
ground noise and the improved bin-to-pixel-ratio increased
the classification accuracy for sliding window lengths above
�t > 300ms (see Table 1) and was hence applied prior all
analyses.

The model performance could possibly be improved by
applying augmentation strategies, such as time stretching,
tempo or pitch modulation or adding noise and reverberation
to the audio data to simulate different environments. More-
over, different model architectures have to be evaluated to
further improve the performance of the classification algo-
rithm.

Conclusion

In this paper,wepresent a novel approach for intra-abdominal
acoustic analysis in minimal invasive surgery. In a user
study, we investigated whether the transmission of audio sig-
nals from inside of the abdomen during MIS has potential
to improve the perception during procedures and observed
that the participating surgeons are able to intuitively derive
additional information from the signals. We furthermore
introduced a first concept which uses the acquired signals
for the classification of instrument–tissue interaction dur-
ing diathermyby training a log-mel-spectrogram-basedCNN
classification pipeline on acoustic signals recorded directly
from the operation area. Our model reached accuracies of up
to 89.90% on a data set acquired in an experimental setup. In
addition, we evaluated the network’s capability to distinguish

between electrosurgical operation modes which resulted in
an overall classification accuracy of 86.40%.

Results of the proposed system indicate potentials inter
alia for the use as a guidance system or to enable tissue-
related energy settings and security circuits; all reducing
patients risk while improving the outcome.
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