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It may be of interest to the reader of this IJCARS Special 
Issue containing CARS 2019 papers with a focus on AI 
methods and tools, to have a brief glance at the historic con-
text in which some of the developments toward intelligent 
machines have taken place.

Alan Turing

Going back to the roots of the now very popular and general 
term Artificial Intelligence (AI), the more neutral expres-
sion relating to Machine Intelligence (MI) was used as an 
umbrella term during its first years of the existence of this 
significant information technology. It is well-acknowledged 
that Alan Turing’s historic paper in 1950 on “Computing 
Machinery and Intelligence” [1], outlining what is now 
called the Turing Test, was the starting point for the science 
and an increasing body of myths about the thinking machine, 
which Turing referred to in his paper.

At those times and even now, it was and is much easier 
to define in unambiguous terms what constitutes a machine 
(such as a Turing or von Neumann machine) than what is 
the essence of thinking in a verifiable manner. Turing took a 
short cut by means of a metaphor which he called the “imita-
tion game,” as a way of describing a situational model with 
several entities (a machine and some human protagonists) 
and actions (goal-driven intelligent interaction between the 
entities) which in today’s terms is equivalent to emulate 
human thinking on a computer or a simulation of a virtual 
reality demanding complex decision making by either a 
human or a machine.

The situational model in the imitation game envisaged 
by Turing consists of two strictly separated rooms and three 

people: a man (A), a woman (B), and an interrogator (C) 
who may be of either sex. The interrogator stays in a room 
apart from the other two people. The ideal arrangement is to 
have a teleprinter communicating between the two rooms.

The object of the game for the interrogator is to deter-
mine which of the other two is the man and which is 
the woman. It is A’s object in the game to try and cause 
C to make the wrong identification. The object of the 
game for the third player (B) is to help the interroga-
tor. What will happen when a machine takes the part 
of A in this game? Will the interrogator still decide 
incorrectly as many times if the role is performed by 
a machine?

These questions posed by Turing and their elaboration in 
the context of postulated “Contrary Views” and aspects of 
“Learning Machines” finally resulted in his observation in 
1950:

We may hope that machines will eventually compete 
with men in all purely intellectual fields… We can only 
see a short distance ahead, but we can see plenty there 
that needs to be done.

Even though Alan Turing predicted the possibility that 
thinking machines would come to be a reality in 50 years 
(apparently in 1952 he corrected this to 100 years), in the 
year 2019, we are still facing the same issues that he outlined 
in his paper, in particular, on digital computers, machine 
learning, and what constitutes human thinking and decision 
making in general.

Maurice Wilkes

An interesting statement came from one of Turing’s contem-
poraries in Cambridge, Maurice Wilkes (head of the Cam-
bridge University Mathematical Laboratory from 1945 to 
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1980 and the second recipient of the Turing award in 1967), 
when he observed in 1953 that,

If ever a machine is made to pass the (Turing) test, it 
will be hailed as one of the crowning achievements of 
technical progress, and rightly so.

The result of Maurice Wilkes’s work over the period from 
1945 to 1980 may best be described as pioneering contri-
bution toward enabling technologies for the (intelligent) 
machines that Turing and von Neumann envisaged, in par-
ticular, stored program computers, microprogramming, 
macros, CAD modeling, capability-based computers, local 
area networks such as the Cambridge Ring, and mainframe-
satellite computer connections (similar to server–client 
systems in today’s terms). However, Maurice Wilkes was 
always very careful when it comes to making prognostic 
statements, perhaps exceptionally somewhat later in 1992, 
when he observed more cautiously that [2]:

It is difficult to escape the conclusion that, in the 
40 years that have elapsed since 1950, no tangible pro-
gress has been made toward realizing machine intel-
ligence in the sense that Turing had envisaged. Perhaps 
the time has come to face the possibility that it never 
will be realized with a digital computer.

There are computer scientists such as John McCarthy and 
Marvin Minsky (the inventors of the term “Artificial Intel-
ligence” in 1955 and Turing award winners of 1971 and 
1969, respectively) and many others, who would thoroughly 
disagree with Maurice Wilkes’s conclusion. Nevertheless, it 
is worth noting that there is not only Alan Turing’s observa-
tion “plenty there that needs to be done,” but also the ques-
tion addressing the potential economic, social and ethical 
implications of Machine Intelligence.

Finally, regarding developing computer programs, Mau-
rice Wilkes is associated with the observation [3]: “… It 
would be more logical first to choose a data structure appro-
priate to the problem, and then to look around for, or con-
struct with a kit of tools provided, a language suitable for 
manipulating the structure.” Something that translates very 
well into the modeling and simulation themes in the context 
of CARS in our times.

Joseph Weizenbaum

Even though the “Eliza” program [4] developed by Joseph 
Weizenbaum in 1966 (Professor of Computer Science at 
MIT from 1963 to 1988) was celebrated by some of its first 
users of this program as a breakthrough for Artificial Intel-
ligence (for example, by implementing a powerful list pro-
cessing tool based on an extension of LISP, allowing for the 
manipulation of graphs) and having past the Turing test, he 

himself, for many reasons, was rather skeptical of his own 
work as well as of some other AI pioneers (probably a rea-
son why he never received the Turing award). In particular, 
he observed that while AI may eventually be possible, we 
should never allow computers to make important decisions, 
because computers will always lack human qualities such as 
compassion and wisdom.

For these and related views on the ultimate limits of com-
putation, in the 1970s and well beyond, Joseph Weizenbaum 
found himself on the outside of the mainstream of Al [3]. 
“He criticized his colleagues for overselling Al and for not 
reaching their professed goals in a reasonable time span. 
Promises had been made by the profession that were not 
being fulfilled, and he had the temerity to tell the world of 
their shortcomings,” an observation not too far away from 
the remarks made by Maurice Wilkes.

Other significant contributions 
toward machine intelligence

Following the work of the early AI pioneers, in a long series 
of workshops on Machine Intelligence and associated book 
volumes [5] extending over a period of about 35 years, many 
interesting mathematical methods and IT tools were con-
ceived, in particular with reference to natural language pro-
cessing (NLP) and cognition problems. The gradual transla-
tion of these methods and tools into health care applications 
started in the early 1970s with the AI in medicine pioneer 
Edward H. Shortliffe, who developed the clinical expert 
system MYCIN, one of the first rule-based artificial intel-
ligence systems to enable machine-assisted medical decision 
making.

It is worth noting that many papers [5] included in the 
book series focused on modeling methods related to graph 
theoretic concepts and their applications in complex deci-
sion making. During this period, graphs were gradually 
attributed with some type of uncertainty quantifications by 
means of Bayesian conditional probabilities [6], resulting in 
a powerful method for complex situation modeling. Judea 
Pearl (Turing award winner 2011) [7] continued his drive to 
provide a comprehensive framework (Ladder of Causation) 
in which uncertainty is revealed to be a much more com-
plex problem than had been hitherto thought. Of particular 
relevance in the context of this editorial is his analysis of 
Turing’s binary classification of thinking and non-thinking 
entities, e.g., humans or machines, as compared to Pearl’s 
three tier ladder of causation, consisting of the graduated 
and increasing intelligence levels of observing (association), 
doing (intervention), and imagining (counterfactuals).

Whether the abstraction based on three categories of 
intelligence levels in the ladder of causation is appropriate 
or not, 10 or more, or even only Turing’s two levels, is an 
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interesting question, which may have to be addressed when 
designing intelligent systems relating to computer assisted 
radiology and surgery.

A brief summary of the last 70-year history of machine-
assisted medical decision making and the role of computer 
modeling, with a plea to a formal uncertainty quantification 
(UQ) discipline (possibly derived from other domains such 
as nuclear security), is given by Begoli et al. [8]. Here, UQ 
appears to become a key methodological issue for the future 
advances in AI.

The interested reader who may want to learn about opin-
ions where high-level machine intelligence may take us in 
the next 20–30 years, for example, what will be the role of 
the cognitive science and cognitive architectures, as well as 
relational reasoning and graph networks, is referred to refer-
ences [9, 10], respectively.

Battaglia et al. [10] in 2018, reemphasized in their posi-
tion paper on “Relational inductive biases, deep learning, 
and graph networks,” the importance of structured represen-
tations of knowledge and computations, and in particular, 
systems that operate on graphs, much in line of what J. Pearl 
has been promoting. Their outline on a graph networks’ 
(GN) framework gives an exhaustive up-to-date summary 
of the role of neural networks such as convolutional neural 
networks (CNNs), recurrent neural networks RNNs, multi-
layer perceptrons (MLPs), message-passing neural networks 
MPNNs, non-local neural networks NLNNs, and others.

In summary, the authors of Ref. [10] claim that a vast gap 
between human and machine intelligence remains, especially 
with respect to efficient and generalizable learning. Their 
statement that “Graph networks are designed to promote 

building complex architectures using customizable graph-to-
graph building blocks, and their relational inductive biases 
promote combinatorial generalization and improved sam-
ple efficiency over other standard machine learning building 
blocks” may well-show into the right direction for R&D in 
the field of CARS relating to complex clinical decision mak-
ing supported by machine intelligence.

Some expert systems based on graph networks have 
already been developed in the specific context of assisting 
medical diagnostic and therapeutic procedures in radiology 
and surgery. Machine learning, deep learning (DL), and 
clinical decision support systems are typical examples of 
MI in sessions of past CARS congresses, see Fig. 1 [11, 12].

Within this specific medical focus, MI is providing new 
methodological, technical and clinical capabilities using 
advanced mathematical models and innovative information 
technology tools.

Examples of questions relating to MI 
that deserve attention

Even though a review of the ongoing research in the areas 
outlined above is beyond the scope of this Editorial, it may 
be appropriate to point out a few major research questions 
and possible directions the answers may provide.

This IJCARS Special Issue on CARS addresses, in princi-
ple, six critical (CARS) questions relating to the substance, 
relevance, applications, impact, and implications of math-
ematical methods and algorithms of MI in the domain of 
clinical applications:

Fig. 1   Bayesian network model for treatment decision support of 
laryngeal cancer (above right). Variables (which can be more than 
1000 for the given example) are manually arranged according to clini-

cally related topics and highlighted by colored rectangles for illustra-
tive purpose only. The enlarged part shows the TNM staging Bayes-
ian sub-network
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(1)	 What qualifies a mathematical method or an infor-
mation technology tool to be considered as machine, 
artificial, or computational intelligence (or any other 
synonym or near-synonym) for radiology or surgery, 
e.g., from the field of image recognition, NLP, complex 
clinical decision making, treatment personalization and 
optimization, intelligent robotics, and instrumentation 
(sensors and actors)?

(2)	 Which mathematical methods or information technol-
ogy tools are of particular relevance for applying MI 
in radiology and surgery, e.g., applicability of DL-
structured neural networks, graphical models such as 
Bayesian networks, uncertainty quantification (UQ), 
support vector machines, genetic algorithms, genera-
tive adversarial networks (GANs)?

(3)	 How can these mathematical methods or information 
technology tools for MI be applied to improve clini-
cal workflow and/or patient outcomes, e.g., role of 
human machine communication/interaction, support-
ing situational awareness, use of architectures, such as 
medical information and model management systems 
(MIMMS) with DL engines and utility-based and other 
intelligent software agents?

(4)	 When can results and impact of MI be expected for 
improved clinical workflow and patient outcomes, e.g., 
effective adoption of MI with incremental, substantial, 
or potentially transformational impact?

(5)	 What are the potential economic, decision theoretic, 
social, and ethical implications of MI, in radiology and 
surgery specifically, and in health care generally, e.g., 
reviewing of some of J. Weizenbaum’s concerns in the 
context of CARS? What is the role of data driven or 
evidence-based decision making as compared to, or 
complemented by a model-based medical evidence in 
light of uncertainty, bias, intuition, confounding, and 
unknown variables?

(6)	 How will the long-term development of physician’s 
cognition, decision making, actuating, and intuition 
capabilities be affected by synergistic and intelligent 
human–machine systems employed in radiology and 
surgery? Will physician’s classic strength in multi-
variate thinking eventually be replaced by algorithmic 
thinking?

The potential answers to these questions are likely to 
be of a very divergent nature. With this IJCARS Special 
Issue on CARS 2019, an attempt is being made to address, 
in an exemplary manner, a few selected research topics in 
order to gain some insights into the realm of what can be 
considered to be MI in medicine.

The following provides a brief synopsis of six papers, 
three each from radiology and surgery, on applying intel-
ligent methods and tools in the light of some of the ques-
tions asked as outlined above.

Examples of MI in radiology

A deep learning framework for efficient analysis 
of breast volume and fibroglandular tissue using MR 
data with strong artifacts

T. Ivanovska, T. G. Jentschke, A. Daboul, K. Hegenscheid,  
H. Völzke, F. Wörgötter

Georg‑August‑University Göttingen; University Medicine 
Greifswald; Unfallkrankenhaus Berlin, Germany  The main 
purpose of the work presented in this paper is to develop, 
apply, and evaluate an efficient approach for breast density 
estimation in magnetic resonance imaging (MRI) data with 
strong intensity inhomogeneities. To evaluate the breast 
density, i.e., to measure the complete breast volume and the 
parenchyma, it usually requires to investigate the risk in a 
certain population group. This group is usually represented 
by women without strong pathological findings, i.e., no 
tumors are present in the data.

The given framework consists of five steps: correction of 
artifacts, data augmentation, breast volume segmentation, 
breast volume masking with nipple removal, and fibroglandu-
lar tissue segmentation. Specifically for breast volume segmen-
tation, nipple extraction, and fibroglandular tissue segmenta-
tion steps, a well-known deep learning architecture has been 
employed. Following the well-known N4ITK Bias Correction 
Algorithm to remove the intensity inhomogeneity from the 
breast datasets, the segmentation steps utilize a two class 2D 
U-Net deep learning architecture.

The presented method reaches an average Dice similarity 
coefficient (DSC) of 0.925. Partially, the improvement in the 
DSC for parenchymal tissue segmentation, as compared to 
previous results by the same group with a DSC = 0.83 and 
other classical state-of-the-art approaches, is due to the more 
accurate total breast volume segmentation.

It must be emphasized, however, that the described frame-
work is not a CAD system for tumor and lesion detection. Nev-
ertheless, the proposed solution has the potential to improve 
the clinical workflow for screening purposes for breast cancer 
from results obtained after applying the method to big epide-
miological data possibly with thousands of participants.
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Computer‑aided diagnosis of gastrointestinal 
stromal tumors: a radiomics method on endoscopic 
ultrasound image

X. Li, F. Jiang, Y. Guo, Z. Jin, Y. Wang

Fudan University, Changhai Hospital, China  A manifold of 
algorithms for radiomics-based CAD classification systems 
have been proposed and applied for the diagnosis of tumors 
in various organs such as the lung, breast, thyroid and brain. 
Very little attention has so far been given to identify gas-
trointestinal stromal tumors (GISTs) on gastro endoscopic 
ultrasound (G-EUS) images.

The main purpose of the work presented in this paper is 
to automatically extract quantitative features from G-EUS 
images and to develop, apply, and evaluate a radiomics-
based CAD classification system to improve the preopera-
tive diagnostic accuracy of the rare higher risk group (HRG) 
from those of the lower risk group (LRG).

Radiomics-based risk assessment requires mechanisms 
for data sharing and requires the availability of data across 
many patient and tumor types. In the present study, this has 
been achieved by collecting G-EUS images from 19 hospi-
tals of four different risk level GISTs. The dataset included 
168 case HRG GISTs and 747 case LGR GISTs.

Prostate cancer detection using residual networks

H. Xu, J. S. H. Baxter, O. Akin, D. Cantor‑Rivera

Ezra AI, Toronto, Canada, University of  Rennes, France, 
Memorial Sloan Kettering Cancer Center, New York, NY, 
USA  One of the specific aims of the ACR (American Col-
lege of Radiologists) PI-RADS™ v2 (Prostate Imaging-
Reporting and Data System) is to enhance interdisciplinary 
communications of radiologists with referring clinicians 
such as urologists, pathologists, and others. Taking into 
account that the prostate has a complex 3D anatomy with 
respect to the distribution of fibromuscular stroma and glan-
dular tissue, the segmentation model used in PI-RADS™ 
v2 employs thirty-nine sectors/regions: thirty-six for the 
prostate, two for the seminal vesicles, and one for the exter-
nal urethral sphincter. In PI-RADS™ v2, it is postulated 
that “Computer-aided evaluation (CAE) technology may 
improve workflow (display, analysis, interpretation, report-
ing, and communication), provide quantitative pharmacody-
namic data, and enhance lesion detection and discrimination 
performance for some radiologists, especially those with 
less experience interpreting mp-MRI exams.”

With reference to the CARS question #2 above, the 
paper by Helen Xu et al. addresses possible mathematical 
methods and information technology tools which are of par-
ticular relevance for applying AI algorithms in radiology, 

here specifically to identify suspicious lesions on prostate 
mp-MRI, but initially on a subset of the thirty-six sectors/
regions for the prostate. It appears that residual neural net-
works (ResNets) comprise a class of particularly well-suited 
modeling methods which can be considered to train deeper 
neural networks easier and faster than other architectures 
such as adversarial networks, end-to-end deep neural net-
works, or multimodal convolutional neural networks.

For the training of their ResNet, three radiologists evalu-
ated axial T2-weighted (T2 W), apparent diffusion coef-
ficient (ADC) map, and high b-value (BVAL) diffusion-
weighted images, and segmented lesions that were PI-RADS 
v2 assessment category 3 or greater, with category 1 being 
most likely to be benign and 5 being highly suspicious of 
malignancy. Dynamic Contrast-Enhanced (DCE) MRIs, 
however, were not included in the training set. As stated in 
the ACR PI-RADS™, “most published data show that the 
added value of DCE over and above the combination of T2W 
and DWI is modest.”

The segmentations generated from mp-MR images of 346 
subjects by the most expert radiologists were used as ground 
truth for network training and validation. Segmentations 
produced by two other radiologists were used to establish 
a baseline comparison of the network performance. After 
a successful training process for the network, the receiver 
operating curve (ROC) analysis demonstrated an area under 
the curve (AUC) of 97% for the ResNet detected lesions.

An interesting observation made in this paper was with 
respect to a quantitative analysis, for example comparing 
lesions outlined by the network against three radiologists, 
which showed a higher agreement with the segmentations 
by the most junior radiologist!

With reference to the CARS question #2 and #3 above, 
the paper by Helen Xu et al. addresses possible mathemati-
cal methods and information technology tools which are of 
particular relevance for applying AI algorithms in radiology.

Examples of MI in Surgery

Tissue classification of oncologic esophageal 
resectates based on hyperspectral data

M. Maktabi, H. Köhler, M. Ivanova, B. Jansen‑Winkeln, J. 
Takoh, S. Niebisch, S. M. Rabe, T. Neumuth, I. Gockel, C. 
Chalopin

Innovation Center Computer Assisted Surgery (ICCAS); Uni‑
versity Hospital Leipzig, Germany  This preliminary study 
represents a promising application of both, machine learn-
ing and spectral analysis in the field of tissue classification, 
here specifically to differentiate malignant from healthy 
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tissue based on hyperspectral image (HSI) recordings of 
esophagus and stomach resectates.

The HSI-camera provides hypercubes with a high spectral 
resolution of 5 nm in the visible and near infrared range from 
500 to 1000 nm, including 100 spectral values. The spatial 
resolution of the images is 640 × 480 pixels (x-, y-axes) with 
a spatial resolution of 0.1 mm/pixel. For the classification of 
the spectra, four different standard classification approaches, 
i.e., k-nearest neighbors (k-NN), Random Forest (RF), Sup-
port Vector Machines (SVM), and Multilayer Perceptron 
classifier (MLP), were used.

The HSI dataset was relatively small and divided into 
training validation and test sets, with annotated HSI data of 
nine patients and the spectra of two patients for the training 
validation and test set, respectively.

Even though the detection performance for the experi-
ments reported is not so high and considering that the HSI 
modality is still relatively new, the study shows promising 
results for the future use of HSI for detection of esophagus 
cancers, to visualize the tumor margins of resected tissue 
and eventually the removal of in vivo cancer tissue.

Automatic annotation of surgical activities using 
virtual reality environments

A. Huaulmé, F. Despinoy, S. A. H. Perez, K. Harada,  
M. Mitsuishi, P. Jannin

University of Rennes, France; University of Tokyo, Japan  To 
automate the recognition of essential parts of the surgi-
cal workflow and their evolution over time in the specific 
context of surgical task, phase, gesture, or surgical activ-
ity recognition in general, is an important functionality for 
the design of human–machine collaborative systems in the 
operating room (OR).

With reference to the CARS question #2 above and in 
particular #3 referring to improve clinical workflow, the 
paper by Arnaud Huaulmé et al. addresses possible infor-
mation technology tools which are of particular relevance for 
applying intelligent software in surgery, here specifically for 
surgical workflow analysis in the OR. It presents the work 
carried out by research groups in Tokyo and Rennes dur-
ing the past few years on the developed and application of 
machine learning methods in order to achieve intelligent 
assistance for automatic annotation for surgical process 
models (SPMs). The aim is to reduce dependence on human 
intervention in the annotation process.

Starting with information derived from virtual–reality 
environments provided by surgical task simulators, some 
rules for transcription and additional contextual information, 
the proposed system ASURA (Automatic SimUlatoR Anno-
tator) interprets this information in order to provide anno-
tated surgical activities, steps, and finally surgical phases.

ASURA is extensively validated in the context of a peg-
transfer task performed on a VR simulator by providing valida-
tion metrics relating to time considerations between manual 
and automatic annotations as well as intra- and inter-observer 
variability concerning timing and accuracy of manual annota-
tions for surgical process modeling.

It appears that the proposed ASURA system may be a well-
suited architecture for achieving automatic surgical process 
modeling, when applied to capture the dynamics of surgical 
activities within a reasonable level of complexity. How to 
predict and differentiate between user intentions in surgical 
workflows, however, remains to be an interesting question to 
be addressed in the future. This applies also to situation or 
context awareness of SPMs.

Toward versatile cooperative surgical robotics: 
a review and future challenges

P. Schleer, S. Drobinsky, M. de la Fuente, K. Radermacher

Helmholtz Institute for  Biomedical Engineering, Aachen, 
Germany  This group at the RWTH in Aachen has been 
instrumental in the design of dynamic networks for medi-
cal devices and IT systems in the OR and corresponding 
standards, which may also be applied to cooperative robotic 
system. The aim of the paper is to provide a review on vari-
ous surgical disciplines supporting different surgical task 
sequences and differing ways of human–machine coopera-
tion or degrees of automation. This is followed by an over-
view of cooperative robots in surgery.

Human–machine interaction is being analyzed for different 
classes of synergistic robotic systems, specifically handheld, 
hands-on, and tele-manipulated devices. Essential functional 
characteristics are described in order to identify generic coop-
erative robotic device profiles (CRDP), features and use cases 
which are summarized in a classification scheme. Distinct 
CRPDs are needed to enhance versatility, improve benefit-to-
cost ratio and, thereby, market spread of surgical robotics.

In combination with an open communication standard for 
the operating theater, a very critical part in this scenario is the 
possibility of arbitration (mentioned 5 times!) between human 
and machine. With reference to the six critical CARS ques-
tions as outlined at the beginning of this editorial, specifically 
question 3 and 6, arbitration characteristics will be an essential 
part of intelligent human–machine systems not only for appli-
cations in surgery but eventually also in radiology.

Concluding remarks

In summary, the above CARS papers do not necessarily give 
a representative view of what Machine Intelligence is all 
about, but they indicate the diversity of applications of MI 
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related methods and tools in radiology and surgery. Papers 
presented at CARS generally, and the observations made 
regarding the roots of AI allow a tentative definition of MI 
as related to CARS [13].

Something to be assigned “intelligent,” in the context of 
this Editorial implies “a system which has an adequate repre-
sentation of the present situation (situational model) and an 
executable plan (process model) to proceed from the present 
situation to the best possible next situation.”

To proceed to the best possible next situation, the system 
needs to have a model of the desired future situation and a 
model of the workflow, bringing into this definition also the 
issue of cause and effect. In any case, the modeling aspect 
(which implies the capability of cognition) and the algorith-
mic component to move from one situation to the next situ-
ation (which may imply complex decision making), could 
be considered to be the core components of intelligence, 
whether for human, machine, or animal intelligence.

The “machine learning” aspect is of course part of it, and 
if this is accepted to be of importance, we do not need to 
define “Artificial Intelligence,” but “Machine Intelligence” 
instead. When a machine is capable of learning, the result is 
machine intelligence and not an artificial intelligence!
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