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Abstract
Purpose To facilitate intraoperative localization of lung nodules, this study used model-based shape matching techniques
to analyze the inter-subject three-dimensional surface deformation induced by pneumothorax. Methods: Contrast- enhanced
computed tomography (CT) images of the left lungs of 11 live beagle dogs were acquired at two bronchial pressures (14
and 2cmH2O). To address shape matching problems for largely deformed lung images with pixel intensity shift, a complete
Laplacian-based shape matching solution that optimizes the differential displacement field was introduced.
Results Experiments were performed to confirm themethods’ registration accuracy using CT images of lungs. Shape similar-
ity and target displacement errors in the registered models were improved compared with those from existing shape matching
methods. Spatial displacement of the whole lung’s surface was visualized with an average error of within 5mm.
Conclusion The proposed methods address problems with the matching of surfaces with large curvatures and deformations
and achieved smaller registration errors than existing shape matching methods, even at the tip and ridge regions. The findings
and inter-subject statistical representation are directly available for further research on pneumothorax deformation modeling.

Keywords Pneumothorax deformation analysis · Model-based shape matching · Lung · Thoracoscopic surgery

Introduction

Recent advances inmedical imaging technologyhave enabled
visualization of early stage cancer, metastatic lung tumors,
and benign nodules. Video-assisted thoracoscopic surgery
[1,2] is a widely performed minimally invasive surgical
procedure.Although lung nodules are examined on preopera-
tive computed tomography (CT) images during preoperative
planning, the position of a nodule may change because of
the state of pneumothorax during surgery, which makes opti-
mization of resection procedures difficult. Although various
attempts have been made to use physical or chemical mark-
ers [3,4] to identify the varying positions ofmultiple nodules,
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the associated clinical burdens on both surgeons and patients
are increased because of the additional CT imaging and pre-
operative marking procedures required. If the intraoperative
positions of lung nodules could be accurately estimated, pre-
cise nodule resection and preservation of pulmonary function
could be facilitated by the strict management of resection
margins.

Deformable image registration techniques [5–7] for the
analysis of organ and soft tissue deformations have been
explored previously. Intraoperative deformation due to
changes in internal pressure, patient posture, and tool manip-
ulation is a well-known practical registration problem, which
must be addressed in the development of intraoperative
guidance systems [8–16]. Specifically, in the field of image-
based lung modeling, respiratory motion has been the main
focus of investigation [17–21]. However, there have been
few studies on modeling of the pneumothorax deformation
that occurs between the preoperative and intraoperative lung
states. Shape matching of the pneumothorax deformation of
the lung should address the technical issues of the large defor-
mations and CT intensity shifts that occur. Lungs are very
soft organs, and their deformation can induce considerable
volume change. The mechanism of pneumothorax deforma-
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tion is complex and not mathematically understood, except
through simulation studies of animal lungs [17,22]. CT inten-
sity shifts occur in the atelectasis state, where the air content
of the lungs is reduced, resulting in changes to CT values
and lowering of image contrast, and reduced performance
for image-based registration.

To localize lung nodules during surgery, Nakamoto
et al. [23] proposed intraoperative registration methods that
matched the surface of a preoperative CT model with sev-
eral surface points optically measured on the deflated lungs.
Intraoperative segmentation of thoracoscopic camera images
was investigated in [24], and Alvarez et al. recently reported
deformable registration results for lung deformations result-
ing from postural differences on cone beamCT (CBCT) [25].
Uneri et al. also proposed a registration framework to ana-
lyze the displacement of internal lung structures on CBCT
data from animal lungs [26]. To address CT intensity shifts,
an integrated framework of model-based and image-based
registration was used; however, registration of the bronchial
branch points was the main focus, and registration accuracy
at the lung surface was not evaluated.

The goals and clinical needs of intraoperative guidance
using video-assisted thoracic surgery (VATS) are visual-
ization of the subsurface positions of nodules, bronchial
structures, and vascular structures in the collapsed lungs.
However, it is difficult to image internal structures with
VATS, because CBCT imaging is not available in most clin-
ical facilities, and it may increase the burden on patients
and surgeons. Recent studies [12,27] proposed using the
2D appearance or silhouettes of organs as visual cues to
register preoperative CT models with intraoperative camera
images. We also consider that the intraoperative appear-
ance of collapsed lung surfaces could be an essential visual
cue [28,29]. Clinical applications of surface deformation
models are widespread and include initial model alignment
and 2D–3D surface matching, e.g., matching of 2D intra-
operative camera images (2D surface or silhouettes) with
volumetric deformation models (3D surface with subsurface
structures) of the collapsed lungs. Integrating surface and
subsurface deformation models into a thoracoscopic camera
image recognition system could lead to novel vision-based
guidance for VATS, which could provide subsurface nodule
visualization without additional CBCT measurement. How-
ever, to the best of our knowledge, no study has shown such
registration results, or visualized inter-subject variation in
spatial deformation of whole lung structures. Specifically,
registration error tends to increase in areas with substantial
curvature, such as the tips of the lobes or the boundary region
between the upper and lower lobes. Therefore, data acquisi-
tion and detailed surface analysis is worth investigating in
the search for a statistical formulation of lung deformation.

In this study, we used model-based shape matching to
analyze three-dimensional surface displacement in collapsed

lung. First, CT datasets were acquired at two bronchial pres-
sures (assigned as the inflated and deflated states) in 11 live
beagle dogs. Although spatial distribution of the displace-
ment of internal structures can be obtained by thematching of
anatomical feature points such as bronchial branches [23,26],
landmark-based matching cannot be applied to curved sur-
faces, because of their lack of anatomical features. As the
acquired CT data may contain large deformations with CT
intensity shifts, global image registration techniques [30]
tend to lead to large registration errors, particularly at tip
regions with high curvature.

The practical applications of model-based registration are
increasing, as registered mesh models are directly available
for statistical modeling and variational analysis [31–33]. In
addition, a recent study [32] reported that registration accu-
racy for anatomical structureswith large shape variationswas
better than that obtained using large deformation diffeomor-
phic metric mapping [7]. Here, we employ a model-based
shape matching approach utilizing improved Laplacian-
based shape matching (LSM) techniques for pneumothorax
deformation. We performed experiments to confirm the per-
formance of the proposed shape matching method using
CT data and to summarize the spatial distribution of the
three-dimensional displacement of the lung surface during
pneumothorax deformation.

The contributions of this paper are: (1) a complete
model-based surface registration solution that optimizes a
differential displacement field to map large pneumothorax
deformations and (2) analysis of the spatial displacement
of whole inflated/deflated lungs, including statistical defor-
mation model representations. This paper does not focus on
discussing the technical aspects of the registration methods,
but instead concentrates on reporting the findings of pneu-
mothorax deformation analysis with application of improved
model-based shape matching.

Methods

Measurements and surface reconstruction

To analyze the deformation of collapsed lung, contrast-
enhanced CT images of the left lungs of 11 live beagle dogs
were acquired at two bronchial pressures (14 and 2cm H2O)
at the Institute ofLaboratoryAnimals,KyotoUniversity. This
study was performed in accordance with the regulations of
the Animal Research Ethics Committee of Kyoto Univer-
sity. All CT images were acquired on a 16-row multidetector
CT scanner (Alexion 16, Toshiba Medical Systems, Tochigi,
Japan). During the procedure, the dogs were maintained
under anesthesia with ketamine, xylazine, and rocuronium
and underwent tracheal intubation and mechanical ventila-
tion by a ventilator (Savina 300, Drager AG & Co. KGaA,
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inflated
(14cmH2O)

deflated
(2cmH2O)

Fig. 1 CT images of inflated/deflated states with intensity shift mea-
sured from the left lung of a live beagle dog

Lübeck, Germany). A single trocar hole was first made on
the chest wall, to let air flow into the pleural cavity. Using
the ventilator, the bronchial pressure was set to 14cmH2O to
obtain images of the fully expanded lungs (inflated state), and
to 2cmH2O for imaging of the collapsed lung state (deflated
state). All dogs were placed in a right lateral (decubitus)
position on the bed of the CT scanner, and the two CT image
sets of the inflated and deflated states were acquired in that
order for each dog. For the contrast-enhanced CT, 10 mL
of iopamidol contrast agent was injected through a lower
extremity peripheral vein. Scanning was performed 5 s after
the injection of iopamidol.

Figure 1 shows CT slices from the inflated and deflated
states after registering the two volumes using the spine as a
fixed reference. The CT intensity values change because of
differences in the air content of the lung,with theCT intensity
values of the parenchyma increasing (the parenchyma region
becomes brighter) in the deflated state. This intensity shift
can be clearly observed in the lower image of Fig. 1 when it
is compared with the upper image. For details, refer to [26].
The registration accuracy of image-based registration can be
affected by these imaging characteristics of pneumothorax
deformation, as most of the methods assume consistent pixel
features. The proposed model-based registration approach
achieves stable registration for pneumothorax deformation
analysis on the basis of surface geometry.

Anatomical segmentation of the upper and lower lobes
was automatically performed using the Synapse VINCENT
image analysis system (Fujifilm Co., Ltd.), and the surfaces
of the lobes were generated as triangulated mesh representa-
tions using Poisson surface reconstruction [34]. The meshes
of the two lobes were created independently, and each tri-
angulated mesh was stored in the standard STL or PLY file
format.

Shapematching between inflated and deflated
lungs

To calculate the lung surface displacement, shape match-
ing was performed on the triangulated meshes reconstructed

Fig. 2 Example of reconstructed lung surfaces in inflated and deflated
states. The translucent image depicts the inflated state, and the opaque
image with the mesh topology is the deflated state

from the CT images. Figure 2 shows an example of recon-
structed lung surfaces in the inflated and deflated states, and
Fig. 3 outlines the inter-subject shape matching framework
developed using the statistical motion modeling expression
[33]. A template surface T was used as the source, and the
individual surfaces S(k)

I (k = 1, 2, . . . , n) in the inflated and

S(k)
D (k = 1, 2, . . . , n) deflated states were used as the tar-

gets. In this study, n equals 11, because we prepared an
image dataset with 11 subjects in the inflated and deflated
states. Here, we assume that the pair of surfaces (S(k)

I and

S(k)
D ) differs in the number of vertices and the structure of

the mesh (i.e., mesh topology), as they were independently
generated from different CT images. As shown in Fig. 3a,
the corresponding models M (k)

I , M (k)
D (with the same vertex

and the same mesh topology) that precisely approximated
the surfaces S(k)

I and S(k)
D , respectively, are computed by

shape matching. Because the two registered models achieve
point-to-point correspondence, spatial deformation D(k) =
M (k)

D − M (k)
I can be represented by calculating the displace-

ment vector of the corresponding vertex, as shown in Fig. 3b.
To capture rotational components or the slidingmotion of the
upper and lower lobes, this registration process is applied to
each lobe independently. Unlike per-subject registration, our
approach enables the construction of a statistical deformation
model, making deformation analysis among subjects possi-
ble.

For the template generation, one case was randomly
selected and set as the initial surface for T , and the triangu-
lar surface was resampled to 400 vertices and 796 triangles
for each lobe. Next, the corresponding models M (k)

I were

obtained by registering T to the individual surfaces S(k)
I in

the inflated state. As the mesh models M (k)
I have point-to-

point correspondence, the average shape M can be obtained
by calculating the average of each coordinate. We used M as
the final template. By keeping the template close to the data
to bematched in advance,we aimed to reduce the influence of
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Fig. 3 Outline of the
inter-subject shape matching
framework. a Corresponding
models (M (k)

I , M (k)
D ) with the

same vertex and the same mesh
topology are computed by
registering the template T to the
individual surfaces (S(k)

I , S(k)
D ).

b The spatial deformation D(k)

between the inflated state and
deflated state is obtained from
the registration between the two
models
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the template shape’s data selection method on the matching,
while preventing increased matching error.

Accurate shape matching is required to compute a stable
three-dimensional displacement field from the substantially
deformed surfaces. As pneumothorax deformation includes
considerable volume changes and rotations, the registration
error of image-based global registration methods increases
in areas with large curvature, such as the tips of the lobes
or boundary region between the upper and lower lobes. To
achieve both globally stable and locally strict registration,
Laplacian-based shape registration is used after executing
affine transformation. A discrete Laplacian was first intro-
duced for interactive editing of a geometric model [35]
and was recently applied to non-rigid shape modeling. In
[32], Laplacian-based registration showed better registration
performance than large deformation diffeomorphic metric
mapping [7] for curved surfaces with shape variations. Lung
surfaces alsomove considerably during pneumothorax defor-
mation, and the registration accuracy is not understood.
Therefore, in this research, we extended the Laplacian-based
registration technique to shape matching of inflated/deflated
lungs with large-scale deformations and investigated its reg-
istration performance.

Laplacian-based surface registration using a
differential displacement field

The overall process of the shape matching framework devel-
oped is described as follows.

STEP 1 A discrete Laplacian L(vi ) and a normal vector ni
are calculated for all vertices vi of the template T
and the target surface S.

STEP 2 Localized shape similarity Qi between the tem-
plate and the target surface is calculated for all
vertices of the template mesh.

STEP 3 The positional constraint pi for shape update is
determined based on Eq. (4).

STEP 4 The new positions for the set of vertices v′
i are

calculated based on Eq. (2). The shape is updated
as vi ← v′

i . Then, back to STEP 1.

The discrete Laplacian obtained in STEP 1 is a shape
descriptor defined as Eq. (1) that approximates the mean cur-
vature normal of the triangular mesh.

L(vi ) =
∑

j∈N (vi )

ωi j (vi − v j ) (1)

Here, ωi j is a weight, and N (vi ) is the number of adjacent
vertices of one ring connected by the vertex vi and the edge.

V̂ = arg min
V

n∑

i=1

‖L(v′
i ) − L(vi )‖2 + δ

n∑

i=1

‖ pi − vi‖2

(2)

where V is the set of vertices vi at their initial positions, and
V ′ is the set of vertices v′

i to be solved. pi is a positional
constraint set to vi , and δ is a weight parameter configured
according to the problem. L(·) is the Laplace–Beltrami oper-
ator, and L(vi ) is the discrete Laplacian at the vertex vi . The
first term is a penalty to shape changes to the mesh, and the
second term increases if the constrained vertex is distant from
the target position pi . By computing v′

i , whichminimizes the
objective function, the template model is updated while pre-
serving the shape as much as possible. Because Eq. (2) is a
quadratic minimization problem at vertex positions vi , it is
possible to calculate it with a low computation cost.

Here, we describe the method of determining the posi-
tional constraints pi in STEP 2 and STEP 3. It is difficult
to find appropriate positional constraints in the initial state
when the deformation between surfaces is large and anatom-
ical landmarks and point-to-point correspondences are not
given. Therefore, we explored better constraint options by
performing a progressive search and additionally introduced
a new definition of positional constraints that enabled us to
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obtain smooth displacement while performing precise sur-
face matching. To obtain the three-dimensional position on
the target model corresponding with the vertex of the tem-
plate model, the shape similarity value Q was calculated for
all combinations of the vertex vs of the template model and
the vertex vt of the target model. Q is defined by (3)

Q(vs, vt ) = |vs − vt | + γ (1 − ns · nt ) (3)

where γ is a weight, and ns , nt are vertex normals in vs , vt ,
respectively. Q locally evaluates shape similarity per vertex,
and if Q is small enough, the pair of tangent planes expressed
by vs and vt is corresponding surfaces.

The positional constraints pi are configured on the basis
of the local similarity Q for all vertices of the templatemodel.
For a group of vertices whose Q is small enough, or close
to zero, the positions of vertices vs are maintained, that is,
pi = vs is given, because they adequately represent the local
surface of the target shape. Alternatively, for a group of ver-
tices with a large Q value, a positional constraint is set to
correct the local shape of the template. In this case, if the
corresponding point is determined independently for each
vertex of the template model, the progressive shape update
may yield a non-smooth displacement field. Figure 4a briefly
illustrates the issue of local matching error caused by inde-
pendently configured positional constraints. To address this
problem, we focused on the differential displacement field
∇u and achieved smooth deformation while performing pre-
cise surface matching. Figure 4b provides an example of the
modified positional constraints obtained after shape match-
ing.

The differential displacement field is computed by the set
of partial differentials of displacements us on the vertex vs .
To smooth the displacement field, the changes in the gra-
dients of the displacement field us should be kept small,
as shown in Fig. 4c. This means that smooth deformation
matching between two shapes can be performed byminimiz-
ing the Laplacian of the displacements L(us). This concept
is based on Laplacian-based mesh optimization [36], which
achieves feature-preserving smoothing of triangular meshes.
The different aspects are that this strategy (1) applies its basic
technique to the displacement field, not to the surface, and (2)
undergoes progressive updates throughout the shape match-
ing process, which aims to solve the trade-off problems of the
nearest neighbor search between point-to-point correspon-
dences and maintenance of a smooth displacement field.

On the basis of this scheme, when the pair of correspond-
ing vertices (vs, vt ) is determined by the local similarity
index Q, the positional constraint p is determined as an
internal division point of the smoothed position v′

s and its
projected position v′

t on the target tangent plane. Figure 4d
illustrates the setup of positional constrains pi from the pair
of vertices (vs, vt ). This step-by-step update avoids local

mismatch at the early stage assuming a considerable dis-
tance between the two surfaces. Consequently, the positional
constraints pi are defined by Eq. (4).

pi =
⎧
⎨

⎩
v′
s + ls

m
(v′

t − v′
s) (Q > Qhigh)

v′
s (Q < Qlow)

(4)

v′
s = vs − λL(ui ) (5)

L(ui ) =
∑

j∈N (vi )

ωi j (ui − u j ) (6)

Here, ls is the average length of all edges connected to the
vertex vi , andm is a step constant for the progressive search.
The two threshold values Qhigh and Qlow affect the stability
of the shape update and the convergence speed. For example,
if a high value is used for Qhigh, a smaller number of vertices
are constrained at the target surface, which results in slower
convergence.When a lowvalue is used for Qlow, the template
shape becomes easily deformable, possibly destabilizing the
shape updating, as a smaller number of vertices are fixed.
In our case, after investigating various parameter sets, the
average value of the top 10% was used as Qhigh, and the
average value of the bottom 2% was used as Qlow.

In STEP 4, the template surface is updated by applying the
positional constraint p to the quadratic minimization equa-
tion (2). The shape optimization defined by STEP 1 to STEP
4 is iteratively processed. When the maximum value of the
inter-surface distance between the template and the target
model is not improved when the surface update is repeated
ten times, or when the number of updates reaches 3000 times,
the iterative process is terminated. In this framework, even
when the number of vertices differs between the template and
target models, or even when the vertex of the target model
does not exist near to the corresponding local region, the
optimized matching of corresponding local surfaces can be
computed.

Experiments and results

In the experiments, the performance of the proposed
Laplacian-based shape matching framework was first eval-
uated. The efficacy of the differential displacement field
was confirmed by comparing it with existing shape registra-
tion methods. Then, the pneumothorax deformation of lungs
was investigated in terms of the linearity and morphological
variation of deformation using the registered models. The
proposed shapematching frameworkwas implemented using
Visual C/C++ and OpenGL. A computer with a graphics pro-
cessing unit (CPU: Intel Core i7 3.7GHz, Memory: 64 GB,
GPU:NVIDIAGeForceGTX1080)was used throughout the
experiments. For theweights in the developed framework,we
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Fig. 4 Positional constraints for Laplacian-based surface registration
to ensure a smooth differential displacement field. When the corre-
sponding pair of vertices (vs , vt ) is given, the positional constraint p

is determined as an internal division point of the smoothed position v′
s

and its projected position v′
t on the target tangent plane

used 10.0 for δ, and 1.0 for ω, δ and γ after examination of
several parameters sets.

Performance evaluation

Shape matching was performed on 11 in vivo lung models
(Cases 1–11) to confirm registration accuracy. The proce-
dure for creating the template T and lung mesh models from
the in vivo CT images is described in “Measurements and
surface reconstruction section.” Table 1 summarizes the vol-
umes of the upper/lower lobes at bronchial pressures of 14
and 2cmH2O for each case, with V being the volume. For the
superscript/subscript characters, u: upper lobe, l: lower lobe,
i : inflated state, and d: deflated state. r is the ratio of volume
change: V d/V i . We note that the volume of Case 11 at a
bronchial pressure of 2cmH2O was unexpectedly increased,
which is probably a result of the bronchial pressure not being
successfully controlled. However, as shape matching can be
applied to such an inflated shape, the performance of the
shape matching was evaluated for all the datasets.

Quantitative comparisons of shape matching

In this study, themean distance [32], Hausdorff distance [37],
and Laplacian of the displacement were used as the shape
similarity criteria. The Hausdorff distance measures the
longest distance among minimum point distances between
two surfaces, whereas the mean distance is the average
of the minimum point distances. Unlike segmentation or
recognition problems, shape matching requires point-to-
point correspondence between two shapes. For example, as
the Dice coefficient only measures volume overlap, it is not
sufficient to evaluate per-vertex correspondence, nor to mea-
sure the quality of local matching. The Laplacian of the
displacement is the magnitude of the second derivatives of
the displacement field and evaluates the smoothness of the

deformation. The registration accuracywas compared among
four shape matching approaches: (1) LSMD: the proposed
Laplacian-based shape matching with optimization of the
differential field defined in this paper, (2) LSM: Laplacian-
based shapematchingwith a similar progressive deformation
approach used in [32] and [38], (3) PWA: piecewise affine
transformation [39], and (4)AF: affine transformation. For all
algorithms, affine transformation was performed in advance,
to globally match the posture and volume of the entire
shape.

Figure 5 shows box plots of the mean distance, Hausdorff
distance, and mean and maximum Laplacian of the displace-
ment computed from the 11 subjects’ registration results.
Figure 5a, b shows the results for upper lobes and lower lobes,
respectively. The box plots include the minimum, first quar-
tile (Q1), median (Q2), third quartile (Q3), and maximum.
Theminimumandmaximumscores are represented after out-
liers were rejected. Values larger than (Q3−Q1)×1.5+Q3
or smaller than Q1− (Q3−Q1)×1.5 were regarded as out-
liers. The average, minimum, and maximum values of all
datasets are summarized for LSMD, LSM, PWA, and AF in
Table 2.

LSMD and LSM achieved a significantly smaller mean
distance than the other twomethods, and aHausdorff distance
with an error within 1 mm; they therefore outperformed the
other two methods in terms of matching volumetric regions.
Regarding the Laplacian of the displacement field in the
LSMD and LSM methods, in the right of Fig. 5, the LSDM
had smaller values than LSM, which means that a smooth
deformation with reduced unstable surface matching can be
performed using LSMD.

Target displacement error

In addition to the above geometrical indices, the accuracy
of displacement vectors obtained after shape matching was
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Table 1 Volumes of
upper/lower lobes on CT images
of the left lungs of live beagle
dogs. V is the volume

Case V i
u [cc] V d

u [cc] ru[%] V i
l [cc] V d

l [cc] rl [%]
1 173.5 82.7 47.7 242.9 96.9 39.9

2 167.1 69.9 41.8 508.3 116.4 22.9

3 231.7 111.4 48.1 357.6 145.3 40.6

4 184.7 71.4 38.7 258.2 100.4 38.9

5 246.1 78.9 32.5 353.3 92.8 26.3

6 188.4 65.8 34.9 373.2 104.1 27.9

7 131.9 55.8 42.3 257.9 110.7 42.9

8 164.3 102.3 62.2 342.1 196.7 57.5

9 198.8 84.9 42.7 375.4 111.8 29.8

10 232.5 113.5 48.8 355.7 186.4 52.4

11 163.7 160.2 97.9 212.1 236.6 111.5

Mean±SD 189.3±35.1 90.6±29.7 48.9±18.1 330.6±83.4 136.2±48.7 44.6±24.7

Superscript/subscript characters: u: upper lobe, l: lower lobe, i : inflated state, and d: deflated state. r is the
ratio of volume change: V d/V i

Fig. 5 Quantitative comparison results: mean distance, Hausdorff distance, and Laplacian of the displacement (mean and maximum) of shape
matching algorithms for inflated (upper row) and deflated (lower row) lungs

evaluated by the target displacement error (TDE) defined in
Eq. (7)

T DE = |ûe − ue| (7)

where ue is the displacement vector computed from the pair
of the corresponding vertex of the registered inflated lung

surface and deflated surface, and ûe is the ground truth dis-
placement obtained from corresponding evaluation points.
In this study, the evaluation points were manually placed at
the three tip regions and the three midpoints on ridges in the
upper/lower lobes, as shown in Fig. 6a, where relatively large
deformation and incorrect matching can be assumed.
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Table 2 The average (minimum
and maximum) values of all
shape matching results for mean
distance (MD), Hausdorff
distance (HD), Laplacian of
displacements (LD), and target
displacement error (TDE)

Metic Methods

LSMD LSM PWA AF

MD 0.22 (0.10–0.36) 0.22 (0.12–0.36) 1.6 (0.92–3.58) 3.0 (1.79–5.21)

HD [mm] 0.85 (0.39–1.63) 0.82 (0.36–1.70) 9.16 (4.14–19.8) 12.0 (6.78–21.0)

LD (mean) [mm] 0.76 (0.42–1.49) 0.79 (0.45–1.70)

LD (max) [mm] 4.45 (2.05–8.45) 5.19 (2.33–13.2)

TDE [mm] 4.34 (0.54–14.0) 5.56 (0.5–19.5) 7.0 (0.44–25.8) 9.70 (1.5–27.9)

The TDE for LSMD has significantly lower values than the other three methods (p value < 0.05 for ANOVA
comparing LSMD with LSM, PWA, and AF)

Fig. 6 Quantitative comparison results of target displacement errors (TDE). a The 12 evaluation points manually indicated at the tip or ridge region
in upper/lower lobes, b, c box plots of TDEs on upper and lower lobes respectively

Figure 6b, c shows the results of the quantitative perfor-
mance analysis of the registration accuracy on the datasets of
the 11 subjects. The error in the lower lobes was larger than
that in the upper lobes, which is consistent with the anatomi-
cal characteristics, with the volume change and deformation
of the lower lobes being generally large. The average, mini-
mum, and maximum of the TDEs of all datasets for LSMD,
LSM, PWA, and AF are summarized in Table 2. The TDE
of LSMD was significantly lower than that of the other three
methods (p value < 0.05 for ANOVA test comparing LSMD
with LSM, PWA, and AF). The results show that the pro-
posed method can provide localized displacement with an
error within 5 mm that it can overcome the instability prob-
lem inherent in Laplacian-based shape matching of distant
structures and that it performs well for large-scale deforma-
tions. We note that TDE strictly evaluates the point-to-point
correspondence andgenerally shows larger values thanHaus-
dorff distance. Specifically, as in this study, the evaluation
points were located at the tips or ridges of the lobes, and the
registration error in the other areas is expected to be smaller
than that defined by these TDEs.

Pneumothorax deformation analysis

Mean and variation of deformation

No study has investigated the impact of inter-subject vari-
ation on pneumothorax deformation. Our shape matching
framework can directly provide a statistical representation of
the registered lung models (M (k)

I , M (k)
D ), which represents

the mean and variation of the pneumothorax deformation
between subjects.

Figure 7 shows the deformation modes that correspond to
the first two eigenvalues of the obtained pneumothorax defor-
mation models D(k). The eigenvalues and eigenvectors were
computed from the set of displacement vectors of all vertices
based on singular value decomposition. Five images were
generated by changing the weights to plus/minus two times
the squared root of the eigenvalues. Please see the supplemen-
tal movies that visualize the sequential motion expressed by
interpolation of the inflated anddeflated states. The colormap
shows the spatially distributed magnitude of the displace-
ments ui between two surfaces. For example, the surfaces
in the mean deformation model deform from 0–32 mm. The
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40mm

5mm

Fig. 7 Visualizations of deformation variations corresponding to the first two eigenvalues of the obtained pneumothorax deformation models. The
color map shows the magnitude of the displacements between inflated and deflated lungs. Mean deformation is located in the middle

types of variation in the pneumothorax deformation can be
confirmed according to their morphological properties as fol-
lows:

– The first eigenvectormainly encompasses variation in the
scale of the deformation.

– The second eigenvector is associated with the directions
and rotations of the deformation.

We also confirmed that the subspace representation using
two eigenvectors explains 96.5% of the total deformation
variation.

Linearity of deformation

Figure 8 shows the shape matching results and the relation-
ship between the Euclidean distance from the pulmonary
hilum of the upper/lower lobes and the magnitude of the
displacement at all vertices composing the ten lung mod-
els (Cases 1–10). Case 11 was removed from this analysis
because of incorrect pressure control during CT imaging.
The number of the plots in the graph equals the number of
vertices in the registered template model. The graphs show
that the relationship between the distance and displacement
is mostly linear; however, the displacement in the region dis-
tant from the hilum tends to be large and nonlinear. Several
cases (e.g., Cases 3, 5, 8, and 9) present more complex pat-
terns with the plots being split into two branches; this means
that the deformation contains rotational components around
the pulmonary hilum (as a rotation center) or bending, as

shown in the right image of Fig. 1. These findings suggest
that the pneumothorax deformation modeling requires both
global shape changes with the assumption of linearity, and
subject-specific physical interactions or boundary conditions
between the lobes and the thoracic cavity.

Discussion

To our knowledge, this study is the first to show the impact of
spatial displacement onpneumothoraxdeformationof in vivo
whole lungs within a 5-mm registration error. Past analyses
have mainly focused on the internal structures of lungs mea-
sured using CBCT, and existing registration methods tended
to result in large registration errors, specifically around the
tips of the lobes. By integrating optimization of a differential
displacement field into Laplacian-based shape matching, the
proposed framework addresses problems with matching sur-
faces that have large curvatures and deformations and thereby
achieved smaller registration errors.

To clarify the focus of this research, the displacement of
the internal structures was considered to be outside the scope
of this paper. Our experiments concentrated on calculation
and analysis of the spatial displacements of lung surfaces,
including the tips of the upper/lower lobes with large cur-
vatures. In vivo data analysis of the internal structures of
inflated/deflated lungs was reported in [26]. Non-rigid regis-
tration of lungs deformed by the patients’ postures was also
investigated in [25]. For clinical applications, intraoperative
iatrogenic manipulation, which can result in considerable
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Fig. 8 Shape matching results and the relationship between surface
displacement and Euclidean distance from the hilum. The translucent
image shows the inflated state and the opaque image the deflated state. In

the scatter plot, the light blue and dark blue plots are the displacements
of the upper lobe and lower lobe, respectively

deformation of soft tissue, should also be accounted for.
To investigate this issue, [8] and [10] studied compensation
mechanisms in laparoscopic surgery. Integrating biomechan-
ical models [14,15] with the proposed statistical models
could be a solution to improve clinical applicability.As future
work, we are considering a clinical application of the statis-
tical models for VATS to CBCT data acquisition. Despite
the limited measurement area, low dose CBCT imaging [25]
is clinically feasible and will be useful for understanding
intraoperative pneumothorax deformations in real patients.
The building of statistical pneumothorax models will be an
important and interesting topic for a variety ofmedical image
analysis and intraoperative guidance research.

One technical limitation of this study is that the reg-
istration scheme relies on surface matching and does not

evaluate the effectiveness of dense pixel information. As
mentioned in “Introduction” section, CT intensity and image
contrast changes between the inflated and deflated states
are caused by differences in the air content of the lung
parenchyma, which is a drawback of image-based registra-
tion. However, recent studies have reported that regularized
keypoint matching improves deformable registration in lung
CT and shows good scores for COPD registration [13].
Learning-based methods using convolutional networks [40]
might be useful for registering subject-specific large defor-
mations. We note that the computation time for registering
each lobe was 67.6± 16.5 s. The calculation cost of search-
ing for the positional constraints is high, which restricts the
number of vertices in the template. It would be interesting
to integrate newer image-based registration concepts with

123



International Journal of Computer Assisted Radiology and Surgery (2019) 14:1763–1774 1773

shape matching and to evaluate their performance with the
measured pneumothorax data, with the goals of facilitat-
ing precise statistical modeling and improving computation
time.

Regarding the limitations of the validation protocol,
surface-to-surface measures such as the Hausdorff and mean
distances may be insufficient to evaluate local correspon-
dence, especially in cases where the posture of the lobes
varies greatly in the temple, or in low-curvature areas where
the vertices are sparsely placed. In addition, target displace-
ment error was evaluated on manually selected points in the
high curvature areas. We consider that a further exploration
of better validation protocols, such as a phantom study, is
needed for more reliable evaluation.

In our experiments, the imaging data were only collected
from 11 subjects, and further acquisitions were difficult
because of renovations to our animal experiment facilities.
Because intraoperative CT imaging is not a standard clinical
protocol in thoracoscopic surgery, it is not easy to construct a
patient-specific image database of collapsed lungs. However,
despite this study’s limited data size, the results show that
variations in pneumothorax deformation are not large. This
suggests that even if there are variations in the shapes and vol-
umes of individual lungs in the inflated state, subject-specific
deformation can be formulated with relatively customized
nonlinear models. This paper targeted the left lung, to mea-
sure stable pneumothorax deformation from the limited
number of live dogs available. In the right lung, the phys-
ical interaction between the three (upper, middle, and lower)
lobes and the ventilator may bemore complex than that in the
left lung. As the samemeasurement protocol and registration
algorithms can be applied to right lungs, further research to
develop statistical models of right lungs is desirable.

Conclusion

This study aimed to analyze three-dimensional surface dis-
placement in pneumothorax deformation using model-based
shape matching techniques. To perform shape matching for
substantially deformed lung images, a complete Laplacian-
based shape matching solution that optimizes the differential
displacement field was introduced. Our experiments showed
that the proposed concept addresses problems with matching
surfaces that have large curvatures and deformations, and that
it achieved smaller registration errors than other techniques,
even at the tip region, with spatial displacement of the lung’s
surface being visualized within a 5-mm error. The findings
and inter-subject statistical representations obtained in this
study are directly available for further research on pneumoth-
orax deformation modeling. In future work, we will explore
deformation estimation methods and develop an intraopera-
tive guidance system for VATS.
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