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Abstract

Purpose Cancers are almost always diagnosed by morphologic features in tissue sections. In this context, machine learning
tools provide new opportunities to describe tumor immune cell interactions within the tumor microenvironment and thus
provide phenotypic information that might be predictive for the response to immunotherapy.

Methods We develop a machine learning approach using variational networks for joint image denoising and classification
of tissue sections for melanoma, which is an established model tumor for immuno-oncology research. The manual annotation
of real training data would require substantial user interaction of experienced pathologists for each single training image, and
the training of larger networks would rely on a very large number of such data sets with ground truth annotation. To overcome
this bottleneck, we synthesize training data together with a proper tissue structure classification. To this end, a stochastic data
generation process is used to mimic cell morphology, cell distribution and tissue architecture in the tumor microenvironment.
Particular components of this tool are random placement and rotation of a large number of patches for presegmented cell
nuclei, a stochastic fast marching approach to mimic the geometry of cells and texture generation based on a color covariance
analysis of real data. Here, the generated training data reflect a large range of interaction patterns.

Results In several applications to histological tissue sections, we analyze the efficiency and accuracy of the proposed
approach. As a result, depending on the scenario considered, almost all cells and nuclei which ought to be detected are
actually marked as classified and hardly any misclassifications occur.

Conclusions The proposed method allows for a computer-aided screening of histological tissue sections utilizing variational
networks with a particular emphasis on tumor immune cell interactions and on the robust cell nuclei classification.

Keywords Image reconstruction and classification - Variational networks - Digital pathology - Tumor immune cell interaction -
Nuclei detection
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gists, mainly based on hematoxylin and eosin (H&E)-stained
slides. The phenotypic information about nuclear atypia,
cell morphology, cellular density and tissue architecture are
essential characteristics for accurate diagnosis. Over the last
decades, molecular and genomic approaches have revolution-
ized our understanding of tumor biology and are incorporated
for diagnostic, prognostic and therapeutic purposes. The
unexpected clinical success of immunotherapy by targeting
the immune system using immune checkpoint inhibitors like
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anti-PD1- and/or anti-CTLA4 antibody in different tumor
entities has proven the importance of tumor immune cell
interactions within the tumor microenvironment [12]. How-
ever, the therapeutic efficacy is limited by primary and
acquired resistance to immunotherapy. Thus, there is a grow-
ing need to identify predictive biomarkers and to enhance
our understanding of the complex interactions between the
immune system and tumor cells. Therefore, the evaluation of
phenotypic information of tumor cells and the surrounding
cells, including immune, vessel and stroma cells by detailed
histopathological analyses, has become highly clinically rel-
evant. Visual information embedded in histological tumor
samples reflects the underlying molecular pathology. Quan-
titative imaging features can thus be expected to contain
predictive power as biomarkers for cancer patients. However,
the evaluation of histology is highly subjective and known for
its inter- and intraobserver variations. Pathologists are also
limited by scale and need to reduce information into categor-
ical descriptions. Image analysis algorithms that precisely
describe morphologic features provide tremendous opportu-
nities for integration for genotype—phenotype comparison.
Technological advances in digital pathology, imaging and
computing are currently creating new tools for exploring rela-
tionships between morphology and molecular and genomic
alterations in cancer tissues. Machine learning has emerged
as an important image analysis tool that provides exciting
opportunities to improve our understanding of cancer biol-
ogy, immunology and ultimately patient care.

Melanoma is one of the most aggressive forms of skin
cancer. Spontaneous melanoma regression, the identification
of the first cancer antigen in melanoma and the high response
rate to immunotherapy in melanoma patients have estab-
lished melanoma as a model tumor for immuno-oncology
research that increases our understanding of tumor immune
cell interactions in other types of cancer. It has been shown
that tumor-infiltrating CD8+ immune cells and their distri-
bution within the tumor microenvironment are promising
predictive biomarkers [16]. The presence of immune infil-
trates and their spatial distribution in different cancer entities
has recently been analyzed by using H&E images of the
digital slide archive of The Cancer Genome Atlas (TCGA)
and a convolutional neural network that classified 50um-
square image patches for TIL content [14]. In [17], Turkki et
al. exploited a combination of pretrained convolutional neu-
ral networks and support vector machines to detect immune
cell-rich areas in H&E-stained histological sections of breast
tissues. We could recently show [4] that direct interactions
of immune cells with melanoma cells can be detected by a
deep learning approach using variational networks for joint
image reconstruction and segmentation.

Despite the successful use of deep learning approaches
in tumor immunology, intratumoral heterogeneity as a tumor
biopsy often contains a range of histological patterns and thus
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represents a significant challenge that might be overcome by a
large amount of labeled data. For example in [15], Sirinukun-
wattana et al. employed a spatially constrained convolutional
neural network for the detection of relevant cell nuclei using
a neighboring ensemble predictor to incorporate the spatial
structure of the cells. In [18], a classification of epithelial and
stromal cells based on a deep convolutional neural network
is performed, where the quality of the outcome is compared
to handcrafted features such as local binary patterns. Liu et
al. [10] proposed a learning-based automatic segmentation
algorithm relying on seed detection and contour refinement
to quantify morphologic characteristics of muscle fibers for
H&E-stained skeletal muscle sections. For a recent overview
of deep learning methods for classification and segmentation
tasks in digital pathology, we refer to [6].

Here, we pick up the variational networks from image
reconstruction presented in [8] to learn a coupled reconstruc-
tion and segmentation approach for the automatic detection
and classification of cell markers in the context of computer-
aided cancer diagnosis. We avoid the manual annotation of
real training data, which would require substantial user inter-
action of experienced pathologists for each single training
image, by extracting structural, color and noise information
from just a few real histological sections of cancer tissues.
These bits of information are used to generate training images
that mimic real histological sections using a stochastic cell
distribution algorithm. Particular components of this tool
are random placement and rotation of a large number of
patches for presegmented cell nuclei, a stochastic fast march-
ing approach to mimic the geometry of cells and texture
generation based on a color covariance analysis of real data.
Here, the generated training data reflect a large range of inter-
action patterns. We synthesize data to train the parameters
of an iteratively evolving variational network. Experiments
indicate that the thus trained networks generalize to real his-
tological sections.

In this paper, we extend the preliminary work presented
in [4] by an improved design of the variational network
with an effective direct coupling of the image and the
segmentation mask channel. In addition, we incorporate a
stochastic data generation process used to mimic cell mor-
phology, cell distribution and tissue architecture in the tumor
microenvironment. Furthermore, we discuss in detail the
layer architecture of the training data generator. Finally, we
investigate three different classification tasks.

The paper is organized as follows: in Sect. 2, the extension
of variational networks with the direct coupling of differ-
ent channels is derived. Then, three algorithmic challenges
related to immunofluorescently and H&E-stained histolog-
ical sections are briefly presented, and the data acquisition
procedure is described in Sect. 3. In Sect. 4, the stochas-
tic training data generation process is presented. Finally, the
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applicability and accuracy of the proposed methods are val-
idated for various applications to real image data in Sect. 5.

A coupled variational network

We consider a pair of a noisy and blurry N1 x N> color image
ug € % = ([0, 17%)M>*N2 and an initial segmentation mask
mo € A = [0, 117M*N2 where the corresponding binary
mask is computed via thresholding at the value % Our aim
is to reconstruct a clean image u € % and to compute a
mask m € .# segmenting the task-dependent cell types.
To tackle this joint reconstruction and segmentation task, we
“deepen” the variational network [8] structure to handle cou-
pled variables. The proposed variational network performs
N; projected gradient steps of the form

fort € {0,..., N, — 1},
(D

{ U1 = projy (u, — VyE,(u;, my))
miy1 = proj_y (m; — Vi E;(u;, my))

where the operators projy and proj , denote a pointwise
projection on the sets %/ and .#, respectively. Note that this
scheme can be interpreted as a discretized reaction—diffusion
equation (cf. [2]) or as the time-discrete projected gradient
flow [8] of a time-dependent variational energy. In this work,
we propose to use the following coupled variational energy:

Evwm) =Y ¢r (K (62K w), ¢ (K" m)))

F
+ 4w — w3 2)

The first term couples the reconstructed image and the seg-
mentation mask by means of convolution operations and
parameterized nonlinear functions. The convolution opera-
tor

N
KM= (k™K - Py

implements Ny, 2D convolution kernels to extract features
in .Zy, = RN>XM2XNpw from the RGB image. Each of the
Ny, features is transformed by applying a distinct nonlinear
pointwise function, which are then aggregated in

o Fu > Fu.

In the same fashion, the 2D convolution operator
N

K" = (K™, ... K"y — Fy

identifies and extracts features from the segmentation mask
that are then nonlinearly transformed by the functions

O T T — T

The resulting feature spaces %y and .%,, are concatenated
into a coupled feature space .Z = RN *N2xN7 with N =
Ny, + Ny, convolution kernels. We use the notation (-, -)
to indicate a concatenation. In a next step, these features are
combined by using Ny 2D convolution kernels

Ki=K!,....k"). 7> 7

followed by a third set of learned nonlinear functions
¢[ . y — y

that are also applied in a pointwise fashion to each feature.
The energy of the smoothness or regularization term is then
given by summing up all resulting feature elements. The sec-
ond term in (2) enforces data consistency between the RGB
image u and the initial image ug using the squared £,-norm.

To apply this variational model to our iterative scheme (1),
we need the gradients of the energy (2) with respect to both
input variables. By applying the chain rule, we get

VuEi(u,m) = (K" Do} (K/"uw) PuK, Doy, (K, (¢} (KMw),
¢ (K{"m)) + i (u — up),

Vi E((w,m) = (K" D¢/ (K!"m) Pu K, D¢y (K: (¢ (K w),
¢ (K"'m))) ,

where the operators P, and P, extract the parts of %
that originate from .%, and .%,,, respectively. Here, D¢},
D@]" and D¢, denote the derivatives of the correspond-
ing nonlinear functions. As in the variational networks [8],
the derivatives D¢, are parameterized using Gaussian radial
basis functions with weights w; € RN/ >*Nw - where Ny,
defines the number of radial basis functions. For the two fea-
ture transforming functions ¢}' and ¢}, we have to evaluate
both the functions and their derivatives. Thus, we param-
eterize the functions ¢}' and ¢;" directly using Gaussian
radial basis functions with weights w® € RNa>*Ne and
w™ € RNm>Nw_ The derivatives can then be evaluated by
differentiating the Gaussian basis functions. Using this for-
mulation, we can group all trainable parameters of the scheme
into 0 = (K, w}', K", w/", K;, wy, )Lt)fvz’l. The input data
consist of a RGB tissue section ug as well as an empty seg-
mentation mask m.

We solely incorporate a synthesized set of training images
(uy), my, gy, gfn)?]; | to train the parameters 6 of the entire
scheme by minimizing the loss function

N

. U T
;I;%ld 6||usT — gf,ll% + EHmST - g;1||% 3
s=1

Here, the target RGB image is denoted by g, € % and the
target segmentation mask by g, € ., respectively. The
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parameters are constrained to the set of admissible model
parameters

‘@ = {(Kuv w;la K[nla wl"na Kl5 wl‘a)"l) : K[u’ia K[nl’] € %7
K7l <1, 3 = 0,

l=1...T,i=1...Nf“,

j=1...Ng , l=1...Ny},

where the set % = {K : (I, K™) = 0, [K™|l; < 1}
refers to the 2D convolution kernels that have zero mean and
lie in the £1-norm ball. We use the £1-norm to promote spar-
sity of the learned convolution kernels and thus increase the
robustness of the model. Moreover, the kernels are required
to have zero mean in order to improve their capability to
extract textural information from the RGB image and denoise
the segmentation mask. Note that we only bound the norm
of the kernels K; in order to enable information exchange
between the two feature spaces .%, and .%,,. We scale the
RGB term of the loss by a factor of % to account for the
larger number of channels. For learning, we use the Adam
algorithm [7]. In each step of the Adam algorithm, we per-
form a projection of the parameters 6 onto &2. The positivity
constraint of the data term weights A; is enforced by a trunca-
tion, and we use the Euclidean projection onto the £1-ball as
described in [3] for the filter kernels K. Finally, the feature
extraction filters in K}' and K" are projected onto the set %~
using an accelerated gradient method, to account for both
constraints simultaneously. The projection typically requires
4 to 20 iterations to converge. Moreover, the projection is
computed in parallel for all 2D convolution kernels.

Cell and nuclei classification tasks for
melanoma tissue sections

In what follows, we will elaborate on three different classi-
fication tasks related to stained melanoma section images.
More precisely, we focus on the detection of cells or cell
nuclei encoded by biomarkers, where the spatial arrange-
ment of cells indicating cell interactions is incorporated in
some scenarios.

Scenario 1 As direct tumor immune cell interactions are
important for anti-tumor immunity, we establish as a first
scenario a classification to identify immune cells in the prox-
imity of tumor cells in melanoma section images with an
immunofluorescence staining. CD45 positive immune cells
are marked in red, cell nuclei are stained in blue by DAPI
that binds to DNA, and melanocytes are stained for the
melanocytic protein marker gp100in green. Here, an immune
cell is classified if the tumor cell concentration in a circular
neighborhood with radius 40 pixels exceeds the threshold
value 0.3. The values of all underlying pixels of classified

@ Springer

immune cells are set to 1 in the ground truth marking channel
of the synthesized training images, and all remaining pixels
are set to 0.

Scenario 2 To predict response to immunotherapy, melanoma
tissue samples are usually classified into immune cell-rich
and immune cell-poor tumors [1,5]. Therefore, we detect
immune cell-rich tumor areas in H&E-stained melanoma sec-
tions. Here, an immune cell is marked as classified if the
concentration of immune cells in a circular neighborhood of
radius 40 pixels is above the threshold value 0.2. A pixel in
the ground truth mask is set to 1 if and only if it is located in
the interior of classified immune cells and to 0 otherwise.

Scenario 3 Finally, we focus on the detection of tumor cell
nuclei in H&E-stained melanoma section images neglecting
any cell interactions. However, the particular challenge of this
approach arises from the similarity in the texture of tumor cell
nuclei and the tumor microenvironment.

In Fig. 1, exemplary melanoma tissue section images with
an immunofluorescence (left) and a H&E (right) staining are
depicted. The upper magnifying glasses point to a tumor cell
(left) and a tumor nucleus (right), both lower magnifying
glasses enlarge immune cells.

H&E-stained tissue images frequently exhibit intensity
variations and deviations with regard to the mean color of
cells of the same category. Thus, to enforce a comparable
staining a normalization proposed by Reinhard et al. [11] is
applied which amounts to a color transfer of a fixed refer-
ence image to all other images considered for Scenario 2 and
Scenario 3.

Acquisition of histological sections

Formalin-fixed paraffin-embedded (FFPE) murine melano-
mas (as previously described in [9]) as well as formalin-fixed
paraffin-embedded and H&E-stained human melanoma sam-
ples of the Skin Cancer Center of the University Hospital
in Bonn were used in this paper. The human samples were
anonymized, and all patient-related data and unique identi-
fiers were removed. H&E stains were performed according to
standard protocols. Melanomas were immunofluorescently
stained such that the immune cells are colored in red by the
marker CD45, the tumor cells in green by the melanocytic
marker gp100 and the nuclei in blue using the DAPI marker.
Representative regions of interest containing primarily tumor
nuclei and tumor-infiltrating immune cells were manually
identified for each slide to prevent images containing tissue-
processing artifacts, including bubbles, sections folds and
poor staining. Stained sections were examined with a Leica
DMBL immunofluorescence microscope. Regions of inter-
est were cropped at 20 x objective magnifications. All images
were acquired with a JVC digital camera KY-75FU.
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tumor cell

immune cell

immune cell

Fig.1 Melanoma tissue sections with immunofluorescence (left) and H&E (right) staining are shown. The upper magnifying glasses depict a tumor
cell (left) and a tumor nucleus (right), in the lower magnifying glasses immune cells can be observed

Stochastic generation of training data

In this paper, all training images are synthesized by a
stochastic data generation process mimicking structure, color
distribution and noise of real histological sections of cancer
tissues, where the generator is adapted for each aforemen-
tioned scenario. The major benefit of this approach lies in the
unlimited availability of training data with an exact ground
truth image and ground truth mask and thus circumvents the
need for user interaction of an experienced pathologist.

The main guidelines of the stochastic data generation are
as follows:

Scripting language All essential image features in each sce-
nario such as the shape, the placement or the coloring of all
object categories (cells, nuclei, connective tissue structures
and background) are specified in a script which is then parsed
in the configuration phase of the stochastic data generator.

Layer concept The training images with resolution 300 x 300
are composed of a fixed number of layers, where each layer
determines at most one object category. In the final step of
the data generation, all layers are merged in reverse order in
such a way that the data on the top layers replace any data it
overlaps on the lower layers and the intersection of all trans-
parent areas in the merged layers remains transparent, where
transparency is encoded as usual in an additional alpha chan-
nel. The pixel values of the alpha channel of a specific layer
are exactly 1 at all underlying pixels of objects in the layer.
This procedure allows for a versatile and efficient description
of the training data since image filters can be applied to each
layer separately and placement rules for cell and tissue struc-
tures in different layers can easily be enforced. In particular,

overlapping of cells or the location of cell midpoints inside
other cells can be excluded for certain cell types.

Ground truth segmentation mask In all scenarios considered,
the ground truth segmentation mask is derived from the cell
structure in the layers according to task-dependent rules.

Domain decomposition The cells, nuclei and tissue struc-
tures are either placed randomly or in regions induced by a
precomputed random Voronoi tessellation or a fast marching
region decomposition with an underlying random velocity
field drawn from a Gaussian distribution. The control points
of both latter approaches are again chosen randomly.

Geometry and texture To mimic the geometry and the texture
of the cells and the nuclei, we proceed in different problem-
specific ways.

Apart from the tumor cells and associated nuclei in Sce-
nario 3, all cells and nuclei are synthesized as ellipses, where
both the length of the semi-axes and the inclination are drawn
from a uniform distribution. To model the tumor nuclei in
Scenario 3, a sample of tumor nuclei is cut out of real images
and the patches thus obtained are placed stochastically on the
layer with a random rotation. The shapes of the associated
cells are again generated by a fast marching method with a
fixed number of iterations, which is governed by an underly-
ing stochastic velocity field and incorporates the patches as
the initial mask.

Moreover, the mean color and the noise distribution of
all cells and nuclei except for immune and tumor cells in
Scenario 3 are drawn from a multivariate normal distribu-
tion, where the expectation, the variance and the covariance
matrices of the noise are estimated from a small sample of
patches of real images. We highlight that the aforementioned
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normalization of the H&E-stained images is essential for this
extraction technique.

The texture of immune and tumor cells in Scenario 3 is
composed of randomly chosen quadratic patches of fixed size
in a lattice structure, where the patches are extracted from
cells of the same type in real images. More precisely, due to
the variability in the texture of both cell types, one addition-
ally groups the patches into three cohorts depending on the
mean color and one exclusively incorporates one cohort in
the simulation of a specific cell to avoid heterogeneity arti-
facts. Furthermore, adjacent patches are aligned in a way that
a moderate overlap is ensured and a blending in all overlap
regions is performed to smoothen patch transitions.

Connective tissue The ribbon-type connective tissue in Sce-
nario 2 and Scenario 3 that borders some of the regions
specified above is modeled as the overlap of the preimage
set of random intervals of several distance maps induced by
a fast marching algorithm with different stochastic velocity
fields, where the complement set of the region considered is
the initial mask for the algorithm. The thickness of the tissue
structures correlates with the size of the interval.

Blood vessels and background Finally, the blood vessels and
the background are modeled as noise with average color,
variance and covariance again extracted from samples of
real images, where the blood vessels are restricted to cer-
tain regions.

We remark that the aforementioned various approaches to
model the different cell types are necessitated by the spe-
cific requirements of each scenario. For example, since the
immune cells, the tumor cells and the tumor nuclei in Sce-
nario 3 are hardly distinguishable, a more involved modeling
compared to the remaining scenarios is needed to capture
finer image structures.

The task-dependent parameters and placement rules are
listed in Table 1.

Figure 2 depicts all layers that compose the training
images, the resulting noisy training images obtained by merg-
ing the layers as well as the ground truth RGB image and the
ground truth masks of all scenarios. Here, the checkerboard
pattern encodes the alpha channel.

In Scenario 1, the background Layer 0 is composed of
Gaussian noise incorporating the covariance analysis dis-
cussed above. The additional Layer 1 models partially hidden
cell structures in the background. The top layers contain
tumor cells (Layer 2) and immune cells (Layer 4) and their
associated nuclei (Layer 3 and Layer 5) as well as stromal
cells (Layer 6). Again, the mean color and the noise structure
are extracted from samples of real images.

In Scenario 2, the background Layer 0 models the back-
ground noise, the foreground layers contain the connective
tissue structures (Layer 1), tumor cells (Layer 2), visible
tumor cell nuclei (Layer 3) and the immune cells (Layer 4),
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where immune cells in immune cell-rich areas enter into the
ground truth mask.

Finally, in Scenario 3 the background noise structure is
reflected by the Gaussian noise in Layer O, and the blood
vessels and the connective tissue in Layer 1 only occupy a
small region of the image. The top layers contain the fast
marching driven tumor cell structures along with cell con-
tours (Layer 2), the patch-based tumor nuclei (Layer 3) and
the immune cells (Layer 4). The ground truth mask depicts
the visible part of the tumor nuclei, i.e., all pixels of the tumor
nuclei that are not covered by immune cells.

Results

To train the proposed reconstruction and segmentation
model (1), we use 800 stochastically generated training
images of size 300 x 300 for each scenario. The model out-
puts are generated by performing N; = 10 parameterized
steps. In each step, Ny, = 20 features are extracted from the
RGB image using 11 x 11 convolution kernels, while merely
Ny, = 4 kernels of size 5 x 5 extract local information
from the current segmentation. The zero-mean constraint for
the RGB convolution kernels K}' is discarded for Scenario 1
which is motivated by an increased stability in the numer-
ical experiments. After transforming the extracted features
using the nonlinear functions, N; = 24 convolution kernels
of size 5 x 5 are used to combine the RGB and segmenta-
tion channels. We parameterize all nonlinear functions with
Ny, = 31 Gaussian radial basis function that are equally
distributed in the interval [—1.2, 1.2]. All parameters are
trained applying 1500 iterations of the Adam optimizer with
step sizes 10~* (Scenario 1 and Scenario 2) and 5 - 107>
(Scenario 3) and exponential decay rates 1 = 0.9 and
B2 = 0.999 on a batch of size 8.

The trends of the loss function (3), the prediction accuracy
of the segmentation mask mr and the peak signal-to-noise
ratio (PSNR) of the reconstructed image ur are depicted
in Fig. 3 for the training of Scenario 1. Initially, the seg-
mentation accuracy is rather high (around 90%) which
accommodates the structure of the target mask g, dominated
by black and thus unsegmented pixels. Then, the accuracy
increases consistently, whereas the PSNR values of the recon-
structed image improve rather slowly.

Figure 4 depicts the training data and model outputs for
the immune cell detection tasks addressed in Scenario 1 and
Scenario 2. The training data, which consist of pairs of input
RGB image and initial segmentation mask as well as a target
pair, are shown along with the corresponding network out-
put in the first row for Scenario 1 and in the fourth row for
Scenario 2. The second and third rows show two representa-
tive input images of histological sections for Scenario 1 using
an immunofluorescence staining of melanoma along with the
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Scenario 1

noisy image ground truth image |l | ground truth mask

Scenario 2

Layer 0

Layer 4

Scenario 3

Layer 0

Af

Fig. 2 All layers that compose the noisy training images, the ground truth images and masks for Scenario 1 (first and second row), Scenario 2
(third and fourth row) and Scenario 3 (fifth and sixth row) are depicted
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Table 1 Cell-specific data of all scenarios

Category Mean color Semi-axes (pixels) Number/placement
(1) Tumor cell Green 20—-35 25 cells, random placement
Tumor nucleus Light blue 8§—12 Only 60% visible
Immune cell Red 8-20 20 cells, random placement, no overlapping
Immune cell nucleus Blue 7-8 Only 60% visible
Stroma/dediff. melanoma Blue 5-15 20 cells, random placement, no overlapping
(2) Tumor cell Light purple 15-25 5 of 7 Voronoi regions filled, no overlapping
Tumor nucleus Purple 3—-10 Only 60% visible
Immune cell Violet 4-8 2 of 7 Voronoi regions filled, no overlapping
3) Blood vessel Light red - 1 of 11 fast marching regions filled
Tumor nucleus Patches - 10 of 11 fast marching regions filled, no
overlapping
Tumor cells Composition of patches - Fast marching with tumor nuclei as initial
mask, three cohorts (each 55 patches)
Immune cell Composition of patches 5—-10 Random placement, moderate overlap with
tumor and immune cells allowed, three
cohorts (each 60 patches)
loss accuracy mr PSNR ur
T T T T T T T T T T T T
4,000 |- - 0.96 - - 295 A
3,000 |- 8 0.94 - 4
2,000 |- 8 0.92 |- | 29 - -
1,000 |- - 09| i
| | | | | | | | 28.5 1 | | L
0 500 1,000 1,500 0 500 1,000 1,500 0 500 1,000 1,500
iteration iteration iteration

Fig.3 Evaluation of the loss function (left), accuracy of the segmentation m7 (center) and the PSNR of the reconstructed PSNR image (right) for

a training batch of Scenario 1

reconstructed RGB image ur and the predicted segmentation
mask m7. In the same fashion, two characteristic test input
samples using H&E stains are depicted in the fifth and sixth
row along with the reconstructed RGB image and the pre-
dicted mask. As a result, the predicted segmentation mask
and the ground truth mask nearly coincide for synthesized
data after a possible threshold. In all cases, the reconstructed
RGB image is a significantly denoised version of the input
image. Furthermore, the proposed model is capable of gen-
eralizing to real image data in Scenario 1, which is verified
by three experienced pathologists. In the immune cell classi-
fication task in Scenario 2, all immune cell-rich regions are
actually detected. The image intensity of the predicted mask
correlates with the concentration of immune cells, and thus
areas of lower concentration can be masked out by a proper
thresholding.
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Figure 5 analyzes the performance of the model on tumor
cell nuclei detection in Scenario 3. In the first row, an input
training sample pair (ug, mo) and a target pair (gy, g&n) With
their corresponding model output pair (ur, mr) are shown.
The remaining rows depict representative input RGB images
using H&E stains of melanoma for Scenario 3 and their cor-
responding model output pairs. Note that the third and fourth
rows highlight patches of the first test sample in the sec-
ond row. We added the fifth row to show the qualitative
performance of the model on images that have been used
to extract patches and noise statistics for the stochastic train-
ing data generation. As above, the proposed model computes
denoised versions of the input images. We highlight that in
the predicted segmentation mask all tumor nuclei are actually
classified, while at the same time the immune cells are dis-
carded. To quantitatively assess the segmentation masks for
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of melanoma: with blue (DAPI, cell nuclei), red (CD45, immune cell
marker), green (gp100, melanocyte marker) and Scenario 2 (fifth/sixth
row) H&E stains of melanoma

Fig.4 Training data (pairs of image and initial mask, output and ground
truth) for Scenario 1 (first row) and Scenario 2 (fourth row). uf), uiT and
miT (i = 0, 1) for histological sections in Scenario 1 (second/third row)
with two representative images with an immunofluorescence staining
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Fig.5 Training data (pairs of image and initial mask, output and ground melanoma. The input images u(]) and u(z) are magnified picture details of
truth) for Scenario 3 (first row). uy, 7 andm7. (i =0, 1,2,3) forhis-  uf). All patches of the tumor nuclei used for generating the synthesized
tological sections in Scenario 3 (second to fifth row) with H&E stains of training data are extracted from u}
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Fig. 6 Pairs of annotated masks drawn by a pathologist and overlay of the annotated masks and the computed segmentation masks mr for the

images u! (left) and u? (right) in Scenario 3

Fig.7 Pairs of images and segmentation masks computed with the U-Net model for Scenario 1 (first row), Scenario 2 (second row) and Scenario 3

(third row). The red circles indicate improperly segmented immune cells

Scenario 3, the images u' and u? were manually annotated
as above by three experienced pathologists (cf. the manual
segmentations in Fig. 6 along with the overlay of these anno-
tations with the computed segmentation masks m7). The
accuracies are 86.20% for u!, 84.50% for u? and 81.05%
for w3, which mainly results from the imprecise masking of
the entire cell regions. This proves that the proposed algo-
rithm incorporates both the geometry and the texture of the
cells since the restriction to only one attribute would likely
result in a poorer accuracy rate.

Finally, we additionally used the standard U-Net archi-
tecture [13] as well as variants of this architecture with
less parameters instead of the aforementioned variational
network. Figure 7 depicts pairs of input images and seg-
mentation masks computed with a U-Net architecture with
3 scales, in which each scale is composed of two convo-
lution layers and subsequent ReLU layers that operate on
32 feature channels. To optimize the model, an Adam opti-
mizer with a learning rate 5 - 107> and 3000 iterations is
used. The accuracies are 85.44% for u!, 82.98% for u?
and 80.84% for u’. Although the prediction of the seg-
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mentation masks m7 and the ground truth masks g,, only
slightly differs for the synthesized data, the resulting trained
U-Net models do not generalize to real image data due
to overfitting with respect to the training data. In particu-
lar, the U-Net models tend to incorrectly segment both the
tumor cell nuclei and the immune cells as highlighted by
the red circles surrounding some immune cells in Fig. 7.
In contrast, the variational network proposed here, which is
inspired by classical regularization theory, performs much
better when transferred from synthetic training data to real
image data.

Discussion

Cancer histopathology reflects underlying molecular pro-
cesses and contains phenotypic information that might be
predictive for the response to immunotherapy. The con-
vergence of image analysis and deep learning approaches
provides new opportunities to explore complex phenotype
interactions in cancer tissues and to define novel prognostic
tools. In this study, we developed a deep learning approach
using variational networks for joint image reconstruction
and segmentation on melanoma tissue sections to detect
and quantify melanoma cells and their direct interactions
with tumor-infiltrating immune cells. Deep learning algo-
rithms have so far not been widely adapted for analysis of
histopathological tumor samples. The laborious nature of
image annotation and the lack of common databases are
limiting the number of training data. Therefore, it is still
challenging to evaluate histopathological features by com-
putational approaches based on deep learning. In this work,
we were able to analyze the spatial localization and distribu-
tion of immune cells within the tumor microenvironment.
We used image analysis algorithms to delineate individ-
ual cell nuclei and to identify objective nuclear features
including shape and texture. Using our proposed method
for nuclei detection, we were able to distinguish melanoma
cells from surrounding cells in the tumor microenvironment.
Our approach can now be applied to clinically annotated
melanoma samples to better understand the relationship
between nuclear morphology, tumor genetic and epigenetic
and clinical outcomes.

In summary, our findings show, in particular, that auto-
mated detection of tumor and immune cells in H&E-stained
melanoma samples is feasible. This new approach will
help to unmask new phenotypic information about tumor
immune cell interactions that has a yet unrecognized clin-
ical and scientific value. Future analysis should consider
the complex heterogeneity of tumor cell shapes and oth-
ers cells from the tumor microenvironment like vessels,
stroma cells and different types of immune cells. Addition-
ally, multiplex immunohistochemistry that allows for the

@ Springer

simultaneous detection of multiple targets of interest in a
single tissue section will further extend the phenotypic infor-
mation and should be implemented in deep learning imaging
approaches.
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