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Abstract
Purpose Probe-based confocal laser endomicroscopy (pCLE) enables in vivo, in situ tissue characterisation without changes
in the surgical setting and simplifies the oncological surgical workflow. The potential of this technique in identifying residual
cancer tissue and improving resection rates of brain tumours has been recently verified in pilot studies. The interpretation of
endomicroscopic information is challenging, particularly for surgeonswho do not themselves routinely review histopathology.
Also, the diagnosis can be examiner-dependent, leading to considerable inter-observer variability. Therefore, automatic tissue
characterisation with pCLE would support the surgeon in establishing diagnosis as well as guide robot-assisted intervention
procedures.
Methods The aim of this work is to propose a deep learning-based framework for brain tissue characterisation for context
aware diagnosis support in neurosurgical oncology. An efficient representation of the context information of pCLE data
is presented by exploring state-of-the-art CNN models with different tuning configurations. A novel video classification
framework based on the combination of convolutional layerswith long-range temporal recursion has been proposed to estimate
the probability of each tumour class. The video classification accuracy is compared for different network architectures and
data representation and video segmentation methods.
Results We demonstrate the application of the proposed deep learning framework to classify Glioblastoma and Meningioma
brain tumours based on endomicroscopic data. Results show significant improvement of our proposed image classification
framework over state-of-the-art feature-based methods. The use of video data further improves the classification performance,
achieving accuracy equal to 99.49%.
Conclusions This work demonstrates that deep learning can provide an efficient representation of pCLE data and accurately
classify Glioblastoma and Meningioma tumours. The performance evaluation analysis shows the potential clinical value of
the technique.
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Introduction

Biophotonics techniques such as probe-based confocal laser
endomicroscopy (pCLE) have enabled direct visualisation
of tissue at a microscopic level, with recent pilot studies
suggesting it has a clear role in identifying residual can-
cer tissue and improving resection rates of brain tumours
[16]. However, the interpretation of endomicroscopic infor-
mation remains challenging, particularly for surgeonswhodo
not themselves routinely review histopathology. Also, even
among experts, the diagnosis can be examiner-dependent,
leading to considerable inter-observer variability. Automatic
tissue characterisationwith pCLE, basedon adatabase of pre-
viously annotated data by expert physicians with diagnosis
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confirmed by histology, would support the surgeon in estab-
lishing diagnosis and could also guide autonomous robotic
tissue scanning to focus locally on pathological areas.

State-of-the-art computer-aided diagnosis (CAD) systems
designed for the analysis of pCLE data have mainly focused
on the classification of colonic cancers. A content-based
image and video retrieval framework based on the Bag-of-
visual Words (BoW) approach has been proposed in [2] for
the differentiation of neoplastic and benign colorectal polyps.
A local dense multiscale image descriptor has been intro-
duced to extract a set of features which are clustered into
a number of “visual words”, whose frequencies build the
image signature. The similarity between two images can be
estimated by calculating the distance between their signa-
tures. This image retrieval method has been extended for
video retrieval by relying on the coarse registration of images
taken at different times. Clinical evaluation of this framework
presented in [1] shows that automated classification of pCLE
videos of colonic polyps achieves high performance, com-
parable to off-line diagnosis of pCLE videos established by
expert endoscopists. The above video retrieval framework
has been extended in [3] to include high-level knowledge
for the pathological interpretation of pCLE images. For that
purpose, binary semantic concepts commonly used by expert
endoscopists to diagnose pCLEvideos of colonic polyps have
been extracted and used as additional information that com-
plements the visual outputs of the retrieval framework.

Recently, approaches to content-based image retrieval of
pCLE data have focused on learning discriminative visual
features to improve the retrieval accuracy. In [10], a Multi-
View Multi-Modal Embedding (MVMME) framework has
been proposed to learn discriminative features of pCLE
videos by exploiting both mosaics and histology images.
Visual features were extracted from the pCLE mosaics using
multiple operators such as SIFT and HOG and a mapping
from these features to a latent space was learned in a super-
vised way to generate robust latent features which are more
discriminative than unimodal features from mosaics alone.
This work has been extended in [9] where an unsupervised
multimodal graph mining (UMGM) approach has been pro-
posed to learn the discriminative features for pCLE mosaics
of breast tissue. Amultiscale multimodal graph is built based
on pCLE mosaics and histology patches, and a latent fea-
ture space is created to learn discriminative features without
supervision.

Wan et al. [22] extended the content-based image retrieval
framework proposed in [2] using an efficient feature encod-
ing scheme based on codeword proximity. A set of keypoints
has been uniformly sampled from the pCLE images, and dif-
ferent state-of-the-art descriptors such as SIFT and FREAK
have been used to describe the keypoints. The keypoint
descriptors are encodedwith the proposed linear locality con-
straint (LLC) scheme which exploits spatial locality of the

visual features instead of the hard quantization employed in
BoW-based approaches. The above framework was applied
for the characterisation of brain tissue. A support vector
machine (SVM) classifier was used to classify from pCLE
images two types of commonly diagnosed brain tumours,
namely Glioblastomas and Meningiomas. This work has
been extended in [12] by exploring more encoding schemes
for data description and using a majority voting-based clas-
sification scheme for video classification.

The above CAD systems are composed of three main
steps, namely visual feature extraction, feature encoding, and
supervised classification. The performance of these systems
relies on the design of handcrafted morphological or textural
descriptors, capable of extracting discriminative image fea-
tures which could facilitate the classification task. However,
the selection of efficient features is problem-dependent and it
is not easy to find a generic feature extraction method which
can perform equally well in different applications. Hence,
the above CAD systems can have significant performance
variations depending on the data and the surgical context.

Recently, significant progress has beenmade in image fea-
ture extraction and representation, mainly due to the revival
of deep learning models such as convolutional neural net-
works (CNN). These architectures enable the learning of
data-driven and highly representative image features from
a large set of training data. This alleviates the need to design
explicit handcrafted image features and also allows the fea-
ture extraction, encoding and classification tasks to be done
within the optimisation of the same deep architecture. Hence,
the network performance can be easily tuned, in a systematic
fashion.

The success of deep learning models in general com-
puter vision tasks has motivated their application to medical
image analysis [20]. More specifically, they have been used
to detect and segment organs from multiple imaging modali-
ties [4,6], semantic segmentation in histological images [23],
multimodal registration, image super-resolution, image clas-
sification [15] and workflow analysis [21]. Deep learning has
also gained a lot of attention for the design of CAD systems,
focusing on abnormality detection and tissue state classifi-
cation [5,17]. CNN models have been extensively employed
for this purpose and extract image features either by training
the models from scratch or using transfer learning when a
limited number of training data is available. Transfer learn-
ing has shown promising performance and extracts image
features using off-the-shelf CNNs pre-trained on different
data (such as natural images) or performing pre-training of
the models on big datasets and then supervised fine-tuning
on medical data.

The aim of this paper is to propose a brain tissue char-
acterisation framework for context aware decision support
in neurosurgical oncology. This will be part of a platform
which can extract, interpret and use context information to
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provide the surgeon with a set of clinical actions that can
be made in the current situation and guide intraoperative
resection. The context in our case refers to the discriminative
information which is extracted from the pCLE data and is
used to characterise the state of the tissue. In particular, we
focus on the classification of brain tumours intoGlioblastoma
andMeningioma which are the most commonmalignant and
benign tumours, respectively, in neurosurgery. Our classifi-
cation is based on the analysis of endomicroscopic data, and
we propose two deep learning-based frameworks for the clas-
sification of image and video pCLE data. To the best of our
knowledge, this is the first work on brain tissue characterisa-
tion based on deep learning. The novel aspects of our work
include:

– An efficient representation of the context information of
pCLE images by exploring state-of-the-art CNN models
and proposing different tuning configurations. The best
configurations have been selected and used to classify
image and video data into the above tumour types.

– A novel video classification framework based on the
combination of convolutional layers with long-range
temporal recursion to estimate the probability of each
tumour class.

– A set of network architectures and video segmentation
methods which has been combined with different pCLE
data representations to increase the video classification
accuracy.

The proposed framework has been validated on ex vivo
pCLE data and has been compared to state-of-the-art brain
tumour classification approaches. The performance eval-
uation analysis shows the potential clinical value of the
proposed framework.

Methods

In this work, we propose two deep learning-based frame-
works for brain tissue characterisation based on the classifi-
cation of image and video pCLE data into two tumour types,
namely Glioblastoma and Meningioma.

Image classification

Our image-based tissue characterisation approach employs
convolutional neural networks for context representation and
classification of pCLE images. A CNN for classification can
be thought of as the composition of a number of convolu-
tional functions f (x) = fL(. . . f2( f1(x;w1);w2) . . . ;wL),
where L is the number of layers, x is an input image and
w = [w1, . . . ,wL ] are the network parameters learned dur-
ing training. The convolutional operations are applied using

a sliding window over the image to detect generic features.
The convolutions are followed by a nonlinear function, the
Rectified Linear Unit (ReLU), applied to each element of
the convolution output. The feature map extracted at each
layer becomes input for the next layer. In order to reduce
the dimensionality of the extracted features, the maps from
each convolution are downsampled through a max-pooling
layer which keeps the maximum value of the features in the
pool. After the convolution and pooling layers, fully con-
nected layers are introduced where each pixel is considered
as a separate neuron just like a regular neural network. The
final fully connected layer has the same number of outputs
as the number of labels in the classification task and those
values represent the likelihood of each label, estimated using
the softmax function.

In this work we employ three state-of-the-art CNN archi-
tectures namely, the AlexNet [14], the VGG16 [18] and the
Inception-v3 [19] to classify two types of brain tumour. The
AlexNet is an eight-layer CNN which is composed of 5 con-
volutional layers followed by 3 fully connected layers. The
VGG16 network is much deeper, consisting of 13 convo-
lutional layers and 3 fully connected layers. We cluster the
convolutional layers into 5 groups which are separated by
max-pooling layers as shown in Fig. 1. In the rest of our
analysis, we denote the convolutional layer groups as conv1,
conv2, . . ., conv5 and the fully connected layers as fc6, fc7,
fc8. The Inception is a fully convolutional network including
various Inception modules with parallel structure. Different
to AlexNet and VGG16, which have 3 fully connected layers
at the end, the Inception network has only one fully con-
nected layer combined with a softmax layer. As we only
need to differentiate two types of tumour, we change the out-
put of the last layer in the above networks from 1000 to 2.
Also, since these networks require colour images as input
and the endomicroscopic data in our dataset is greyscale, we
simply copy the grey values to the second and third channel
to produce 3-channel input images.

Upon initialization, a CNN is simply a function which
through numerous operations transforms highly dimensional
data into several numerical values which at this point are
random. It is through training that the model function z =
f (x;w) learns to achieve a desired goal. More specifically,
during training the parameters w are learned by evaluating
the performance of the network using a loss function which
in the case of classification is directly related to the proba-
bilities allocated to the correct classes. In this work, in order
to efficiently represent the endomicroscopic data, we choose
not to train our CNNs from scratch or fine-tune all the layers.
Instead, we propose two approaches to tune the above CNN
architectures.

In thefirst approach, called feature extractor, we randomly
initialise the weights and biases of several of the 8 layer
groups and then train those variables as usual. More specifi-
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Fig. 1 Layer clustering in the employed CNN architectures. a AlexNet, b VGG16

cally, we tune the first (8−n), (n = 1, 2, 3, . . . , 8) layers
using parameters from pre-trained models and do not update
them during training. The rest n layers are initialised ran-
domly,with theweights sampled fromGaussian distributions
and the biases set to a constant value. Another approach is
the fine-tuning, where we initialise the weights and biases of
some trainable layers from pre-trained models and then fine-
tune those values using a smaller learning rate. Similar to the
above tuning approach, we copy to the first (8−n) layers the
weights and biases of the employed CNNmodels pre-trained
on the ImageNet dataset and do not update them during train-
ing. For the later n layers, we transfer the pre-trained values
and update them at a learning rate equal to the 1/10th of
the pre-training rate [8] as pre-training has already provided
good initialisation for those layers. The parameter n is here
referred as the tuning depth. Since the Inception network has
a different architecture, we retrain only the final fully con-
nected layer which corresponds to tuning depth n = 1.

For the last layer of both architectures, we cannot use the
values from pre-trained models since f c8 has been modified

to fit our binary classification task. So, the last layer is always
randomly initialised in both approaches. Training the CNN
from scratch is a special case of the feature extractor method
where we optimise all the layers. The case of fine-tuning all
the layers is covered when we use the fine-tuning approach
with tuning depth n = 8.

Video classification

For the classification of video pCLE data, we use a deep
learning architecture which combines convolutional layers
and long-range temporal recursion. Specifically, we extract
visual features from a set of consecutive endomicroscopic
images using a CNN network and then feed the ordered
feature sequences to a recurrent neural network (RNN) to
perform classification. At the end of the network, a fully
connected layer with softmax is included to generate a pre-
diction about the tumour class. An outline of the proposed
architecture is shown in Fig. 2.
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Fig. 2 Overview of proposed approach for video classification. The LSTM in the green box may contain more than one LSTM layers

To extract visual features from the pCLE images, we
employed the same CNN models that were used for image
classification. For temporal recursion, we use the long short-
term memory (LSTM) network [11]. We explore 3 different
architectures with different width (number of hidden units)
and depth (number of LSTM layers), namely the Standard
LSTM with 2 LSTM layers, the Wide LSTM with only one
but wider layer and the Deep LSTM of 3 layers as shown in
Fig. 3.

In this work, we test two different configurations to
combine the CNN and the LSTM networks, namely the
Before-Final-fc (BFF) and After-Final-fc) (AFF). In the for-
mer configuration, we pass to the LSTM network the input
of the final fully connected layer. This is a feature vector
of length 2048, 4096, 4096 for the Inception network, the
AlexNet and the VGGNet, respectively. In the latter config-
uration, the input of the LSTM network is the output of the
last fully connected with softmax layer of the CNN network
which is a vector of size equal to the number of classes in
the classification task and represents the predictions of the
classes.

The above architecture is different to the long-term recur-
rent convolutional networks proposed in [7] as our visual
feature extraction is not based on the hybrid CaffeNet and
ZFNet model. Also, the LSTM configuration in [7] includes
only one layer with different number of hidden units. In our
framework, we train the CNN and LSTM networks sepa-
rately rather than training the architecture end-to-end which
provides a more efficient training and allows us to train the
LSTM with various features. Finally, our final prediction is

based on the probability at time step T while [7] is using the
average of all label probabilities from time step 1 to T.

Experiments

In this section, we first describe the preprocessing steps that
we apply on our endomicroscopic data. Then we evaluate the
performance of the proposed image and video classification
methods.

Data preprocessing

The validation of the proposed classification framework is
based on ex vivo pCLE data of Meningioma and Glioblas-
toma brain tumours, collected during brain tumour resection
procedures at the Merheim Hospital in Germany. The exam-
ined tissue samples were scanned in the surgical theatre next
to the patient, immediately after removing the tumour. As
contrast agent, acriflavine hydrochloride AF from Sigma
Pharmaceuticals, Victoria, Australia, was used. The data
were collected using the Cellvizio system (Mauna Kea Tech-
nologies, Paris, France) and were classified into the above
two types by expert histopathologists. Each pCLE video
represents one tumour type and corresponds to a different
patient. Our dataset is a subset1 of the dataset used in [22]
and includes 16 videos for Glioblastoma and 17 for Menin-

1 Due to data ownership reasons, only a subset of the data used in [22]
was made available to us and was used for our experimental results.
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Fig. 3 LSTM architectures with different width and depth

gioma, with 25,000 frames in total (13,862 for Glioblastoma
and 11,616 for Meningioma). Sample frames of our data are
shown in Fig. 4. The frames of our dataset are rectangular
images of size 464 × 336. As the employed CNNs require
square images as input, we first centrally crop the pCLE
images into images of size 336× 336 by removing the black
area on their left and right site and then resize them into the
appropriate size for each network (227 × 227 for AlexNet,
224 × 224 for VGGNet, and 299 × 299 for Inception).

For the video classification approach, to expand the dataset
for both training and validation, we segment the videos into
short video clips. The proposed video classification frame-
work is tested using overlapping and non-overlapping video
clips. In the non-overlapping case, no frame appears in two
video clips at the same time as shown in Fig. 5a. Overlapping
video clips are generated as shown in Fig. 5b by shifting the
frame selection block by one frame at a time. In both types of
clipping, we ensure that no video clip contains frames from
two different videos.

To evaluate the performance of the different models and
configurations proposed in this work, we split the dataset
into 3 parts, namely the training set (66%), the validation
set (17%) and the test set (17%). The training set is used to
fit the parameters of each model while the validation set to
compare their performance and decidewhichmodel to select.

The performance of the selected models is then assessed on
the test set. To ensure independence of each set, we perform
patient-level (i.e. video-level) splitting and no frame from
one set ends up on the other sets. To eliminate data splitting
bias we employ sixfold cross-validation, where the test and
validation sets are selected such that they are different for
each run, while the rest of the dataset is used for training.
The size of the test set for each fold during image and video
classification is shown in Table 1. The test set size for each
fold changes slightly because of our video-level splitting. All
experiments report average classification performance on the
sixfold.

Image classification

The hyperparameters we apply when training our models are
those used for AlexNet in [14]. The AlexNet and VGG16
models are trained for 1000 iterations (approximately 10
epochs depending on the size of the training set), using gra-
dient descent with mini-batch size 128. The learning rate is
fixed to 0.01 for the feature extraction method, while for the
fine-tuning it is 10 times smaller, i.e. 0.001. Our network
minimises the cross-entropy loss function during the train-
ing optimisation process. For the Inception network, we set
the number of training iterations to 4000. The last layer is
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Fig. 4 Sample images of our pCLE dataset. a Glioblastoma, bMeningioma

Fig. 5 Video dataset expansion.
In a m = L/k and in b
n = L − (k − 1), where k is the
length of the video clip and L
the length of the video
sequence. a Video segmentation
with non-overlapping video
clips, b video segmentation with
overlapping video clips

Table 1 Test set size, in number
of frames and clips, for each
cross-validation fold during
image and video classification,
respectively

Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Total

Image classification 4384 4500 4228 4552 3812 4002 25,478

Video classification

Overlapping 4149 4265 4040 4270 3530 3673 23,927

Non-overlapping 88 92 86 93 78 80 517

retrained using the gradient descent optimiser with learning
rate 0.01, batch size 100 and cross-entropy as the loss func-
tion. We use the TensorFlow framework to train our models.

To constrain the set of classificationmodels for validation,
we first assess the performance of all possible combinations
of tuning methods and tuning depths proposed in “Image
classification” section without cross-validation, to select the
best classifiers.We refer to tuning depths n = 1, 2 as shallow
tuning, n = 3, 4, 5, 6 as medium tuning and n = 7, 8 as deep
tuning. The models with the best performance were the (a)

Alex extract n = 5, (b) Alex tune n = 5, (c) Alex tune n =
3, (d)VGG tune n = 5, (e)VGG tune n = 3. These models
together with the Inception tune n = 1, were selected for
further performance evaluationwith sixfold cross-validation.

The performance of the selected models on the validation
and test datasets is shown in Table 2, and their classification
accuracy is compared in Fig. 6. From the above results, it
can be seen that the best configuration for the AlexNet is
the feature extractor with tuning from conv4 to fc8, achiev-
ing 97.97% classification accuracy on the test set. For the

123



1194 International Journal of Computer Assisted Radiology and Surgery (2018) 13:1187–1199

Table 2 Image classification
cross-validation results on the
validation and test sets

Dataset Configuration Accuracy TPR FPR Precision F1 measure

Validation Alex extract n = 5 0.9813 0.9857 0.0216 0.9732 0.9790

Alex tune n = 5 0.9783 0.9836 0.0253 0.9687 0.9757

Alex tune n = 3 0.9791 0.9810 0.0221 0.9728 0.9766

VGG tune n = 5 0.9830 0.9875 0.0200 0.9748 0.9807

VGG tune n = 3 0.9831 0.9812 0.0145 0.9815 0.9811

Inception tune n = 1 0.9631 0.9730 0.0440 0.9481 0.9598

Test Alex extract n = 5 0.9797 0.9824 0.0218 0.9735 0.9775

VGG tune n = 3 0.9851 0.9803 0.0106 0.9871 0.9834

Inception tune n = 1 0.9661 0.9718 0.0375 0.9552 0.9629

Bold value indicates the best models with the highest accuracy

Fig. 6 Image classification accuracy of sixfold cross-validation on the
validation set. Error bars represent the 95% confidence interval of mean
accuracy

VGGNet, the fine-tuning with tuning from fc6 to fc8 is the
best with 98.51% classification accuracy on the test set. The
Inception network has the lowest accuracy, equal to 96.61%.
It is also clear from Fig. 6 that theVGG tune n = 3, with the
highest accuracy and lowest variance, outperforms the other
models.

In general, as we increase the depth of tuning n, the fea-
tures tend to be more low-level. The above results indicate
that model tuning of medium depth can generate discrimi-
native features and provide an efficient representation of our
pCLE data. This enables the selected classifiers to recog-
nise the delicate difference between the two tumour types
and generate accurate predictions. In our classification task,
deep tuning results in lower classification accuracy possibly
due to the relatively small size of our training dataset. In the
above analysis, we observe that the AlexNet works better
with the feature extractor tuning method while the VGGNet
achieves more accurate results using the fine-tuningmethod.
This shows that loading pre-trained weights helps the con-
vergence of deeper and complex networks. Since pCLE data

are very different from the dataset used for pre-training, ran-
dom initialisation can generate efficient data representation
when used with simple networks such as the AlexNet.

Video classification

To extract visual features for video classification, we selected
the CNNmodels that performed the best in the image classi-
fication task, namely the Alex extract n = 5, the VGG tune
n = 3 and the Inception tune n = 1. To train the LSTM
model, we set the batch size to 32 and use the Adam method
[13] for optimisationwith the default values proposed in [13].
The training epoch is 4 for the overlapping video clip case
and 80 for the non-overlapping case. The cross-entropy is
still used as our loss function.

For evaluation, we use fixed-length video clips, 48 frames
long and report the accuracy of classifying video clips rather
than entire videos. The different CNN-LSTM combination
approaches (BFF and AFF), video segmentation methods
(overlapping and non-overlapping video clips) and LSTM
configurations (Standard LSTM, Wide LSTM, Deep LSTM)
result in 36 models which are evaluated on the validation
dataset and compared in Fig. 7. Detailed performance evalu-
ation results are presented in Table 3. As it can be observed,
all the models are able to achieve accurate predictions with
classification rate higher than 95%. The configuration AFF
overlapping seems to perform the best and for the VGGNet
model with deep LSTM achieves 99.49% accuracy on the
test dataset. The superior performance of our video classifi-
cation framework verifies that temporal information assists
the classification of pCLE data.

From the performance evaluation results in Table 3, it
can be deduced that the AFF configuration outperforms the
BFF. This is because in the BFF configuration the RNN has
to learn what the fully connected layers at the end of the
CNN are already doing, namely mapping the feature vector
to a prediction. On the other hand, the AFF directly inputs
to the LSTM of the probabilities of two classes and then
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Fig. 7 Video classification accuracy of sixfold cross-validation on the validation set. Error bars represent the 95% confidence interval of mean
accuracy

Table 3 Video classification
cross-validation results on the
validation and test set

CNN Dataset Configurations Video classification

Standard Wide Deep

AlexNet Validation BFF overlapping 0.9893 0.9887 0.9912

BFF non-overlapping 0.9924 0.9928 0.9924

AFF overlapping 0.9875 0.9903 0.9911

AFF non-overlapping 0.9886 0.9943 0.9871

Test AFF non-overlapping 0.9866 0.9828 0.9888

VGGNet Validation BFF overlapping 0.9916 0.9937 0.9939

BFF non-overlapping 0.9927 0.9926 0.9927

AFF overlapping 0.9899 0.9925 0.9952

AFF non-overlapping 0.9842 0.9888 0.9945

Test AFF overlapping 0.9918 0.9949 0.9949

Inception Validation BFF overlapping 0.9715 0.9659 0.9729

BFF non-overlapping 0.9510 0.9550 0.9648

AFF overlapping 0.9768 0.9791 0.9782

AFF non-overlapping 0.9669 0.9656 0.9776

Test AFF overlapping 0.9782 0.9858 0.9836

Bold value indicates the best models with the highest accuracy

the LSTM is trained to learn the connections between the
different frames. Since the CNN already obtains very accu-
rate results through prior training, the LSTM based on AFF
further leverages the predictions from the neural network
and achieves very good classification accuracy. The different
video-clip generation types achieve very similar performance
which indicates that extending the size of the training dataset
with overlapping clips does not improve the classification
accuracy significantly. As for the architecture of the LSTM,
wide architectures are able to achieve slightly greater per-
formance in most situations verifying that they are better at
sequence learning.

The qualitative performance evaluation results in Fig. 8
for VGG tune n = 3, the best video classification configura-

tion, show that the proposed framework can correctly classify
challenging data such as the frames in Fig. 8a, c which are
not very similar to the typical tumour class data. However,
when the appearance of the data differs significantly from the
typical tumour class appearance, such as in Fig. 8b or when
the data quality is impaired as in Fig. 8d, the proposed video
classification fails.

The performance of our proposed video classification
framework has also been compared to score averaging and
majority voting of the image classification results on the same
temporal window for the non-overlapping and overlapping
dataset segmentation methods. Score averaging is done by
averaging the output of the softmax layer for each frame on
the temporal window and using this average for class pre-
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Fig. 8 Qualitative results from our video classification using VGG
tune n = 3 for feature extraction, AFF combination, overlapping seg-
mentation and deep LSTM. a True negative. True label: Glioblastoma,
prediction: Glioblastoma. b False positive. True label: Glioblastoma,

prediction: Meningioma. c True positive. True label: Meningioma,
prediction: Meningioma. d False negative. True label: Meningioma,
prediction: Glioblastoma

Table 4 Classification accuracy
of score averaging and majority
voting of the image
classification results on the
original dataset

Dataset Configurations Score averaging Majority voting

Inception AlexNet VGGNet Inception AlexNet VGGNet

Validation Overlapping 0.9790 0.9901 0.9948 0.9780 0.9902 0.9939

Non-overlapping 0.9775 0.9910 0.9945 0.9775 0.9910 0.9945

Test Overlapping 0.9853 0.9928 0.9952 0.9838 0.9927 0.9943

Non-overlapping 0.9873 0.9923 0.9964 0.9873 0.9923 0.9964

diction. Majority voting refers to averaging over the class
predictions for each frame on the temporal window.

As it is shown in Table 4, for video sequenceswhich repre-
sent a single tumour class, these approaches can achieve high
classification accuracy, comparable to our proposed video
classification. However, in practice, during tissue scanning
the pCLE video data might contain frames frommultiple tis-
sue classes (for instance, healthy tissue and tumour). Since
our dataset does not include healthy tissue pCLE data, to

simulate the above scenario, we generated using our orig-
inal dataset, video sequences containing frames from both
tumour classes and evaluated the classification accuracy of
the above three approaches.

The mixed video sequences were created following two
different frame mixing rules, namely regular replacement
and group replacement. In the former case, a mixed video
sequence is generated by replacing, in the original sequence
in regular intervals, a number of frames with random frames
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of the opposite tumour class. In the latter case, a group of con-
secutive frames is replaced considering temporal windows of
the same size as our video clips. In addition, different percent-
age of replaced frameswere considered. For example, a video
clip with regular replacement of (2/12)∗100%Meningioma
(MEN) frames on a Glioblastoma (GBM) sequence would
have the following structure [10GBM, 2MEN, 10GBM,
2MEN, 10GBM, 2MEN, 10GBM, 2MEN], while the group
replacement would result in [40GBM, 8MEN]. By consider-
ing overlapping video clips in our performance evaluation,
we introduce randomness in the distribution of the replaced
frames in the examined temporal window.

The superiority of our proposed video classification
approach compared to score averaging and majority vot-
ing of the image classification results is shown in Table 5.
The improvement in the classification accuracy provided by
our framework is more significant when the percentage of
replaced frames is high. Also, from the above performance
evaluation study it can be deduced that the frame mixing
rule does not affect the classification performance signifi-
cantly. The performance of our proposed video classification
is higher when non-overlapping video clips are used for
video segmentation. This is because in that case the LSTM
learns the temporal pattern of the replaced frames which is
consistent among the datasets. This also explains the good
performance of theBFF configuration in the non-overlapping
case which is comparable to the AFF configuration.

From the above performance evaluation study, we can
deduce that our deep learning-based frameworks can provide
an efficient representation of the pCLE data and accu-
rately classify Glioblastoma and Meningioma tumours. The
proposed image classification approachwith 98.51%classifi-
cation accuracy outperforms the feature-based brain tumour
classification approach presented in [22] with close to 90%
accuracy and in [12] with 84.32%. The combination of
the VGGNet and LSTM networks for video classification
achieves improved performance with classification accuracy
equal to 99.49%. These results verify the potential of deep
learning-based methods in classifying pCLE data, with sig-
nificant gain in classification accuracy.

The average running time of our image classification on
a GTX 1080 Ti GPU for the AlexNet, the VGG16 and the
Inception network is 3.5, 9 and 25 msec, respectively. Our
video classification based on pre-computed features (e.g.
AFF with VGG) runs at about 1 s.

Conclusions

In this work, we have proposed a deep learning-based brain
tissue characterisation framework which can classify brain
tumours into Glioblastoma and Meningioma based on the
analysis of pCLE image and video data. For image classifica-

tion, an efficient representation of the context information of
pCLE images has been proposed by exploring different CNN
models and tuning configurations. Our video classification is
based on a novel combination of convolutional layers with
long-range temporal recursion to estimate the probability of
each tumour class. The proposed deep learning-based image
classification approach with 98.51% classification accuracy
outperforms state-of-the-art feature-based brain tumour clas-
sificationmethods. The use of video data further improves the
classification performance with accuracy equal to 99.49%.
These results verify the potential of deep learning-based
methods in classifying pCLE data, with significant gain in
classification accuracy. The focus of our future work is to
build up a decision support platform which can characterise
different states of brain tissue. For this purpose, more brain
tissue classes will be examined with pCLE data collected
during intraoperative tissue scanning using a contrast agent
which has been approved for use in humans.
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