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Abstract
Purpose Probe-based confocal laser endomicroscopy (pCLE) is a recent imaging modality that allows performing in vivo
optical biopsies. The design of pCLE hardware, and its reliance on an optical fibre bundle, fundamentally limits the image
quality with a few tens of thousands fibres, each acting as the equivalent of a single-pixel detector, assembled into a single
fibre bundle. Video registration techniques can be used to estimate high-resolution (HR) images by exploiting the temporal
information contained in a sequence of low-resolution (LR) images. However, the alignment of LR frames, required for the
fusion, is computationally demanding and prone to artefacts.
Methods In this work, we propose a novel synthetic data generation approach to train exemplar-based DeepNeural Networks
(DNNs). HR pCLE images with enhanced quality are recovered by the models trained on pairs of estimated HR images
(generated by the video registration algorithm) and realistic synthetic LR images. Performance of three different state-of-the-
art DNNs techniques were analysed on a Smart Atlas database of 8806 images from 238 pCLE video sequences. The results
were validated through an extensive image quality assessment that takes into account different quality scores, including a
Mean Opinion Score (MOS).
Results Results indicate that the proposed solution produces an effective improvement in the quality of the obtained recon-
structed image.
Conclusion The proposed training strategy and associated DNNs allows us to perform convincing super-resolution of pCLE
images.

Keywords Example-based super-resolution · Deep learning · Probe-based confocal laser endomicroscopy · Mosaicking
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Introduction

Probe-based confocal laser endomicroscopy (pCLE) is a
state-of-the-art imaging system used in clinical practice for
in situ and real time in vivo optical biopsy. In particular,
recent works using Cellvizio (Mauna Kea Technologies,
France) have demonstrated the impact of introducing pCLE
as a new imaging modality for the diagnostics procedures
of conditions such as pancreatic cystic tumours and the
surveillance of Barrett’s oesophagus [4]. pCLE is a recent
imaging modality in gastrointestinal and pancreaticobiliary
diseases [4].
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The authors of [4] have shown that despite clear clinical
benefits of pCLE, improving its specificity and sensitivity
would help it become a routine diagnostic tool. Specificity
and sensitivity are directly dependent on the quality of the
pCLE images. Therefore, increasing the resolution of these
imagesmight bring amore reliable source of information and
improve pCLE diagnosis.

Certainly, the key point of pCLE is its suitability for real-
time and intraoperative usage. Having high-quality images in
real time potentially allows for better pCLE interpretability.
Thus, offline processing would not fit in the standard clinical
work-flow required in this context.

The trend for image sensormanufacturers is to increase the
resolution, as apparent in the current move to high-definition
endoscopic detectors. Recently introduced 4K endoscopes
provide 8M pixels, a difference to pCLE of 2-to-3 orders
of magnitude. In pCLE, reliance on an imaging guide—an
optical fibre bundle, composed of a few tens of thousands of
optical fibres, each acting as the equivalent of a single-pixel
detector—fundamentally limits the image quality. These
fibres are irregularly positioned in the bundle which implies
that tissue signal is a collection of pixels sampled on an
irregular grid. Hence, a reconstruction procedure is needed
for mapping the irregular samples to a Cartesian image.
Other factors that reduce pCLE image quality are cross-talk
among neighbouring fibres and limited signal-to-noise ratio.
All these factors lead to the generation of images with arte-
facts, noise, relatively low contrast and resolution. This work
proposes a software-based resolution augmentation method
which is more agile and simpler to implement than hardware
engineering solutions.

Building on from the idea that high-resolution (HR)
images are desired, this study explores advanced single-
image super-resolution (SISR) techniques which can con-
tribute to effective improvement in image quality. Although
SISR for natural images is a relatively mature field, this work
is the first attempt to translate these solutions into the pCLE
context. BeyondSISR, video registration technique [13] have
beenproposed to increase the resolutionof pCLE.Suchmeth-
ods provide a baseline super-resolution technique, but suffers
from artefact and are computationally too expensive to be
applied in real time. Because of the recent success of deep
learning for SISR on natural images [1], this work focuses
on exemplar-based super-resolution (EBSR) deep learning
techniques. However, the translation of these methods to the
pCLE domain is not straightforward, notably due to the lack
of ground-truth HR images required for the training. There
is indeed no equivalent imaging device capable of producing
higher-resolution endomicroscopic imaging, nor any robust
and highly accuratemeans of spatiallymatchingmicroscopic
images acquired across scaleswith different devices. Further-
more, in comparison with natural images, currently available
pCLE images suffer from specific artefacts introduced by the

reconstruction procedure that maps the tissue signal from the
irregular fibre grid to the Cartesian grid.

The contribution of this work is threefold. First, three deep
learning models for SISR are examined on the pCLE data.
Second, to overcome the problem of the lack of ground-truth
low-resolution (LR)/HR image pairs for training purposes,
a novel pipeline to generate pseudo-ground-truth data by
leveraging an existing video registration technique [13] is
proposed. Third, in the absence of a reference HR ground
truth, to assess the clinical validity of our approach, a Mean
Opinion Score (MOS) studywas conductedwith nine experts
(1–10years of experience) each assessing 46 images accord-
ing to three different criteria. To our knowledge, this is the
first research work to address the challenge of SISR recon-
struction for pCLE images based on deep learning, generate
pCLE pseudo-ground-truth data for training of EBSR mod-
els and demonstrate that pseudo-ground-truth trainedmodels
provide convincing SR reconstruction.

The rest of the paper is organised as follows. “Related
work” section presents the state of the art for SISR with nat-
ural images. “Materials and methods” section presents the
proposed training methodology based on realistic pseudo-
ground-truth generation and detail the implementation of
the SISR models. “Results” section gives information on the
evaluation of our approach using a quantitative image quality
assessment (IQA) and aMOS study. “Discussion and conclu-
sions” section summarises the contribution of this research
to pCLE SISR.

Related work

Super-resolution (SR) has received a lot of interest from the
computer vision community in the recent decades [10]. Initial
SR approaches were based on single-image super-resolution
(SISR) and exploited signal processing techniques applied
to the input image. An alternative to SISR is multi-frame
image super-resolution based on the idea that HR image can
be reconstructed by fusingmanyLR images together. Ideally,
the combination of several LR image sources enriches the
information content of the reconstructed HR image and con-
tributes to improving its quality. Registration can be used to
merge LR images acquired at slightly shifted field-of-views
into a unified HR image.

In the specific context of pCLE, the work proposed by
Vercauteren et al. [13] presents a video registration algorithm
that, in some cases, can improve spatial information of the
reconstructed pCLE image, and reveals details which were
not visible initially. The quality of the registration is a key
step to the success of the SR reconstruction, but the alignment
of images captured at different times is not trivial. Misalign-
ment leads to incorrect fusion and generates artefacts such as
ghosting. Moreover, registration is a computationally expen-
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sive technique, making this approach unsuitable for real-time
purposes.

Another interesting approach to SISR is exemplar-based
super-resolution (EBSR), which learns the correspondence
between low- and the high-resolution images. Thanks to the
recent success of deep learning and Convolutional Neural
Networks (CNNs), EBSR methods currently represent the
state-of-the-art for the SR task [1]. Although many research
groups have worked on deep-learning-based SR for natural
images, and although CNNs are currently widely used in
various medical imaging problems [11], only recently have
CNNs been used for SR in medical imaging. Noteworthy is
the work proposed in [12] that attempt to improve the quality
of magnetic resonance images.

The behaviour of CNNs, especially in the context of SR, is
strongly driven by the choice of a loss function, and the most
popular one is mean squared error (MSE) [16]. Although
MSE as a loss function steers the SR models towards the
reconstitution of HR images with high peak signal-to-noise
ratios, this does not necessarily mean that the final images
will provide a good quality perception. A model trained with
a selective loss function involving a Generative Adversarial
Network for Image Super-Resolution (SRGAN) was pro-
posed by Ledig et al. [7]. The authors designed an adversarial
loss to classify HR images into SR images and ground-truth
HR images. Based on a MOS study, the authors showed that
the participants perceived the quality of the restored HR
images as higher compared to the image quality measured
only by a PSNR.

Another critical issue with deep CNNs is the conver-
gence speed. Several solutions, such as using a very high
learning rate for network training [5], and removing batch-
normalisationmodules [8] were proposed to tackle this issue.

Materials andmethods

The SmartAtlas database [2], a collection of 238 anonymised
pCLE video sequences of the colon and oesophagus, is used
in this study. The database was split into three subsets: train-

ing set (70%), validation set (15%), and test set (15%). Each
subset was created ensuring that colon and oesophagus tissue
were equally represented. Data were acquiredwith 23 unique
probes of the same pCLE probe type. The SRmodels are spe-
cific to the type of the probe but generic to the exact probe
being used. Thus, the models do not need to be retrained
for probes of the same type. Another type of probe, such
as needle-CLE (nCLE), would require a specifically trained
model. nCLE and pCLE differ by the number of optical fibres
and the design of the distal optics.

“Pseudo-ground-truth image estimation based on video
registration” section explains how the pseudo-ground-truth
HR images were generated. “Generation of realistic syn-
thetic pCLE data” section describes our proposed simulation
framework to generate synthetic LR (LRsyn) images from
original LR (LRorg) images. “Implementation details” sec-
tion presents the pre-processing steps needed for standard-
ising the input images and details the implementation of the
super-resolution CNNs used in this study.

Pseudo-ground-truth image estimation based on
video registration

To compensate for the lack of ground-truth HR pCLE data,
a registration-based mosaicking technique [13] was used to
estimate HR images. Mosaicking acts as a classical SR tech-
nique and fuses several registered input frames by averaging
the temporal information. The mosaics were generated for
the entire Smart Atlas database and used as a source of HR
frames.

Since mosaicking generates a single large field-of-view
mosaic image from a collection of input LR images, it does
not directly provide a matched HR image for each LR input.
To circumvent this, we used the mosaic-to-image diffeomor-
phic spatial transformation resulting from the mosaicking
process to propagate and crop the fused information from
the mosaic back into each input LR image space. The image
sequences resulting from this method are regarded as esti-

Mosaicking
LRSyn

LR Images
Fibre Posi�ons+

Registra�on
Cropping

Fibre Bundle

LR reconstruc�on

Fig. 1 Pipeline used to generate LR synthetic images
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mates of HR frames. These estimates will be referred to as
̂HR in the text.
The image quality of the mosaic image heavily depends

on the accuracy of the underpinning registration which is a
difficult task. The corresponding pairs of LR and ̂HR images
generated by the proposed registration-based method suffer
from artefacts, which can hinder the training of the EBSR
models (Fig. 1).

Specifically, it can be observed that alignment inaccura-
cies occurring during mosaicking were a source of ghosting
artefacts which in combination with residual misalignments
between the LR and ̂HR images, creates unsuitable data for
the training. Sequenceswith obvious artefactsweremanually
discarded. However, even on this selected dataset, training
issueswere observed. To address these, we simulated LR-HR
image pairs for training EBSR algorithms while leveraging
the registration-based ̂HR images as realistic HR images.

Generation of realistic synthetic pCLE data

Currently available pCLE images are reconstructed from
scattered fibre signal. Every fibre in the bundle acts as
a single-pixel detector. To reconstruct pCLE images on a
Cartesian grid, Delaunay triangulation and piecewise linear
interpolation are used. The simulation framework developed
in this study mimics the standard pCLE reconstruction algo-
rithm and starts by assigning to each fibre the average of the
signal from seven neighbouring pixels [6]. In the standard
reconstruction algorithm, the fibre signal, which includes
noise, is then interpolated. Similarly, noise was added to the
simulated data to produce realistic images and avoid creating
awide domain gap between real and simulated pCLE images.

Despite some misalignment artefacts, the registration-
based generation of ̂HR presented in “Pseudo-ground-truth
image estimation based on video registration” section pro-
duces images with fine details and a high signal-to-noise
ratio. Our simulation framework uses these ̂HR and produces
simulated LR images with a perfect alignment.

The proposed simulation framework relies on observed
irregular fibre arrangements and corresponding Voronoi dia-
grams. Each fibre signal was extracted from an ̂HR image,
by averaging the ̂HR pixel values within the corresponding
Voronoi cell.

To replicate realistic noise patterns on the simulated LR
images, additive and multiplicative Gaussian noise (a and
m respectively) is added to the extracted fibre signals f s
to obtain a noisy fibre signal nfs as: nfs = (1 + m). ∗
fs + a. The standard deviation of the noise distributions
was tuned based on visual similarity between LRorg and
LRsyn and between their histograms. Sigma values were
0.05 and 0.01* (max fs − min fs) for multiplicative and
additive Gaussian distribution, respectively. In the last step,

Delaunay-based linear interpolation was performed thereby
leading to our final simulated LR images.

LR and ̂HR images were combined into two datasets: 1.
Original pCLE (pCLEorg) built with pairs of LRorg taken
from sequences of Smart Atlas database and ̂HR images, and
2. synthetic pCLE (pCLEsyn) built by replacing the LRorg

images with LRsyn images.

Implementation details

Thedatasetswere pre-processed in three steps. First, intensity
values were normalised: LR = LR−meanlr/stdlr and HR =
HR−meanlr/stdlr. Second, pixels valueswere scaled of every
frame individually in the range [0–1]. Third, non-overlapping
patches of 64×64pixelswere extracted for the trainingphase,
considering only pixels in the pCLE Field of View (FoV).
A stochastic patch-based training was used for training the
networks, with a minibatch of size 54 patches to fit into the
GPU memory (12GB).

Models were trained with patches from the training set.
The patches from the validation set were used to monitor
the loss during training with the purpose to avoid overfitting.
Since all the considered networks are fully convolutional, the
test images were processed full size and no patch processing
is required during the inference phase.

Three CNNs networks for SR were used: sparse-coding-
basedFSRCNN[3], residual-basedEDSR[8], andgenerative
adversarial network SRGAN [7]. Every model was trained
with the two datasets presented in “Generation of realistic
synthetic pCLE data” section.

MSE is the most commonly used loss function for SR.
Zhao et al. [16] showed that MSE has two limitations:
it does not converge to the global minimum and produces
blocky artefacts. In addition to demonstrating that L1 loss
outperforms L2, the authors also introduced a new loss func-
tion SSIM+L1 by incorporating the Structural Similarity
(SSIM) [15]. FSRCNN and EDSR were trained considering
independently both L1 and SSIM+L1 to investigate their
applicability for our data based on a quantitative compari-
son.

Results

Acknowledging the lack of proper ground truth for super-
resolution of pCLE and the ambiguous nature of estab-
lished IQA metrics, a three-stage approach was designed
for the evaluation of the proposed method using the three
SR architectures considered in “Materials and methods”
section.

The first stage, presented in “Experiments on synthetic
data” section and relying on the quantitative assessment,
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Table 1 Quantitative results
obtained on full-size images
from the test set for different
training and testing strategies

The best results for each section are highlighted in bold

demonstrates the applicability of EBSR for pCLE in the
ideal synthetic case where ground-truth is available. In this
quantitative stage, the inadequacy of the existing video-
registration-based high-resolution images as a ground truth
for EBSR training purpose is demonstrated.

The second stage, presented in “Experiments on original
data” section, focuses on the quantitative assessment of our
methods in the context of real input images and on the eval-
uation of our best model against other state-of-the-art SISR
methods.

In the third stage, performed to overcome the limitations
of the quantitative assessment, a MOS study was carried out
by recruiting nine independent experts, having 1–10years of
experience working with pCLE images.

Quantitative analysis

For the quantitative analysis, the SR images were examined
exploiting two complementary metrics: (i) SSIM to evaluate
the similarity between the SR image and the ̂HR, and (ii)
Global Contrast Factor (GCF) [9] as a reference-free metric
for measuring image contrast which is one of the key char-
acteristic of image quality in our context. Analysing both
SSIM and GCF in combination leads to a more robust evalu-
ation. SSIM alone cannot be depended onwhen the reference
image is unreliable, while improvements in GCF alone can
be achieved deceitfully for example by adding a large amount
of noise.

Using these metrics, six scores for each SR method were
extracted: mean and standard deviation of (i) SSIM between
SR and ̂HR, (ii) GCF differences between SR and LR and
(iii) GCF differences between SR and the ̂HR. Finally, to
determinewhich approach performsbetter, a composite score
Totcs obtained by averaging the normalised value of SSIM
with the normalised GCF difference between SR and LR
was defined. Both factors are re-scaled to the range [0–1]. In
our quantitative assessment, the score obtained by the initial
LRorg was considered as baseline reference.

Experiments on synthetic data

In the first experiment, synthetic data are used to demon-
strate that our models work in the ideal situation where
ground truth is available. The first section of Table 1 shows
the scores obtained when the SR models are trained on
pCLEsyn and tested on LRsyn. Here, it is evident that the
EDSR and FSRCNN trained with SSIM+L1 obtain a sub-
stantial improvement on the different quality factors with
respect to the LR image. More specifically, in comparison
with the initial LR image, the SSIM was increased by +0.06
when EDSR is used and by +0.05 when FSRCNN is used.
These approaches also yield a GCF value that is very close to
the GCF in ̂HR and an improvement of +0.32 and +0.36 in
the GCF with respect to LR images. Statistical significance
of these improvements was assessed with a paired t test (p
value less than 0.0001). From this experiment, it is possible to
conclude that the proposed solution is capable of performing
SR reconstruction when the models are trained on synthetic
data with no domain gap at test time.

Experiments on original data

When real images are considered, the same conclusions can-
not be reached. The results obtained by training on pCLEorg
and testing on LRorg are reported in the second section of
Table 1, and here it is evident that all the different quality
factors decrease. The best approach is the FSRCNN trained
using SSIM+L1 as loss function. With respect to the previ-
ous case this approach loses 0.04 on the SSIM, and 0.12 on
the�GCFwith LR. This leads to a final reduction of 0.14 for
theTotcs score. In this scenario, the deterioration of SSIMand
GCF compared to the previous synthetic case can be due to
the use of inadequate ̂HR images during the training (i.e. mis-
alignment during the fusion, lack of compensation formotion
deformations, etc.). Better results are instead obtained when
the SR models performed on LRorg images are trained using
the pCLEsyn (last section of Table 1). Here, the quality fac-
tors increased when compared to the previous case, although
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SR

pCLEsyn

pCLEorg

Fig. 2 Example of SR images obtained when pCLEsyn and pCLEorg
are used for train and test. From top to the bottom, the images in the
middle represent the SR image obtained when: (i) pCLEsyn are used for
train and test, (ii) pCLEsyn are used for train, and the pCLEorg are used
for test, and (iii) pCLEorg are used for train and test

they do not overcome the results obtained when the approach
is trained and tested on synthetic data. EDSR, in particular,
has a Totcs score of 0.65 that is 0.08 better than the best
approach trained on pCLEorg (the second section of Table 1)
and 0.06 worse than the best approach trained and tested on
pCLEsyn (first section of Table 1). The GCF obtained here
are in general much better when compared to the previous
two cases. An example of the visual results from the dif-
ferent training modalities is shown in Fig. 2. In conclusion,
our findings suggest that existing video-registration-based
approaches are inadequate to serve as a ground truth for HR
images,whileEBSRapproaches, such as theEDSRandFSR-
CNN,when trained on synthetic data, can produce SR images
that enhance the quality of the LR images.

Due to our conclusions, the MOS study was performed
using images obtained from the models trained only with
synthetic data.

To further validate ourmethodology, in Table 2, the results
obtained by the best model of our approach (EDSR trained
on synthetic data with SSIM+L1 as loss function) were
compared against other state-of-the-art SISRmethodologies.

Specifically, in this experiment a Wiener deconvolution, a
variational Bayesian inference approach with sparse and
non-sparse priors [14], the SRGAN and EDSR networks
pretrained on natural images were considered. The Wiener
deconvolution was assumed to have a Gaussian point-spread
function with the parameter σ = 2 estimated experimen-
tally from the training set. Finally, the last column of Table 2
includes the results of a contrast-enhancement approach
obtained by sharpening the input with parameters similarly
tuned on the trained set. Although our approach is not con-
sistently outperforming the other on each individual quality
score, when the combined score Totcs is considered, our
method outperforms the others by a large margin.

Semi-quantitative analysis (MOS)

To perform the MOS, nine independent experts were asked
to evaluate 46 images each. Full-size LRorg were selected
randomly from test set of pCLEorg, and used to generate
SR reconstructions. At each step, the SR images obtained
by the three different methods (SRGAN, FSRCNN and
EDSR) trained on synthetic data and a contrast-enhancement
obtained by sharpening the input (used as a baseline) are
shown to the user, in a randomly shuffled order. The input
and the ̂HR are also displayed on the screen as references for
the participants. For each of the four images, the user assigns
a score between 1 (strongly disagree) to 5 (strongly agree)
on three different questions:

– Q1: Are there any artefacts/noise in the image?
– Q2: Can you see an improvement in contrast with respect
to the input?

– Q3: Can you see an improvement in the details with
respect to the input?

Tomake sure that the questionswere correctly interpreted,
each participant received a short training before starting the
study. The results on the MOS are shown in Fig. 3. EDSR
is the approach that achieves the best performance on Q2
and Q3. Instead based on Q1, both FRSCNN and EDSR do
not introduce a significant amount of artefact or noise. The
results of the MOS give us one more indication, which our
training methodology allows improvements on the quality of
the pCLE images. In Fig. 4 is shown a few examples of the
obtained SR images using our proposed methodology.

Table 2 Results of the proposed
approach against state-of-the-art
methods

The best results for each section are highlighted in bold
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Strongly
Agree

Neutral   

Strongly
Disagree

Q1: Noise/Artefacts Q2: Contrast Q3: Details Contrast 
enhancement
FSRCNN

EDSR

SRGAN

1

2

3

4

5

Fig. 3 Results of theMOS using a contrast-enhancement approach, FSRCNN, EDSR and SRGAN. The plots report the results on the three different
questions

Fig. 4 Example of visual results
from the proposed approaches:
Input (left), SRGAN (middle
left), EDSR (middle) and
FSRCNN (middle right) ̂HR
(right)

INPUT SRGAN EDSR FSRCNN

Discussion and conclusions

This work addresses the challenge of super-resolution for
pCLE images.This is thefirstwork to evaluate the potential of
deep learning and exemplar-based super-resolution in pCLE
context.

The main contribution of this work is to overcome the
challenge of lack of ground-truth data. A novel methodology
to produce pseudo-ground-truth exploiting an existing video

registrationmethod, and simulating realistic LR image based
on physical model of pCLE acquisition is proposed.

The conclusions are that synthetic pCLE data can be
used to train CNNs while applying them to real scenario
data because of a physically inspired simulation process
that reduces the domain gap between real and simulated
images.

The robust IQA test based on the Structural Similarity
(SSIM) and global contrast factor (GCF) score confirmed
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the improvement of obtained results in respects to the input
image. An analysis of perceptual quality of images with a
Mean Opinion Score (MOS) study recruiting nine indepen-
dent pCLE experts showed that SR models give clinically
interesting results. Experts perceived an improvement in
the quality of the reconstructed images with respect to the
input image without noting a significant increase in the
amount of noise and artefacts. The quantitative and semi-
quantitative user perception analysis provided consistent
conclusions.

Providing a better quality of pCLE images might improve
the decision process during the endoscopic examination.
Further evaluation will focus on the temporal consistency
of the super-resolution and will rely on histopathological
confirmation to validate the authenticity of the generated
details.
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