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Abstract
Purpose Serial endoscopic examinations of a patient are
important for early diagnosis of malignancies in the gas-
trointestinal tract. However, retargeting for optical biopsy is
challenging due to extensive tissue variations between exam-
inations, requiring the method to be tolerant to these changes
whilst enabling real-time retargeting.
Method This work presents an image retrieval framework
for inter-examination retargeting. We propose both a novel
image descriptor tolerant of long-term tissue changes and a
novel descriptor matching method in real time. The descrip-
tor is based on histograms generated from regional intensity
comparisons over multiple scales, offering stability over
long-term appearance changes at the higher levels, whilst
remaining discriminative at the lower levels. The matching
method then learns a hashing function using random forests,
to compress the string and allow for fast image comparison
by a simple Hamming distance metric.
Results A dataset that contains 13 in vivo gastrointestinal
videos was collected from six patients, representing serial
examinations of each patient, which includes videos captured
with significant time intervals. Precision-recall for retarget-
ing shows that our new descriptor outperforms a number of
alternative descriptors, whilst our hashing method outper-
forms a number of alternative hashing approaches.
Conclusion We have proposed a novel framework for
optical biopsy in serial endoscopic examinations. A new
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descriptor, combined with a novel hashing method, achieves
state-of-the-art retargeting, with validation on in vivo videos
from six patients. Real-time performance also allows for
practical integration without disturbing the existing clinical
workflow.
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Introduction

Endoscopic examinations have been widely used for visu-
alising the human gastrointestinal (GI) tract. Surveillance
endoscopy has been a popular approach for monitoring
abnormal changes, such as colorectal polyps and Barretts’
esophagus. A typical endoscopic procedure involves taking
tissue samples for histological analysis afterwards, which is
both time-consuming and expensive. With the advances in
biophotonics, optical biopsy has emerged as a technique for
providing in vivo, in situ, and real-time tissue characterisa-
tion, such that in time, curative treatment can be performed.
Techniques for optical biopsy include narrow band imag-
ing (NBI), blue light imaging (BLI), and confocal laser
endomicroscopy (CLE), which can be either integrated into
endoscope systems, or manufactured as an external probe-
based device, to retrieve the cellular details on the tissue.

Despite the advantages provided by optical biopsy, retar-
geting of a biopsied location remains a challenging problem
for both intra- and inter-examination. In [1], a feature match-
ing method based on Markov random fields was proposed
for intra-examination retargeting. Allain et al. [2] combined
feature matching with epipolar geometry to provide biopsied
location estimationwith an uncertainty score.Alternatively, a
3D tracking approach was introduced by Mountney et al. [3]
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that uses simultaneous localisation and mapping (SLAM) to
achieve consistent retargeting in a relatively static endoscopic
environment. In [4–6], retargeting of a biopsied location was
formulated as a 2D object tracking task, where detectors
based on random forests were included to learn online the
appearance of the biopsied area. Later, a hybrid approach
dealing with occlusion was proposed by Mouton et al. [7] to
perform efficient retargeting during probe-based CLE exam-
inations. However, the above approaches would encounter
difficulties when applied to serial examinations where there
is long-term variation in local tissue appearance.

For retargeting over successive examinations of a patient,
which we refer to as the inter-examination retargeting prob-
lem, endoscopic video manifolds (EVM) was proposed
by Atasoy et al. [8], to learn a low-dimensional intrinsic
representation of the video collected in the first exami-
nation. This mapping was then learned based on locality
preserving projections [9], such that retargeting of a query
image in the second examination can be achieved via image
retrieval. In [10], a detailed study was performed to evaluate
visual descriptors used for viewpoint selection in endoscopic
surveillance. In addition to vision-based approaches, the use
of external positioning sensors has also been considered. In
[11], multiple electromagnetic sensors were used to register
the trajectories of the endoscopemotion across examinations.
Although this method is not affected by the issues of image-
based inter-examination retargeting, addition of extra sensors
could introduce further complexity to the setup.

Our recent work in [12] introduced a vision-based frame-
work for inter-examination retargeting to assist optical
biopsy procedures. The proposed framework (see Fig. 1)
formulates retargeting as an image retrieval task to enable
retargeting of biopsied locations in the second (surveil-
lance) examination based on the targets recorded in the
first (diagnosis) examination. A global image description
scheme is designed by pooling the spatial information

obtained from regional comparisons over multiple scales.
Inspired by hashing-based techniques, the global descrip-
tors are compressed into short binary strings with a novel
random forest-based encoding function. This then enables
real-time retargeting, without interfering with the current
clinical workflow. Following our previous work, this paper
provides extended descriptions of the methodology, as well
as new insights into the technical contributions. Furthermore,
other alternative approaches are added into our comparison
studies with further validation on in vivo GI video sequences
collected from six patients.

Methods

A multi-level endoscopic image descriptor

Over the last two decades, there has been significant progress
in using keypoint-based approaches for image description.
One of these is the bag-of-words (BOW) framework [13],
which builds a dictionary by performing clustering on local
features, such as SIFT [14]. A descriptor of an image is
obtained by extracting these features and collecting a fre-
quency histogram from individual words (in the dictionary)
for this image. Recently, BOW has been combined with
geometric constraints for image retrieval [15] and place
recognition [16]. However, the success of these approaches
depends on re-occurrences of same local keypoints across
different views, which is not always possible for endoscopic
scenes as these typically undergo long-term appearance
changes on the local tissue surface.

Recently, descriptors based on local binary patterns
(LBPs) have emerged to be powerful tools for scene recog-
nition [17], object tracking [18], and 3D reconstruction [19].
The main advantages of LBPs include the tolerance to illu-
mination changes and the superior computational efficiency.

Fig. 1 An overview of the proposed image retrieval framework for
inter-examination retargeting. Black arrows indicate the training phase
that hashes the descriptors and learns the encoding function, whilst grey

arrows indicate the retargeting phase that retrieves relevant images to a
query image
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Fig. 2 Proposed binary pattern performs regional comparisons to obtain a single integer describing the image location

Fig. 3 Spatial pyramid pooling is applied to aggregate the responses from regional comparisons at multiple scales, which generates a 496-d image
descriptor

Compared to keypoint-based descriptions, such as BOW,
LBPs-based descriptors also do not rely on consistent detec-
tion of same keypoints over images, thus providing more
robustness to long-term tissue appearance changes.

In this paper, we use a symmetric version of LBP based
on regional comparisons Fig. 2a. Our LBP performs 4 diag-
onal comparisons inside an image patch, yielding a 4-bit
binary string for this patch. This binary string is then con-
verted into an integer ranging from 0 to 15. With this, a
16-dimensional(d) image histogram descriptor can be sim-
ply obtained by sliding this pattern over the entire image.
To consider the global geometry that would be effective for
endoscopic scene description, we employ the spatial pyra-
mid pooling approach [20] to aggregate the responses of LBP
across various scales and locations.Here,we use a three-level
coarse-to-fine representation, as shown in Fig. 3.

In addition to the first level that produces 16-d descriptor,
for the second level, the image is divided into 2 × 2 parti-
tions with an additional partition overlapping at the centre,
providing a 80-d descriptor. In the third level, we divide the
image into 4 × 4 partitions, with additional 3 × 3 partitions
overlapped, resulting in a 400-d descriptor. To balance the
contributions from different levels, the LBP masks contain
24 × 24, 12 × 12 and 6 × 6 pixels for the first, second and
third levels, respectively. Finally, a 496-d global descriptor
for this image is obtained by concatenating the descriptors
across all levels.

Compact binary code representation

Let us now denote the video sequences collected in the first
(diagnosis) and second (surveillance) examinations as O1

and O2, respectively. During the surveillance examination,
retargeting of a query image (inO2) is required to be real time
such that a regular clinical procedure would not be interfered
with. To enable the real-time retargeting capability, we adopt
hashingwhich has proved to be efficient for large-scale image
retrieval [21–24]). We follow the two-step hashing approach
in [24] to compress the image descriptors into compact binary
codes and then learn the mapping function via a novel ran-
dom forests hash. This allows for fast matching between
descriptors based on Hamming distance computation. Fur-
thermore, a quadratic loss function is used for learning the
hashing function that maps the original descriptors to a new
space, where images from the same scene have a smaller
distance.

In this work, we adopt supervised hashing, requiring a
scene label for each image in the training image set. We
define a scene as a cluster of adjacent images which represent
the same topological location. To obtain the scene labels for
images, we perform image clustering on the diagnosis video
collected in the first examination similar to [8]. Specifically,
we use an semiautomatic approach that performs K-means
(intensity-based) clustering, followed by manually merging
similar clusters. This results in an affinity matrix A where
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ai j = 1 if xi and x j have the same scene label, and ai j = 0
if not.

Given a set of image descriptors extracted from the diag-
nosis video, which are denoted as {xi }ni=1, our aim is to infer
their corresponding m-bit binary codes {bi }ni=1. This infer-
ence is performed by encouraging the Hamming distance
between images of the same scene to be small, whilst large
for images of different scenes. We sequentially obtain each
bit in the binary code by optimising for r -th bit with the
objective function:

min
b(r)

n∑

i=1

n∑

j=1

lr
(
br,i , br, j ; ai j

)
,

s.t.b(r) ∈ {−1, 1}n
(1)

where br,i and br, j are the r -th bits for images i and j , respec-
tively.Here,b(r) represents a vector that concatenates the r -th
bits of n images. Therefore, this optimisation sequentially
seeks the values of b(r) for each bit.

Following [24], we consider a hash loss function l (b1, b2)
that takes binary variables b1, b2 ∈ {−1, 1} as input and sat-
isfies l (1, 1) = l (−1,−1) and l (−1, 1) = l (1,−1). This
loss can be replaced with an equivalent quadratic function
defined as:

h (b1, b2) = 1

2

[
b1b2

(
l11 − l−11

)
+ l11 + l−11

]

= l (b1, b2) ,

(2)

Here, l11 and l−11 are the constants that represent l (1, 1)
and l (−1, 1), respectively. Note that, Eq. 2 can be proved by
checking all the possible binary inputs. For example, when
b1 = b2 = 1, we have

h (1, 1) =
[
l11 − l−11 + l11 + l−11

]
= l (1, 1) , (3)

and when b1 = −1 and b2 = 1, we can obtain

h (−1, 1) = 1

2

[
−1 · 1 ·

(
l11 − l−11

)
+ l11 + l−11

]

= l (−1, 1) . (4)

Similar equations can also be derived for h (−1,−1) and
h (1,−1). Given that l11+ l−11 results in a constant, we now
use Eq. 2 to reformulate Eq. 1 as

min
b(r)

n∑

i=1

n∑

j=1

br,i bb, j
(
l11r,i, j − l−11

r,i, j

)
,

s.t.b(r) ∈ {−1, 1}n .

(5)

When considering the affinity label between images i and
j , we have l11r,i, j = lr

(
1, 1; ai j

)
and l−11

r,i, j = lr
(−1, 1; ai j

)
.

Let us denote cr,i, j = l11r,i, j − l−11
r,i, j , and define matrix C that

contains all the cr,i, j elements. The objective is finally turned
into a matrix representation:

min
b(r)

bT(r)Cb(r),

s.t.b(r) ∈ {−1, 1}n .

(6)

Note that, for solving this unconstrained binary quadratic
problem, we perform a series of local optimisations via
graph-cut [24]. Furthermore, in this work, we employ a hinge
loss function, defined as

lr
(
br,i , br, j ; ai j

)

=

⎧
⎪⎨

⎪⎩

[
0 − D

(
bri ,b

r
j

)]2
, if ai j = 1

[
max

(
0.5m − D

(
bri ,b

r
j

)
, 0

)]2
, if ai j = 0

(7)

where bri and b
r
j denote the first r bits for bi and b j , respec-

tively. D (·, ·) indicates the Hamming distance. Equation 7
encourages the images of same scene to be close and pushes
the images of different scenes to have distances larger than
half the maximum distance (0.5m). It is worth noting that
during this sequential optimisation, each current bit (r -th bit)
derivation uses the results of previous bits (0 − (r − 1)-th
bits).

Mapping function learning

After obtaining the binary codes for the training image set
(O1), the next step is to obtain the binary code of a query
image in O2, such that efficient Hamming distance-based
matching can be performed. Note that the optimisation with
Eq. 6 only aims to infer the binary codes on the training image
set. To allow for out-of-sample extension, we need to learn
a mapping function. In this work, we propose to use random
forests as this mapping.

Given the global image descriptors {xi }ni=1 and their cor-
responding binary codes {bi }ni=1, we now formulate this
mapping function as a set of binary classification functions
{φi (x)}mi=1, with each random forest φi (x) taking the image
descriptor as the input, and returning the label {−1, 1} for
the i-th bit, defined as:

φi (x)

=
{−1 if 1

K

∑K
k=1 αk (x) < 0.5

1 otherwise
(8)

Here, we train K decision trees for each i-th hash function,
and assign−1 or 1 by calculating the average responses from
all trees. The training input for each tree αk (x) is a subset
randomly sampled from {xi }ni=1.
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The split function at each tree node is associated with
learning two parameters s and τ , which performs a compari-
son on the s-th element in xi with threshold τ . To grow each
decision tree, we maximise an information gain to find the
optimal parameters that split the input data X into left XL

and right XR subsets. We define this information gain I as

I = π (X) − 1

|X |
∑

t∈{L ,R}
|Xt |π (Xt ) (9)

Here, we use the Shannon entropy:

π (X) = −
∑

y∈{−1,1}
py log

(
py

)
, (10)

where py indicates the fraction of data in X assigned to label
y. We stop growing a tree when the defined maximum depth
has been reached, or the value of I is below e−10.

In this work, we train m random forests, acting as the
mapping function {φi (x)}mi=1 with each generating one bit
of the binary code according to Eq. 8. During the surveil-
lance examination, retargeting of a query image is achieved
by obtaining its binary code (via the mapping function), fol-
lowed by comparing the Hamming distance to the binary
codes {bi }ni=1 from the previous diagnosis video. Finally, the
relevant images of the query image are retrieved.

Experiments and results

Dataset and protocol

We implemented our framework on an HP workstation with
an Intel ×5650 CPU and 24GB RAM, using Matlab and
C++. Performance evaluation of our framework was con-
ducted on in vivo data. We collected 13 video sequences
(≈17, 700 images) from standard GI endoscopic examina-
tions on six patients. Two videos were collected in successive
endoscopies for each of Patients 1–5. Three videos were col-
lected for Patient 6 in serial examinations with time intervals
of 3–4 months apart. Standard Olympus endoscope systems
were used for video recording in 720 × 576-pixel size, and
the black borders in the images were removed before apply-
ing our framework. The NBImode was turned on during data
acquisition for image enhancement.

In this work, we consider retargeting for patient-specific
data; therefore, the randomforestsmapping functionneeds to
be trained separately for each patient.. Leave-one-video-out
validation was performed on the patients individually, which
results in 16 experiments in total. For each experiment, one
video was used asO1 for binary code inference and mapping
function learning, and the other video was used as O2 for Ta
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Fig. 4 Precision-recall curves of descriptor evaluation on patient-specific experiments

testing with randomly selected 50 query images. For obtain-
ing the ground truth, intensity-based K-means clustering was

Table 2 Mean average precisions for retrieval performance. Our
descriptor is compared to a range of popular descriptors

Methods BOW FV VLAD GIST SPACT Ours

Patient 1 0.227 0.233 0.234 0.387 0.411 0.488

Patient 2 0.307 0.418 0.468 0.636 0.477 0.722

Patient 3 0.321 0.290 0.338 0.576 0.595 0.705

Patient 4 0.331 0.391 0.425 0.495 0.412 0.573

Patient 5 0.341 0.361 0.390 0.415 0.389 0.556

Patient 6 0.201 0.203 0.242 0.345 0.315 0.547

performed on O1 and O2, resulting 10-34 clusters depend-
ing on video lengths. The clusters in O1 and O2 are then
matched side-by-side manually by an expert, which gener-
ates the scene labels for the testing images (by checking their
belonged clusters). The value of K is empirically determined
according to the number of images contained in each video
sequence. Our experiments did not focus on evaluating the
sensitivity of the value of K on the framework performance,
because this is a parameterwhichwould be defined according
to the particular clinical task. For example, for precise retar-
geting by trading off recall, then a larger value of K would be
used to divided the sequence into a greater number of distinct
clusters. It took around ten minutes for the expert to review
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Fig. 5 Evaluation of different binary code lengths. a Means and standard deviations of recognition rates, defined as mean average precisions with
top retrievals (MAP@1); b means and standard deviations of precision values with top 50 retrievals (P@50)

obtained clusters for each video. We provide in Table 1 the
details of the clustered video dataset, and their inter-cluster
variances (ICV) [25].

Evaluation metrics

We employed precision-recall analysis in evaluating both our
descriptor and hashing framework. Let us now consider the
top U image attempts retrieved from O1 relevant to a query
in O2. A retrieval attempt is marked as true positive (TP) if
it has the same scene label as the query, and false positive
(FP), otherwise. Precision is then defined as the fraction of
retrievals that are TP: P = #T P

U , and recall is calculated as
R = #T P

V , where V is the number of all relevant images
to the query. Mean average precision (MAP) is also used in
evaluation as an indicativemeasure for image retrieval.When
Q queries are tested and U retrievals are made, the MAP is
obtained as

MAP@U =
∑Q

q=1

∑U
u=1 Pq@u

QU
, (11)

where Pq@u represents the precision of q-th query with the
top u retrieval attempts. In addition, we also define MAP@1
as the mean recognition rate, which represents the reliability
of a system for returning its top ranked result.

Descriptor evaluation

The proposed descriptor in this work has been validated
against several popular image descriptors, including the
GIST [26] descriptor based on wavelet responses, and a
SPACT descriptor [17] based on pixel comparisons. We also
compared to the BOW descriptor [13] using SIFT features.
Furthermore, the popular variants of BOW, including Fisher

vector (FV) [27] and VLAD [28] are also added into this
comparison. For GIST, we performed 4 × 4 partitioning on
the image, and each partition was convolved with Gabor fil-
ters of 4 scales and 8 orientations, which results in a 512-d
descriptor. We also followed [17] to implement a 1240-d
SPACT descriptor using pixel-based census transform. For
BOW, we created a dictionary that contains 10,000 words
by sampling the SIFT features from the GI video sequences.
For FV and VLAD, we used the publically available code
to obtain 8192-d descriptors, followed by extracting their
principal components to finally derive 256-d descriptors.

We present in Fig. 4 the precision-recall curves of our
descriptor compared to the others. These curves are generated
by varying the value of U and presented for patient-specific
experiments. It can been seen that our descriptor outper-
forms the others in all experiments. We can also observe
that the BOW approach has provided inferior results to the
others due to the dependence on consistent keypoint detec-
tion,which is not reliablewith long-term appearance changes
on tissue surface (Patient 6 in Fig. 4). This also makes
other variants of BOW including FV and VLAD generate
similar results. Table 2 shows the MAP measures with our
descriptor presenting the highest values in all experiments.
Although GIST provides robustness to deformation, it lacks
in encoding of the local texture details. The multi-level spa-
tial pooling scheme in our descriptor ensures the similarities
can be obtained across a range of scales. Our descriptor also
outperforms the SPACT descriptor for the regional compar-
isons, due to better tolerance to illumination changes and
camera translation.

Framework evaluation

For evaluating the entire framework (after hashing), we
compared to a range of state-of-the-art hashing approaches.
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Fig. 6 Precision-recall curves of framework evaluation on patient-specific experiments. Our hashing scheme is compared to state-of-the-art
approaches on 64-bit binary code

Table 3 Mean average
precisions for retrieval
performance. Our entire
framework is compared to
state-of-the-art hashing schemes
(using 64-bit) and a previous
retargeting approach

Methods EVM AGH ITQ LFH CSH KSH Fasthash Ours

Patient 1 0.238 0.340 0.145 0.460 0.709 0.686 0.802 0.920

Patient 2 0.304 0.579 0.408 0.642 0.899 0.921 0.925 0.956

Patient 3 0.248 0.501 0.567 0.458 0.799 0.903 0.911 0.969

Patient 4 0.274 0.388 0.289 0.585 0.852 0.889 0.923 0.957

Patient 5 0.396 0.435 0.342 0.715 0.835 0.883 0.896 0.952

Patient 6 0.273 0.393 0.298 0.500 0.641 0.669 0.812 0.895
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Fig. 7 Example results for Patients 1–3. Top ranked retrievals based on Hamming distances, with blue-, green-, and yellow-border images being
queries for retargeting, correct retargeting, and incorrect retargeting results, respectively

These include hashing via iterative quantization (ITQ) [23],
anchor graph hashing (AGH) [21], kernalised supervised
hashing (KSH) [22], and Fasthash [24]. In addition, com-
parisons to two more recently proposed hashing approaches
including hashing with latent factor models (LFH) [29] and

column sampling based hashing (CSH) [30] were also per-
formed. We also compared our framework to a relevant
retargeting approach named endoscopic video manifolds
(EVM) [8]. Each random forest for the mapping function
in our framework contained 100 trees, with a maximum
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Fig. 8 Example results for Patients 4–6. Top ranked retrievals based on Hamming distances, with blue-, green-, and yellow-border images being
queries for retargeting, correct retargeting and incorrect retargeting results, respectively

depth of 10 for each tree. We provide in Fig. 5a the recog-
nition rates of all hashing-based approaches on different
lengths (m = {16, 32, 48, 64}) of binary codes, where
our hashing scheme provides the highest recognition rates

{0.75, 0.82, 0.86, 0.87}. We also present the precisions with
50 top retrievals on all lengths in Fig. 5b, showing ours
performs the best with {0.79, 0.83, 0.86, 0.87}. It is evi-
dent that 64-bit binary codes present the best performance,
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and we therefore use this length for the remaining evalua-
tion.

The precision-recall curves of patient-specific experi-
ments for all hashing-based approaches (64-bit) are provided
in Fig. 6 with their associated MAP measures reported in
Table 3. We observe from this table that after hashing,
the retargeting performance has improved over the origi-
nal descriptor (Table 2). In addition, our hashing scheme
outperforms other alternatives, providing graceful falloffs in
precision-recall, as well as the highest MAPs. The employed
two-step hashing scheme provides flexibility in using inde-
pendent classifiers for learning the mapping function, thus
achieving more powerful discrimination than the approaches
in [21–23,29]. We also find that linear classifiers used in [30]
are less discriminative than our classifiers, and boosted trees
(Fasthash [24]) tend to overfit the training dataset, present-
ing lower MAP scores to our random forest-based hashing.
It is worth noting the comparison to the EVM method, from
which we notice that EVM generates inferior results to ours,
and its performance on a similar dataset in our experiments
is poorer than the one reported in [8]. This is because in our
work, we use two different sequences from training and test-
ing, yielding a realistic retargeting scenario, whilst in their
studies training and testing data are from the same sequence.
Finally, we present example retargeting results of our frame-
work in Figs. 7 and 8.

Run-time speed is an important factor in using computer
vision techniques for endoscopic interventions. A vision
algorithm is usually required be real time such that a regular
clinical procedure would not be interrupted. Our framework
currently performs retargeting of one query within 19ms,
which includes extracting the image descriptor, mapping into
a binary code, and computingHamming distances.Whilst the
querying time using the original descriptor is around 490ms,
the run-time speed improved by hashing meets the require-
ments of real-time capability.

Discussion on limitation and use

It is worth noting the limitation of the current dataset, in
which there are three videos collected fromone patientwithin
long-term intervals, and the other videos were collected from
patients with serial endoscopies during one examination.
Nevertheless, our experimental protocol follows realistic sce-
narios in surveillance endoscopy that only videos collected
in ‘previous examinations’ are known, and used for subse-
quent examinations of the same patients. Our vision-based
retargeting framework in this work provides relevant images
of a query image of the same patient and does not provide the
depth information of the endoscopic cameras [3] or specific
locations (within images) of optical biopsies [4]; however, it
can be used as an additional function to assist endoscopists by

performing image retrieval for patient-specific data collected
in serial examinations.

Conclusions and future work

We proposed in this paper an image retrieval framework for
inter-examination retargeting in gastrointestinal endoscopy.
An image descriptor was proposed to consider the global
geometry of an endoscopic scene by pooling the regional
information at multi-scale. The extracted image descriptors
from a previous video sequence were compressed into short
binary codes via hashing. To allow for retargeting of a query
image in the current examination, we proposed a novel ran-
dom forest-based mapping, which provides not only strong
discrimination in learning the mapping function, but also
real-time retargeting capabilities. We compared our frame-
work to a range of popular descriptors and hashing-based
approaches. Experiments were conducted on in vivo video
data collected from six patients, demonstrating the consistent
state-of-the-art performance provided by our descriptor and
hashing.

Currently, the framework learns the mapping function
using only one previous video sequence. As further videos
could be collected for the same patient, our framework can
be readily extended to learn the mapping using two or more
previous video sequences, which could further improve the
retargetingperformance. In addition, futureworkswould also
involve performing hierarchical image matching for further
speedupor employing convolutional neural networks asmore
training data become available.
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