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Abstract
Treatment response assessment of rectal cancer patients is a critical component of personalized cancer care and it allows 
to identify suitable candidates for organ-preserving strategies. This pilot study employed a novel multi-omics approach 
combining MRI-based radiomic features and untargeted metabolomics to infer treatment response at staging. The metabolic 
signature highlighted how tumor cell viability is predictively down-regulated, while the response to oxidative stress was 
up-regulated in responder patients, showing significantly reduced oxoproline values at baseline compared to non-responder 
patients (p-value < 10–4). Tumors with a high degree of texture homogeneity, as assessed by radiomics, were more likely to 
achieve a major pathological response (p-value < 10–3). A machine learning classifier was implemented to summarize the 
multi-omics information and discriminate responders and non-responders. Combining all available radiomic and metabo-
lomic features, the classifier delivered an AUC of 0.864 (± 0.083, p-value < 10–3) with a best-point sensitivity of 90.9% and 
a specificity of 81.8%. Our results suggest that a multi-omics approach, integrating radiomics and metabolomic data, can 
enhance the predictive value of standard MRI and could help to avoid unnecessary surgical treatments and their associated 
long-term complications.
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Introduction

Colorectal cancer (CRC) represents the third most frequent 
cancer in the world and the fourth cause of cancer death 
[1]. Currently, the total mesorectal excision (TME) after 
neoadjuvant chemo-radiotherapy represents the standard of 
care for patients with locally advanced rectal cancer (LARC) 
(≥ T3 or N +) is the total mesorectal excision (TME) after 
neoadjuvant chemo-radiotherapy (CRT)2. Watchful waiting 
programs allow patients with complete response following 
CRT (“responders”) to be closely monitored via imaging 
and endoscopy, opting for organ-preserving treatment strate-
gies; however, these programs are adopted only in selected 
institutions [2]. LARC receiving neoadjuvant CRT showed 
complete response rates ranging from 5 to 44% [3]. Recently, 
there has been a growing interest in new biomarkers of CRT 

response to improve patients’ selection for more intensive 
therapy or watchful waiting.

The gold standard method for staging rectal cancer and 
evaluating the response to treatment is magnetic resonance 
imaging (MRI) [4]. Moreover, MRI plays a crucial role in 
patient selection and monitoring in the watchful waiting 
strategy [5]. Indeed, MRI demonstrates remarkable preci-
sion in qualitatively evaluating prognostic factors, such as 
tumor location, extent, the distance from the anal sphincter 
complex, presence of mesorectal fascia infiltration and extra-
mural vascular invasion [6]. In a recent multi-reader study 
comparing four MRI methods for rectal tumor response 
evaluation, the average accuracy ranged between 62 and 68% 
and improved when diffusion-weighted imaging (DWI) was 
included [7].

Recently, multi-omics approaches investigating CRC at 
molecular level have shown potential to improve diagnosis 
and prognostic assessment of colon cancer [8, 9]. Among 
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these “omics” disciplines, “radiomics” and “metabolomics” 
recently showed the potential predictive role in tumor 
response assessment [10–13]. The term “radiomics” refers 
to the application of information engineering approaches to 
radiologic images delivering a large number of image fea-
tures related to the shape, intensity and texture heterogene-
ity within a given volume of interest, otherwise invisible to 
the naked eye. Tumors are heterogeneous at the genetic and 
histopathological level, and high intratumoral heterogeneity 
is associated with a poor prognosis [14]. This approach can 
overcome the limit of random sampling or biopsy that does 
not allow for a complete assessment of the phenotype or 
genetic heterogeneity within a tumor [14]. Based on these 
characteristics and thanks to the continuous technological 
improvement, the radiomics approach has been used for 
the preoperative assessment of treatment response [15–18]. 
Metabolomics, by studying and quantifying the metabo-
lites present in biological fluids, offers an instant view of 
the system, providing useful information for understanding 
the processes taking place in the analyzed organism. Tumor 
growth follows a variety of metabolic pathways resulting in 
the accumulation of specific intermediate metabolites and 
metabolomics represent a growing discipline in the char-
acterization of serum metabolites in cancer [19, 20] can be 
used as prognostic markers for response to CRT. [21–25]. To 
date, integrating “-omics” disciplines may represent a new 
framework for personalized cancer care.

This study presents a cutting-edge multi-omics approach 
combining MRI-based radiomics features with untar-
geted metabolomics data, with the aim of developing an 
experimental workflow capable of predicting the treatment 
response in patients diagnosed with LARC. This novel non-
invasive method called “radiometabolomics” may pave the 
way to further larger studies improving the role of “omics” 
disciplines in rectal cancer.

Methods

Subjects

This retrospective study was approved by the local Ethical 
Committee. A total of 140 consecutive patients who under-
went rectal MRI for tumor staging between February 2013 
and February 2019 were included (Fig. 1). Inclusion cri-
teria were (1) biopsy-confirmed non-mucinous LARC, (2) 
3.0 T MRI examination, (3) clinical outcome assessment 
on surgical specimen (complete or not complete response), 
(4) long-course CRT and (5) availability of metabolomics 
data. In total, 105 patients were excluded: 12 were muci-
nous cancers, 33 were treated in other centers, and the final 
clinical outcome was not available, 18 were considered unfit 
for long-course CRT due to poor clinical conditions stat, 5 

patients had severe MR susceptibility artifacts in the pelvis 
(hip replacement), and 37 had no metabolomics data. The 
study population was composed of 35 patients. Descriptive 
baseline characteristics of included patients are detailed in 
Table 1. The study workflow is shown in Fig. 5.

Chemo‑radiotherapy

Long-course radiotherapy consisted of 3D conformal tech-
nique. A total dose of 4500 cGy (180 cGy/day) was deliv-
ered to the pelvic nodes. It was followed by a sequential 
boost of 540 cGy (180 cGy/day; total dose 5040 cGy) or 
a concomitant boost of 1000 cGy (100 cGy/day, 2 times/
week; total dose 5500 cGy). It was firstly used a 3D-CRT 
technique and then a simultaneous integrated boost with 
intensity-modulated radiotherapy (220 cGy/day, total dose 
5500 cGy). 5-Fluorouracil and leucovorin or capecitabine 
were administered in different schedules as concomitant 
chemotherapy.

MRI protocol

A 3 T MRI (Achieva, Philips Medical System, Best, the 
Netherlands) equipped with a phased array surface coil was 
used for the rectal study. The MRI protocol included T2w 
and DWI images acquired with a plane perpendicular to 
the tumor major axis. ADC maps were calculated for each 
patient. Detailed information about the MRI protocol has 
been previously documented and is accessible in the sup-
plementary material (Appendix 1) [6, 15, 26].

Imaging analysis

Two independent whole-volume tumor segmentations for 
each patient were manually performed by two readers on 
T2w and ADC. One reader was a board-certified radiologist 
with 5 years of expertise in rectal MRI and the other was a 
senior radiology resident. The tumor presence was defined 
as intermediate signal intensity on T2w images and a cor-
responding hypointensity on ADC [4]. All the segmentations 
were used as masks for the following analysis. An open-
source computing platform, 3DSlicer Version 4.8 (www.​
3dsli​cer.​org), was used for image segmentation [15, 27].

Staging MRI features

Four weeks after the manual segmentation, the two readers 
evaluated in consensus eight staging MRI-based features 
(sMRI) on the T2w images. These features regarded tumor 
location, craniocaudal extension, distance from the internal 
anal sphincter, mesorectal fascia infiltration, extramural vas-
cular invasion, extramural depth of tumor invasion, T-stage 
and N-stage [15].

http://www.3dslicer.org
http://www.3dslicer.org
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Radiomic features

An open-source platform, PyRadiomics, guided the extrac-
tion of radiomics features from the segmentations of the 
two readers [28]. A reproducibility assessment was per-
formed. Both the MR images and the segmentations were 
resampled using isotropic voxel dimensions of 1 × 1 × 1 
mm to avoid data heterogeneity bias and to ensure repro-
ducibility. Ten built-in filters (original, wavelet, Lapla-
cian of Gaussian (LoG), square, square root, logarithm, 
exponential, gradient, LBP2D and LBP3D) were utilized 
to process the data, resulting in the calculation of seven 
feature classes (first-order statistics, shape descriptors, 
glcm, glrlm, ngtdm, gldm and glszm).

Blood sample extraction and processing

60 μL of serum was extracted with 180 μL of methanol on 
ice, after 30 min of incubation on ice, the sample was cen-
trifugated at + 4 °C for 30 min, the supernatant was dried in 
speedvac and the dry residue was resuspended in 120 μL by 
using a mixture of water and acetonitrile (ACN) 30:70 for 
metabolic analyzes.

Untargeted metabolomics analysis

Ten μL of extracted metabolites was analyzed in triplicate 
by LC–MS/MS with a Dionex UltiMate 3000 RSLCnano 
System (Thermo Fisher Scientific) coupled to an Orbitrap 

Fig. 1   Workflow of untargeted 
metabolomics approach. The 
number of features taken into 
consideration in the vari-
ous steps, up to the final data 
matrix, is shown in bold. Each 
processing step was described 
detailing the inclusion and 
exclusion criteria. Exclusion 
list includes compounds present 
in the blank sample that are 
considered potential contami-
nants. Inclusion list includes 
molecules present in the sample 
excluding contaminants. Chro-
matographic retention times 
(RT) and the minimum signal-
to-noise ratio (S/N) were the 
inclusion criteria for the quanti-
fication step. The databases and 
the mass tolerance (expressed in 
ppm) were the inclusion criteria 
in the identification step
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Fusion Tribrid mass spectrometer (Thermo Fisher Scien-
tific), using the Deep Scan AcquireX data dependent acqui-
sition tool. Metabolites were separated on an Accucore™ 
C18 (2.1 mm I.D., 150 mm L., 2.6 μm ps, Thermo Fisher 
Scientific) HPLC column. The flow rate was set to 300 µL/
min with a total run time of 30 min and the following chro-
matographic gradient (mobile phase A: 0.1% formic acid 
(FA) in water (H2O); mobile phase B: 0.1% FA in ACN: 
from 5 to 70% of B in 13.5 min followed by 70 to 98% in 
2 min, maintaining 98% B for 7 min, from 98 to 5% B in 
0.5 min and maintaining 5% B until the end of the run). The 

mass spectrometer, providing a 60,000 resolution in full scan 
mode throughout the mass range, was equipped with a H-ESI 
spray source. The acquisition was achieved in both positive 
and negative ion polarity, using stepped HCD fragmenta-
tion (collision energies: 20, 40 and 120%) and Orbitrap for 
MS2, fixed collision-induced dissociation (CID) fragmenta-
tion (collision energy: 35%) and ion trap for MS3. Precursor 
ions in the range 160 to 2000 m/z with an absolute intensity 
above 5.0 × 102 were selected for MS2, while fragment ions 
above the threshold of 8.0 × 103 were chosen for MS3. Deep 
Scan AcquireX data dependent acquisition tool was used by 
analyzing a representative pool sample for the creation of 
excluded and included mass list in both MS scan acquisition 
mode and MS2 and MS3 for the identification step.

Metabolomics feature extraction

Raw data were processed using ChemSpider and mzCloud 
to search databases of MS1 and fragmentation scans, respec-
tively, in Compound Discoverer version 3.1 (Thermo Fisher 
Scientific). Mass lists of “Endogenous Metabolites Data-
base 4400 Compounds” and “Extractables and Leachables 
HRAM Compound Database” were used as well, mostly to 
recognize contaminants. Metabolite identification was based 
on accurate mass and mass fragmentation pattern spectra, 
but annotation required at least in part a manual contribution 
after applying the FISh scoring. A mass tolerance of 3 ppm 
was set for feature matching, and the log2 fold change was 
used to compare the differential abundance of compounds 
in each sample.

Functional analysis of metabolomics signature

Metabolites ratios were uploaded for “Core Analysis” 
through Ingenuity Pathway Analysis (IPA software, Qia-
gen, Hilden, Germany) to statistically map the modulated 
molecules for their functional annotations in terms of 
canonical pathways, upstream regulators analysis and down-
stream effects networks. Molecular pathways and predicted 
upstream regulators with overlap p-value < 0.05 and activa-
tion z-score > 2 or < − 2 were considered as meaningful on 
both statistical and biological points of view.

Machine learning: kNN‑based classification

Machine learning (ML) approaches aim to exploit data 
multi-dimensionality to identify statistical dependences 
among variables for predictive, modeling and classifica-
tion purposes. In this study, the k-nearest neighbors (kNN) 
classifier was employed to classify the responder and non-
responder groups [29]. The kNN classifier labels a new 
instance based on the majority class of the k closest instances 
from the training data. The kNN algorithm commences by 

Table 1   Descriptive baseline characteristics of included patients 
(n = 35)

*  = IQR Inter-quartile range; SD standard deviation; IAS internal anal 
sphincter; EMVI extramural vascular invasion
** Assessed with MRI and derived from clinical MRI reports in the 
hospital’s patient database
*** Assessed according to Mandard Tumor Regression Grade (TRG) 
system on surgical specimen after neoadjuvant treatment

Variable Value

Gender
 Male 22 (63%)
 Female 13 (37%)

Median age (IQR*) 66 (63–74)
MRI examination 35
Staging MRI Features
 Location
  High 2 (6%)
  Middle 17 (48%)
  Low 16 (46%)

 Craniocaudal Extension, mm (Mean ± SD) 47 ± 20
 Distance from IAS, mm (Mean ± SD) 31 ± 26
 Depth of Extramural Invasion, mm (Mean ± SD) 7 ± 7
 Mesorectal Fascia Infiltration 11 (31%)
 Extramural Vascular Invasion 21 (60%)
 Primary cT stage**
  T1–T2 2 (6%)
  T3 30 (86%)
  T4 3 (8%)

 Primary cN stage**
  N0 7 (20%)
  N1 18 (51%)
  N2 10 (29%)

Treatment response***
 Responders 24 (69%)

 16 TRG1 
(46%)

 8 TRG2 (23%)
Non-responders 11 (31%)

 8 TRG3 (23%)
 3 TRG4 (8%)
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receiving an instance whose class label is unknown. Using a 
distance metric, such as Euclidean distance, it then computes 
the distance between this new instance and every instance 
in the training set. Next, it selects the k instances from the 
training set that are closest to the new instance based on their 
distance from the new instance. The new instance is then 
tagged with the class label that is most prevalent among its 
k-nearest neighbors (“majority vote”). k is a user-specified 
parameter that can be selected by cross-validation or other 
methods. Larger values of k result in a smoother decision 
boundary, while smaller values of k result in a more complex 
decision boundary. One of the benefits of kNN is that it is 
simple and easy to understand. However, it can be computa-
tionally expensive, particularly when the size of the training 
set size is large [13]. sMRI features, radiomic features (ADC 
and T2w evaluated by two operators) and metabolomic data 
(MD) were considered as input of the machinery, both inde-
pendently and together, thus allowing to develop five differ-
ent models relying on, respectively, sMRI only, MD only, 
ADC only, T2w only and sMRI + MD + ADC + T2w. The 
classifier’s input data were normalized (z-score), whereas 
the output was defined labeling the non-responder patients 
as class “0” and the responder participants as class “1.” The 
Euclidean distance was employed as the distance metric, 
the weights assigned to the k-nearest neighbors were the 
inverse of the squared distance, and the number of neighbors 
was considered as an hyperparameter of the model and it 
was optimized within the nested cross-validation framework 
[30–32].

To mitigate the poor generalization performances poten-
tially deriving from the large number of features with respect 
to samples, feature selection procedures were employed [33]. 
Feature selection was performed in two steps. Firstly, a sub-
set of the available features was selected considering only 
those features with a high “inter-observer” reliability, i.e., 
only those robust to differences introduced by the manual 
identification of the region of interest by the independent 
radiologists. Radiomics features with high inter-observer 
correlation (r > 0.95) were considered reliable and used for 
further analysis [34, 35]. Of note, such feature selection 
was performed outside the nested cross-validation. In fact, 
this feature selection does not exploit data output label and 
does not create classification overfitting. The second step of 
feature selection was performed implementing a wrapper 
method [36, 37]. In this study, a sequential forward selection 
was employed: It started with no feature in the model, and 
in each iteration, a feature was added to produce the highest 
increase in performance until the addition of a new vari-
able did not improve the model’s performance. Differently 
to the first step of feature selection, the wrapper method 
exploits the output labels and creates data overfitting without 
samples separation in train and test sets. Hence, similarly 
to the hyperparameter optimization of the kNN classifiers, 

the wrapper approach was iterated within the nested cross-
validation (nCV).

To optimize hyperparameters and ensure the model’s gen-
eralizability without overfitting, three distinct datasets are 
necessary. Firstly, a training set is used to train the model 
with various hyperparameter values. Secondly, a validation 
set is employed to select the best hyperparameters based 
on performance. Finally, a test set is used to evaluate the 
final model’s performance. This approach allows for effec-
tive hyperparameter tuning and unbiased assessment of 
the model’s performance on unseen data. However, when 
a reduced sample numerosity is available, this data separa-
tion might drastically reduce the training sample, making it 
difficult for the data-driven model to be properly fitted. The 
nCV is an extension of this method that helps to reduce the 
impact of sample loss across multiple sets while avoiding 
results biases and data overfitting [30–32]. In detail, data 
are separated into folds, and the model is trained iteratively 
in a nested way on all but onefold of the data. The inner 
loop identifies the optimal hyperparameters (validation, in 
our case it identified also features employing the wrapper 
method) while the outer loop estimates how well the model 
performs over iterations (test). The approach is described as 
leave-one-out nCV if the number of folds equals the number 
of samples (onefold per sample) [38, 39]. This method is 
ideal for medical settings because each sample corresponds 
to a single patient. In this study, a leave-one-out nCV was 
used to train, validate and test the kNN model. To define 
the optimal model hyperparameter and identify the selected 
features reported in the manuscript, a majority voting algo-
rithm was employed across the cross-validation iterations. 
Since the study sample provided non-balanced classes, an 
iterative procedure (1000 iterations) was performed to train 
and test the machinery with balanced classes via random 
subsampling of the larger class at each iteration. The ML 
analysis was implemented in MATLAB (MATLAB 2021b©, 
Mathworks Natick, MA, USA).

Reference standard

For all patients, a Tumor Regression Grade (TRG) 1 or 2, 
assessed according to Mandard’s classification, was consid-
ered as major pathological response [40–42].

In detail, TRG1 and TRG2 were labeled as responders 
(R) while TRG3 and TRG4 as non-responders (NR) [43].

Statistical analysis

The classification performance was assessed by evaluating 
the confusion matrix associated with the out-of-training 
samples, which provides information about the sensitivity 
and specificity of the classifier. In addition, the receiver 
operating characteristic (ROC) analysis was employed, 
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considering the area under the ROC curve (AUC) as indica-
tive of the classification performance of each proposed 
model. Since a bootstrap procedure was implemented to 
balance the classes randomly, the average AUC and the 
standard deviation of the distribution delivered by the proce-
dure are reported. The p-values associated with the average 
AUCs (probability of obtaining an AUC value above 0.5 by 
chance) and that associated with average AUCs comparisons 
(probability of two AUCs being generated from the same 
underlying distribution) were evaluated generating a met-
rics’ confidence interval through a bootstrapping approach 
(1000 iterations). The statistical analysis was performed in 
MATLAB (MATLAB 2021b©, Mathworks Natick, MA, 
USA). PLS-DA and volcano plot for metabolomics data 
were performed by the online tool Metaboanalyst (https://​
www.​metab​oanal​yst.​ca/). Violin plot were performed with 
BoxPlotR online tool, and correlation and Heatmaps were 
performed with GraphPad Prism 7.

Results

Staging MRI features

Nine MRI staging features (sMRI) were evaluated by radi-
ologists (refer to the method section for further information). 
Of the nine features, the only feature that was different on 
average between the 24 responders (R) and 11 non-respond-
ers (NR) was the mesorectal fascia infiltration (p < 0.05).

Radiomics

In total, 1470 features were extracted with PyRadiomics 
for each subject, image type and reader. Of these 1470 fea-
tures, 919 for apparent diffusion coefficient (ADC) and 916 
for T2-weighted (T2w) images were highly reproducible 
(r > 0.95) when computed within the masks identified by the 
two radiologists. The reproducible features were averaged 
between the two readers and were used for further analysis. 
Of the selected features, 109 for the ADC and 124 for the 
T2w images showed significant average differences between 
the 24 R and 11 NR (p < 0.05, uncorrected).

Metabolomics

Sera from 24 R and 11 NR were analyzed using an untar-
geted metabolomics approach, to identify and relatively 
quantify as many serum metabolites as possible. Follow-
ing the workflow shown in Fig. 1, a representative pool of 
blood samples was used to build a library of mass spectra 
and fragmentation mass spectra for the metabolite identifi-
cation step, in both positive and negative acquisition mode. 
In this phase of library construction, the triplicate analysis 

of a blank sample allowed us to create a mass exclusion list 
composed of 39,630 m/z and 31,266 m/z for acquisition in 
positive and negative mode, respectively. At the same time, 
the analysis of a representative sample allowed us to cre-
ate an inclusion list of species to be quantified and identi-
fied in the next step on the samples individually (4162 and 
1432 species in positive and negative mode, respectively), 
as summarized in the workflow in Fig. 1. In the following 
step, samples from 35 patients were individually analyzed 
in mass scanning in both positive and negative acquisition 
mode, to obtain a chromatographic profile for the metabo-
lite’s relative quantification step. In total, 3187 and 1587 fea-
tures were quantified in positive and negative modes, based 
on the following quantification parameters: Retention time 
(RT) 0–23 min, maximum shift for allign RT = 0.2 min and 
signal-to-noise ratio S/N = 3.

Of these, 1,324 features were identified as specific metab-
olites by matching with the library of the acquired fragmen-
tation mass spectra. The databases used for identification 
were BioCyc, Human Metabolome Database and KEGG, 
considering a mass tolerance of 3 ppm.

The identified metabolites were used for statistical analy-
sis and functional analysis through the Ingenuity Pathway 
Analysis (IPA software, Qiagen, Hilden, Germany) bioinfor-
matics tool and machine learning analysis. The sparse partial 
least-squares discriminant analysis (sPLS-DA) algorithm 
was applied as exploratory multivariate statistical analysis 
(Fig. 2A), indicating that metabolomics serum signatures 
could distinguish R from NR patients at T0. Univariate sta-
tistical analysis revealed 75 compounds significantly dif-
ferent when comparing R and NR at T0, as shown in the 
volcano plot in Fig. 2B. IPA functional investigation of the 
endogenous compounds identified, quantified and mapped in 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Human Metabolome Database (HMDB), highlighted a pre-
dicted down-regulation of “Cell viability” and “Cell viabil-
ity of cancer cells” (p-value = 2.09 E10−3; z-score = − 1.86) 
biological function in R patients compared to NR patients, 
before CRT (Fig. 2C). Moreover, in R patients, IPA inves-
tigation highlighted a predicted significant up-regulation of 
the following cellular functions: “Mobilization of Ca2 + ” 
(p-value = 1.74 E10−5; z-score =  + 2.17), “Oxidative stress 
response of cells” (p-value = 2.97 E10−4; z-score =  + 1.98) 
and “Release of L-glutamic acid” (p-value = 6.15 E10−5; 
z-score =  + 1.17) (Fig. 2D–E).

Multi‑omics kNN‑based classification

When using the k-Nearest Neighbors (kNN) classifier on 
sMRI metrics, only the Mesorectal Fascia Infiltration was 
selected via the wrapper procedure. The classification per-
formance evaluation delivered an out-of-training sample 
ROC with an AUC of 0.636 (± 0.094, p-value = 0.10). The 

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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optimized cutoff point delivered an out-of-training sample 
sensitivity of 54.5% and an out-of-training sample specific-
ity of 72.7%. In Fig. 3A, ROC curve is presented together 
with the associated confusion matrix for the optimized cutoff 
point.

When using metrics extracted from apparent diffusion 
coefficient (ADC) maps, the “original_shape_Maximum2D-
DiameterSlice” and “wavelet_LLH_glrlm_RunLengthNon-
Uniformity” features were selected. The machine learning 
(ML) framework achieved ROC performance with an AUC 
of 0.807 (± 0.097, p-value = 0.001) and a best sensitivity of 
90.9% coupled with a specificity of 72.7% (Fig. 3B).

As concerns the T2w analysis, 4 features were selected: 
exponential_firstorder_Energy, “squareroot_glcm_Inverse-
Variance,” “wavelet_LLH_glszm_SizeZoneNonUniform-
ity” and “lbp_3D_m1_glrlm_RunLengthNonUniformity.” 
An AUC of 0.826 (± 0.097, p-value = 0.0007) coupled with 
a best-point sensitivity and a specificity of 82.6% were 
obtained (Fig. 3C).

Feature selection on metabolomic data (MD) identified 2 
salient compounds, oxoproline and proline. The classifica-
tion delivered an AUC = 0.809 (± 0.041, p-value = 0.001) 
with best sensitivity of 90.9% and specificity of 72.7% 
(Fig. 3D).

Fig. 2   A sPLS-DA based on 
4000 features in the plasma 
of responder (R) and non-
responder (NR) patients. B Vol-
cano plot of 4000 metabolomic 
features classifying them in not 
significant (gray), significantly 
down-regulated in RP (blue 
dots) and significantly up-regu-
lated in RP (red dots). C Predic-
tion of down-regulated cellular 
functions “Cell viability” and 
“Cell viability of cancer cells” 
in R patients. D Predicted of 
up-regulated cellular function 
“Mobilization of Ca2 + ” in R 
patients. E Predicted up-regula-
tion of cellular function “Oxida-
tive stress response of cells” 
and “Release of l-glutamic 
acid” in R patients. F Legend 
of color code for increased 
and decreased measurement of 
metabolites, and predicted acti-
vation and inhibition of disease 
and cellular function
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When considering all the available features (i.e., 
sMRI + ADC + T2w + MD), 4 features were identified 
as the most predictive by the wrapper procedure: “wave-
let_LLH_glrlm_RunLengthNonUniformity” and “gradi-
ent_glszm_GrayLevelNonUniformity” from ADC images, 
“wavelet_HHH_glcm_DifferenceAverage” from T2w 
images and oxoproline from MD data. The AUC obtained 
was 0.864 (± 0.083, p-value = 0.0002) with a best-point 
sensitivity of 90.9% and a specificity of 81.8% (Fig. 3E). 
The performances of the investigated models are reported in 
Table 2. Notably, when comparing the AUC of the different 
models, statistically significant differences were found when 
comparing sMRI-based classification with the multi-omics 
classification (Tables 3 and 4).

Fig. 3   ROC curve and best cutoff point confusion matrix delivered by the classification performed relying on A sMRI data, B ADC metrics, C 
T2w metrics, D MD data and E sMRI + ADC + T2w + MD data

Table 2   Classification performances of the proposed models expressed as AUC, sensitivity and specificity

Technique AUC​ Sensitivity (%) Specificity (%) Selected features

sMRI 0.636 54.5 72.7 Mesorectal Fascia Infiltration
MD 0.809 90.9 72.7 Oxoproline

Proline
ADC 0.807 90.9 72.7 original_shape_Maximum2DDiameterSlice

wavelet_LLH_glrlm_RunLengthNonUniformity
T2w 0.826 82.6 82.6 exponential_firstorder_Energy

squareroot_glcm_InverseVariance
wavelet_HHL_glszm_SizeZoneNonUniformity
lbp_3D_m1_glrlm_RunLengthNonUniformity

MD + ADC + T2w 0.864 90.9 81.8 ADC: wavelet_LLH_glrlm_RunLengthNonUniformity
gradient_glszm_GrayLevelNonUniformity
T2w:
wavelet_HHH_glcm_DifferenceAverage
MD: Oxoproline

Table 3   Comparison between the AUCs of the developed models

Comparisons z-stat p-value

MD vs. ADC 0.019 0.985
MD vs. T2w − 0.101 0.867
ADC vs. T2w − 0.187 0.851
MD + ADC + T2w vs. MD 0.577 0.564
MD + ADC + T2w vs. ADC 0.596 0.551
MD + ADC + T2w vs. T2w 0.410 0.682
sMRI vs. MD − 1.411 0.158
sMRI vs. ADC − 1.392 0.164
sMRI vs. T2w − 1.573 0.115
sMRI vs. MD + ADC + T2w − 1.970 0.048
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Inferential description of the selected features

Oxoproline levels were significantly (p-value = 0.0001) 
higher in NR patients (Fig. 4A). Interestingly, oxoproline 
is considered an oxidative stress marker, involved in the 
synthesis and degradation of glutathione in the glutathione 
cycle [44]. In this context, in addition to oxoproline, the 
gamma-glutamyl amino acids, glutamate, glutamine and 
proline are also involved. Thus, we extrapolated some of 
these identified and quantified molecules from the metabo-
lomics data. Among all, gamma-glutamyl-tyrosine levels 
were significantly higher (p-value = 0.04) in responding 
patients before starting CRT (Fig.  4B). Furthermore, 
to integrate the data obtained from metabolomics and 
radiomics, we created a correlation matrix between the 
metabolites involved in the degradation and synthesis of 
glutathione’s cycle (numbers 1 to 6 of Fig. 4C legend) 
along with the main radiomics features (numbers 7–14 of 
Fig. 4C legend). Pearson correlation coefficients (r) were 
transformed into − log10 (p-value) and plotted as a Heat-
map (Fig. 4C). R-coefficients and p-values calculated for 
each correlation are provided in Appendix 2 and 3 (Sup-
plementary Material). As shown in the heatmap, signifi-
cant correlations were found between the same metabolites 
and radiomics features. A significant moderate correla-
tion was found between oxoproline levels and radiomics 
features “original shape maximum 2D diameter slice” 
with r = 0.557 and p-value = 0.0006 (Fig. 4D). Moreo-
ver, a significant fair correlation was observed between 
gamma-glutamyl-leucine and glutamate levels (r = 0.453 
and p-value = 0.007), and between glutamate and proline 
levels (r = 0.405 and p-value = 0.001), as shown in Fig. 4 
Panels E–F, respectively (Fig. 5).

Discussion

Our study provided initial evidence that an MRI-based 
“radiometabolomic” approach has the potential to accu-
rately predict treatment response of patients with LARC 
with high accuracy and at an early stage. This innovative 
approach, based on the integration of two -omics methods, 
could be transferred to the clinic in future, thus improving 
the patient selection for the most appropriate treatment. 
More in detail, adding radiometabolomics features to 
standard T2w conventional clinical features significantly 
improved the prognostic model. This work confirmed the 
preliminary results of recent radiomics studies on rectal 
cancer. Delli Pizzi et al. recently reported that a pre-treat-
ment MRI-based radiomics ML model accurately predicts 
the treatment response in patients with LARC [15]. Simi-
larly, Shin et al. presented a T2w and ADC-based radi-
omics model showing better classification performance 
than radiologists for diagnosing complete response after 
the completion of CRT [45]. Wang et al. reported that a 
radiomics model using pre-treatment radiotherapy plan-
ning CT images can predict treatment response and sur-
vival outcomes in LARC patients [46]. In our study, the 
predictive radiomics features were extracted from 1 mm 
slice thickness. In this regard, the last European Society 
of Gastrointestinal and Abdominal Imaging (ESGAR) 
consensus recommended that the slice thickness of the 
axial T2w image should be equal or inferior to 3 mm [4]. 
The predictive features of our study were mainly focused 
on tumor heterogeneity. For instance, tumors with a high 
degree of texture homogeneity were more likely associated 
with good treatment response. This result is in line with 
several previous non-rectal cancer studies showing that 

Table 4   Statistical test (Chi-square stat and t-stat) between the two groups (non-responders vs. responders) for the metrics identified by the fea-
ture selection procedures

Metric Chi-square stat p-value

sMRI mesorectal fascia infiltration 3.978 0.046

Metric t-stat p-value

MD Proline − 1.173 0.249
4-Oxoproline 4.910 2.40 × 10–5

ADC original_shape_Maximum2DDiameterSlice 3.386 0.002
wavelet_LLH_glrlm_RunLengthNonUniformity 3.704 7.73 × 10–4

squareroot_glszm_LargeAreaLowGrayLevelEmphasis − 0.689 0.495
wavelet_HHL_firstorder_Energy 2.695 0.011

T2w exponential_firstorder_Energy 2.155 0.039
squareroot_glcm_InverseVariance 2.345 0.025
wavelet_HHL_glszm_SizeZoneNonUniformity 0.725 0.473
lbp_3D_m1_glrlm_RunLengthNonUniformity 4.208 1.85 × 10–4

wavelet_HHH_glcm_DifferenceAverage − 0.879 0.385
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homogeneous texture features are associated with better 
clinical prognosis and neoadjuvant CRT response [14, 47, 
48].

Our results suggested that treatment response prediction 
improves when imaging-based radiomics is combined with 
metabolomics. Metabolomics is an emerging field dedicated 
to the study of metabolites, their composition, interactions, 
dynamics and responses to diseases or therapies in cells, 
tissues and biofluids. The application of untargeted metabo-
lomic analysis on peripheral blood may provide novel bio-
markers of cancer treatment response [49]. Recently, Yang 
et al. investigated postoperative esophageal tissue via an 
untargeted metabolomics approach hypothesizing glycer-
ophospholipids metabolism as a potential therapeutic target 
of tumor progression [50]. Moreover, several studies have 
recently explored metabolomics approaches in different 

fields of oncology, such as triple-negative breast cancer, 
gastric cancer and lung cancer [51–53]. For CRC, Brezmes 
et al. explored urinary NMR-based metabolomics to find 
novel biomarkers [54]. In addition, metabolic profile inves-
tigation associated with gut microbiome composition was 
recently applied to investigate potential diagnostic markers 
of individuals with CRC compared to healthy controls [55].

In our study, serum metabolic signature before treatment 
is significantly correlated to a down-regulation of the vitality 
of cancer cells in R compared to NR, highlighting how the 
metabolic study of serum before starting therapy can provide 
valuable information on outcome. Contextually, the expres-
sion of specific serum metabolites in R has highlighted a 
significant implication in oxidative stress response. Oxopro-
line accumulation coupled with low levels of gamma-glu-
tamyl-tyrosine in NR patients may suggest a dysregulation 

Fig. 4   A, B Violin plot showing 
the distribution of oxopro-
line (Panel A) and gamma-
glutamyl-tirosine (Panel B) 
for non-responder (in red) and 
responder (in green) patients. C 
Heatmap of the p-value for the 
correlation of 14 radiometabo-
lomics features described in the 
legend on the right. D Pearson 
correlation between oxoproline 
levels and radiomics features 
called (original shape maximum 
2D diameter slice). E Pearson 
correlation between gamma-
glutamyl-leucine and glutamate 
levels. F Pearson correlation 
between glutamate and proline 
level. *** means p-value of 
Mann–Whitney test < 0.001, * 
means p-value of Mann–Whit-
ney test < 0.05
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in glutathione degradation and therefore a worse response 
to oxidative stress [56]. In our study, oxoproline levels were 
correlated with the tumor’s maximum diameter of the tumor 
measured on axial MR images (Fig. 4C).

This is, to our knowledge, the first study investigating 
the potential synergistic role of radiomics and metabo-
lomics in rectal cancer, a translational research field 
we named “radiometabolomics.” A multi-disciplinary 
approach involving radiologists, oncologists, biochemists, 
radiation therapists and bioinformatics may support clini-
cians in selecting the most appropriate treatment tailored 
for each patient. This study aims to point out a proof-of-
concept experimental workflow combining multi-omics 
features to explore new possible and pioneer strategies 
that, once overcome some limitations, could be ready to 
be moved into clinical practices. Firstly, the sample size 
is limited and obtained through a single-center retrospec-
tive study. Of note, in our work the implementation of the 
leave-one-out nCV minimized the effect of the reduced 
number of samples while avoiding overfitting [30]. It was 

also coupled with a robust feature selection approach 
(wrapper method), hence obtaining the maximum clas-
sification performance achievable with the available data 
no bias and good generalization. Because of the absence 
of analysis bias, an increase in the training sample size is 
expected to only improve the classification performance. 
Nonetheless, future studies, possibly prospective and 
multicenter, are needed to corroborate our findings and 
to obtain standardized multivariate models that can be 
routinely used in the clinical practice. Secondly, our 3 T 
MR scanner was scheduled over time and during the study 
for software upgrades which might have modified image 
quality. However, these changes did not cause changes in 
main MRI protocol parameters. Thirdly, we only used T2w 
imaging and DWI, without considering dynamic contrast-
enhanced imaging (DCE). Nonetheless, the role of DCE 
in the primary staging of rectal cancer is controversial. In 
fact, according to the recent ESGAR consensus meeting, 
the use of DCE-MRI is not routinely recommended [4].

Fig. 5   Study workflow. In the 
first step (I), rectal cancer was 
manually segmented on MR 
images (T2w, ADC), followed 
by radiomics features extrac-
tion. In the second step (II), 
plasma untargeted metabo-
lomics analysis and metabolites 
identification and quantification 
were performed. In the final 
step (III), a machine learning 
algorithm (k-nearest neigh-
bors—kNN) was used to select 
radiometabolomics features and 
ROC analysis delivered the clas-
sification model accuracy for 
treatment response prediction 
(created with BioRender.com)
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Conclusion

Multi-omics staging has the potential to predict CRT 
response in patients with LARC, thus enhancing the predic-
tive value of standard MRI and helping to avoid unneces-
sary surgical treatment. The proposed radiometabolomics 
integrated approach is into an embryonic phase which may 
encourage and promote deeper investigation in larger, pro-
spective studies to push toward a better definition of the 
radiometabolomics role in personalized rectal cancer care.
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