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Abstract
Cranial nerve enhancement is a common and challenging MRI finding that requires a meticulous and systematic evaluation 
to identify the correct diagnosis. Literature mainly describes the various pathologies with the associated clinic-radiological 
characteristics, while the radiologist often needs a reverse approach that starts from the radiological findings to reach the 
diagnosis. Therefore, our aim is to provide a new and practical pattern-based approach to cranial nerve enhancement, which 
starts from the radiological findings and follows pattern-driven pipelines to navigate through multiple differential diagno-
ses, guiding the radiologist to reach the proper diagnosis. Firstly, we reviewed the literature and identified four patterns to 
categorize the main pathologies presenting with cranial nerve enhancement: unilateral linear pattern, bilateral linear pattern, 
unilateral thickened pattern, and bilateral thickened pattern. For each pattern, we describe the underlying pathogenic origin, 
and the main radiological features are displayed through high-quality MRI images and illustrative panels. A suggested MRI 
protocol for studying cranial nerve enhancement is also provided. In conclusion, our approach for cranial nerve enhance-
ment aims to be an easy tool immediately applicable to clinical practice for converting challenging findings into specific 
pathological patterns.
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Background

Cranial nerves (CNs) are twelve paired sets of nerves with 
sensory and/or motor functions. The first (olfactory nerve—
CN I) and second pair (optic nerve—CN II) are considered 
extensions of the central nervous system arising from the tel-
encephalon and diencephalon, respectively; the other ten 
pairs of CN originate from the brainstem having their nuclei 
in the midbrain (oculomotor nerve—CN III and trochlear 
nerve—CN IV); pons (trigeminal nerve—CN V, abducens 

nerve—CN VI, facial nerve—CN VII, vestibulocochlear 
nerve—CN VIII), and medulla oblongata (glossopharyngeal 
nerve—CN IX, vagus nerve—CN X, accessory nerve—CN 
XI, hypoglossal nerve—CN XII). From their origin, CN is 
usually divided into cisternal, intracranial, and extra-cranial 
segments, leaving the central nervous system through cra-
nial foraminal. Microscopically, CN is surrounded by con-
nective tissue sheaths including endoneurium, perineurium, 
and epineurium. Axons of each nerve, except I and II, are 
myelinated by Schwann cells. Tight junctions present in the 
endothelium of the endoneurial capillaries and inner layers 
of the perineurium guarantee the integrity of the blood-nerve 
barrier (BNB). The loss of BNB structural integrity caused 
by pathogenic events involves leakage and accumulation of 
contrast material, which results in pathological enhancement 
alone or associated thickening if tumoral or inflammatory 
infiltrates occur [1]. Cranial nerve enhancement (CNE) 
often represents a diagnostic challenge, being not always 
easy to distinguish among several causes, such as neoplasms, 
inflammation, autoimmune diseases, demyelination, infec-
tions, traumas, ischemia or radiation.
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The pitfalls of evaluating CNE on MRI may be related to 
the slenderness of the nerves and use of suboptimal imaging 
parameters, which could lead to under-detection, while the 
presence of perineural vascular plexuses could lead to over-
estimation. Indeed, although cranial nerves physiologically 
have no contrast enhancement, some segments do have peri-
neural vascular plexuses that may cause apparent moderate 
enhancement derived by this kind of vascular organization. 
Typically, the trigeminal ganglion and the proximal portions 
of its divisions V2 and V3, the geniculate, tympanic, and 
mastoid segments of the facial nerve, and the intracanal seg-
ment of the hypoglossal nerve are surrounded by enhancing 
perineural vascular plexuses [2–4].

Our purpose is to provide a useful tool to facilitate dif-
ferential diagnosis of pathologies causing extra-axial CNE 
through a pattern-based approach.

We tried to organize the most common disorders that can 
affect cranial nerves with consequent pathological enhance-
ment by mapping them out in a flowchart by cross-referenc-
ing data with the literature.

With the help of the flowchart we developed, it is pos-
sible to narrow the range of possible diagnoses based on the 
identification of the affected cranial nerves and their pattern 
of enhancement (mono or bilateral, linear or thickened).

Additionally, to correlate the type of enhancement to the 
pathogenetic mechanisms, we linked the pattern of CNE 
and the corresponding cranial nerve involvement with each 
of the most prevalent pathologies potentially causing CNE, 
grouped into three macro-sets: infections, inflammatory dis-
eases, and tumor-related enhancement. Primary CN tumors 
(i.e., neurinoma) will not be included because they are 
space-occupying lesions with a completely different appear-
ance from the other types of CNE here discussed.

Data collection

This is a narrative review, and we revised the literature to 
evaluate the presence of CNE, its pathologic causes, and its 
appearance. Two independent and experienced neuroradiolo-
gists (A.R. 15 years of experience and G.M. 5 years of expe-
rience) reviewed all English-language original articles and 
case reports inherent to the topic, excluding articles about 
CN space-occupying lesions.

Imaging of cranial nerve enhancement

Among imaging techniques, magnetic resonance (MR) has 
been referred to as the gold standard for the evaluation of 
cranial nerve pathology. Usually, the sequence of choice to 
depict the pathological enhancement of a cranial nerve after 
gadolinium-based contrast agents administration is a fat-sup-
pressed high-resolution three-dimensional T1-weighted fast 

gradient echo (3D T1 FGRE). This high-resolution volumet-
ric sequence would be preferable to in-plane T1 spin-echo 
weighted images, allowing multiplanar reconstruction and 
evaluation of thin structures such as cranial nerves [5]. Nev-
ertheless, this sequence may present some limitations, such 
as the presence of the near venous plexuses that may mask 
a pathological enhancement [1].

Due to complete cerebrospinal fluid suppression and to 
prevent flow artifacts around the brainstem, the use of fat-
saturated three-dimensional fluid-attenuated inversion recov-
ery sequence (3D FLAIR) after contrast medium injection 
has been studied. It performs better than contrast-enhanced 
T1-weighted images in the detection of cranial nerves and 
roots attached to the brainstem [6–8].

Recently, a contrast-enhanced 3D-T1-turbo spin-echo 
(TSE) black-blood sequence has gained attention, showing 
optimal diagnostic performance in depicting cranial nerve 
enhancement as it suppresses signals from vessels, includ-
ing the near venous plexuses, and provides an increased 
contrast-to-noise ratio [9, 10].

Beyond the contrast enhancement, it should be kept in 
mind that studying a pathology involving cranial nerves 
(CNs) also means properly evaluating cranial nerves anat-
omy and morphology by a pre-contrast high-resolution 
three-dimensional heavily T2-weighted sequence (such as 
SPACE/CISS/FIESTA-C/VISTA/Cube) and the eventual 
pre-contrast abnormal cranial nerve signal usually by a pre-
contrast fat-saturated 3D FLAIR [11, 12].

Finally, a coronal or axial T2-weighted sequence could 
be useful to detect denervation changes of facial muscles, 
representing an indirect sign of cranial nerve pathological 
involvement, and a pre-contrast T1-weighted spin-echo 
sequence, usually in the axial plane, may be useful for the 
evaluation of fat invasion in pathologies involving the extra-
foraminal segments of cranial nerves [5, 11].

Due to its low-contrast resolution, computed tomography 
(CT) is inferior to MRI for the visualization of cranial nerve 
pathology; however, it can be used in addition to MRI for the 
assessment of the morphology of the foramina and intraosse-
ous pathways of cranial nerves at the skull base [5].

In Table 1 (Table 1), we proposed an MRI protocol for 
studying CNE enhancement.

Cranial nerve enhancement patterns

We identified two types of CNE: linear and thickened. 
Where, by linear CNE, we mean a post-contrast enhance-
ment along the nerve, or a part of it, without an increase in 
the diameter of the nerve, and by thickened enhancement, 
we mean a post-contrast enhancement along the nerve, or 
a part of it, with an associated increased nerve diameter 
that is often irregular or nodular. Each of these types of 
enhancement can involve one or more cranial nerves, even 
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bilaterally; therefore, we identified the following four pat-
terns of CNE (Fig. 1):

1. unilateral linear CNE
2. bilateral linear CNE
3. unilateral thickened CNE
4. bilateral thickened CNE

In the flowcharts (Figs. 2, 3, 4, 5), we reported each kind 
of CNE pattern with the type of cranial nerve involved and 
the possibly related pathological condition.

The two linear enhancement patterns are related to a 
select number of illnesses, most of which are brought on by 
inflammatory or infectious conditions; only multiple scle-
rosis, among these illnesses, may appear with both bilateral 
and unilateral linear patterns and may affect a significant 
number of cranial nerves [13]. A linear CNE pattern is unre-
lated to any oncologic disorders.

The thickened CNE patterns offer a more challenging 
condition because a range of oncologic, inflammatory, and 
infectious diseases can justify this type of enhancement. 
Bilateral thickened enhancement is mainly related to neo-
plastic carcinomatosis [14], infective conditions such as 
tuberculosis or Lyme disease [15, 16] and inflammatory/
immuno-mediated pathologies such as Guillain–Barré syn-
drome and its variant Miller–Fischer syndrome [17, 18].

Some inflammatory/immuno-mediated conditions such 
as Sarcoidosis and Sjogren's disease are more pleomorphic, 
with both unilateral and bilateral cranial nerve involvement 
[19, 20]. Unilateral thickened pattern could be the expression 

of a perineural spread, especially if the V cranial nerve and 
the VII–XII nerves are involved [21].

An ophthalmoplegic migraine or the Tolosa–Hunt disease 
may be suspected if oculomotor nerves are affected [22, 23].

Although we only listed the most common pathologies 
and underlined that the final diagnosis can only be reached 
with the whole set of clinical and laboratory findings and 
the whole set of MRI, the proposed flow chart aims to rep-
resent a practical approach in guiding the radiologist toward 
a probable etiological cause of cranial nerve enhancement.

Pathogenesis: why can cranial nerve 
enhancement occur?

Tumor‑related enhancement

Malignant tumors can cause CNE mainly through two routes 
of tumor spread: perineural tumor spread (PNTS) and lep-
tomeningeal carcinomatosis (LC)/neurolymphomatosis. The 
MRI detection of these pathological conditions is crucial 
because they correlate with decreased survival, and PNTS 
also increases locoregional recurrence.

Malignant cells can dissociate from the primary tumor 
and establish metastatic deposits at nearby or distant sites. 
Metastatic deposits in and along nerves result in pathologi-
cal enhancement and thickening, commonly with a micro-
nodular appearance. Due to the pathogenic mechanisms, 
cranial nerve involvement is generally unilateral in the case 

Table 1  Proposed MRI protocol 
for the evaluation of cranial 
nerve pathology (1–12)

WI, weighted image; CN, cranial nerve; FLAIR, fluid-attenuated inversion recovery; SPACE, sampling 
perfection with application optimized contrast using different flip angle evolution; CISS, constructive inter-
ference in a steady state; FIESTA, fast imaging employing steady-state acquisition; VISTA, volume iso-
tropic turbo spin-echo acquisition; MPRAGE, Magnetization Prepared-RApid Gradient Echo; VIBE, volu-
metric interpolated breath-hold examination; FSPGR, fast spoiled gradient echo; THRIVE, T1-weighted 
high-resolution isotropic volume examination
*SPACE (Siemens), CISS/FIESTA-C/Cube (GE), VISTA (Philips)
**MPRAGE/VIBE (Siemens), FSPGR (GE), THRIVE (Philips)

MRI sequences Indication

Pre-contrast
3D FLAIR Lesion characterization
3D high-resolution heavily T2WI* Anatomical definition
Coronal/Axial T2 WI Denervation changes
Axial T1 WI Fat invasion (extraforaminal CN segments)
Post-contrast
3D T1 fast gradient-echo** Cranial nerve enhancement
or
3D T1-turbo spin-echo black-blood Cranial nerve enhancement, advantage: suppression of vessels signals
or
3D FLAIR (optional) Cranial nerve enhancement, advantages: no flow artifacts and better 

evaluation of leptomeningeal involvement
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Fig. 1  Cranial nerve enhancement patterns: a unilateral linear, b 
bilateral linear, c unilateral thickened, d bilateral thickened. Where, 
by linear CNE, we mean a post-contrast enhancement along the 
nerve, or a part of it, without an increase in the diameter of the nerve, 

and by thickened enhancement, we mean a post-contrast enhancement 
along the nerve, or a part of it, with an associated increased nerve 
diameter that is often irregular or nodular

Fig. 2  Unilateral linear pattern 
flowchart with the type of 
cranial nerve involved and the 
possibly related pathological 
condition
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of perineural spread and bilateral in leptomeningeal carci-
nomatosis and neurolymphomatosis [24, 34].

A malignancy spreads centripetally from the initial tumor 
site into the central nervous system using the support of a 
nearby nerve in a process known as perineural tumor spread 
(PNTS). The term perineural tumor invasion (PNTI) is often 
mistakenly used as a synonym for PNTS. It is important 
to clarify that while PNTI refers to a histologic finding 
of tumor cell infiltration, PNTS refers to the macroscopic 
involvement, radiologically apparent with a sensitivity of 
95% on MRI [25].

In the literature, it is reported commonly in head and 
neck cancer, reaching up to 50–70% in patients affected by 
mucosal squamous cell cancer and in at least half of patients 
affected by adenoid cystic carcinoma [21, 25].

The exact mechanism by which PNTS occurs is unclear, 
but modern studies have demonstrated that it is the result 
of a dynamic molecular process involving active crosstalk 
between the tumor and nerve cells [25, 26]. It has been 
proven that proteins involved in neural homeostasis, axono-
genesis, and dendritic growth play a key role in cancer cell 
proliferation, perineural invasion, and migration. These 
proteins are numerous including brain-derived neurotrophic 
factor, nerve growth factor, neurotrophin-3, neurotrophin-4, 
glial cell line-derived neurotrophic factor, the neural cell 
adhesion molecule, substance P, laminin-5, semaphorins, 
and their receptors [26, 27].

Since it is typically a unilateral process, the most charac-
teristic MRI finding of PNTS is an asymmetrical enlarge-
ment and enhancement (monolateral thickened pattern) of 

Fig. 3  Bilateral linear pattern 
flowchart with the type of cranial 
nerve involved and the possibly 
related pathological condition

Fig. 4  Unilateral thickened 
pattern flowchart with the type 
of cranial nerve involved and 
the possibly related pathological 
condition
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the involved cranial nerve compared to the healthy con-
tralateral nerve. Additional findings include obliteration of 
perineural fat planes, denervation changes, and homolateral 
widening of foramina [25] (Fig. 6).

Although skip lesions are uncommon, they are theoreti-
cally possible in the case of PNTS, where the tumor tissue 
is often continuous down the nerve [25, 27].

Fig. 5  Bilateral thickened pat-
tern flowchart with the type of 
cranial nerve involved and the 
possibly related pathological 
condition

Fig. 6  Patient with a history of oral cavity cancer treated by left 
hemiglossectomy with temporal flap reconstruction visible in a. 
(arrow) axial T1-weighted image. The axial T1-weighted image in b 
shows obliteration of the left pterygopalatine fossa by a pathological 
enhancing tissue well visible in c coronal fat-saturated 3D T1 post-
contrastographic weighted images (circle). In d axial fat-saturated 3D 

T1 post-contrastographic weighted images it is visible a thickened 
enhancement extending to the V2 segment of the left trigeminal nerve 
(arrow) and in e axial and f coronal fat-saturated 3D T1 post-contras-
tographic weighted images a thickened enhancement of the ipsilateral 
V3 segment (arrow). These findings are consistent with perineural 
spread
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Due to its size, cranial nerve V is the most affected nerve. 
Yet, cranial nerves III, IV, and VI can all be affected because 
of their intracavernous tracts' location within CN V [25].

Another possible cause of CNE in patients with head and 
neck tumors, in differential diagnosis with PNTS, is related 
to complications of radiotherapy causing the so-called 
radiation-induced neuritis. Radiotherapy may induce loss 
of BNB integrity due to demyelination, ischemia, coagu-
lation necrosis, or peripheral fibrosis. In radiation-induced 
neuritis, the affected nerves usually appear thickened with 
T2 hyperintense signal and enhancement. Although all cra-
nial nerves could be potentially involved, depending on the 
radiation exposure, literature data reported the XII cranial 
nerve as the most affected nerve following irradiation for 
nasopharyngeal carcinoma. Two conditions could help in 
differentiating radiation-induced neuritis from PNTS, the 
type of CNE usually more nodular in PNTS, and the tim-
ing of onset usually months to years after radiation therapy 
exposure in radiation-induced neuritis [1].

The other route of tumor spread already mentioned is 
leptomeningeal carcinomatosis. This condition refers to a 
metastatic involvement of the cerebrospinal fluid and lep-
tomeninges by a central nervous system tumor, any solid 
systemic tumor, or hematologic malignancy. In the literature, 
it is reported to occur in 4–15% of patients with malignancy, 
and, in decreasing order, breast cancer, lung cancer, and 
melanoma are the most common systemic cancers involved 
[14] (Fig. 7).

Some theories on how malignant cells reach the lep-
tomeninges include perivascular, arachnoid venous, cho-
roid plexus hematogenous dissemination, contiguous dural 
metastases, and bone metastases.

The most common MRI sign of leptomeningeal carcino-
matosis is pial and subarachnoid space enhancement (linear 
32% and micronodular 54%), which is 9% of the time associ-
ated with nodular thickening that involves multiple nerves 
that are distant from each other and thicken bilaterally [28].

Since leptomeningeal carcinomatosis is prone to form 
larger deposits in areas of CSF stasis, such as the cerebel-
lopontine angle and the peri-mesencephalic cisterns, cranial 
nerves III, V, VII, and VIII are especially involved [28], but 
hypothetically all the CN may be affected.

Finally, a rare condition that may involve cranial nerves is 
neurolymphomatosis. It accounts for about the 3% of newly 
diagnosed non-Hodgkin’s lymphoma or leukemia cases 
[29]. Different manifestations are described, ranging from 
a painful polyneuropathy involving the cauda equina to cra-
nial neuropathy and painless or peripheral mononeuropathy 
involving the sciatic nerve [30]. There is a common involve-
ment of III, V, VI, and VII cranial nerves, with a higher inci-
dence of involvement in their cisternal segments [31]. The 
enhancement of cranial nerves could be thickened or nodular 
(bilateral thickening pattern) due to the infiltration of tumor 
cells into the endoneurium and perineurium [32] (Fig. 8).

Infective‑related enhancement

Cranial nerve enhancement in infectious disorders may 
result in different patterns; usually, viral infection leads to 
a unilateral and linear enhancement, whereas bacterial and 
fungal infections are more likely to give a thickened pat-
tern due to inflammatory or infectious agent cells. In bacte-
rial and fungal diseases, if the cranial nerve is involved by 
contiguity, the pattern is usually unilateral; if the CNE is 

Fig. 7  Axial post-contrastographic T1 3D-weighted images showing 
diffuse leptomeningeal carcinomatosis in a patient affected by mela-
noma (a), with bilateral thickened enhancement of the intracisternal 

segment of the III (b. arrowhead), VI (c. arrows), slight of the VI (d. 
circles), VII–VIII (d. arrows) and mixed nerves (e. arrows)



125La radiologia medica (2024) 129:118–132 

1 3

the consequence of a disseminated infection, the pattern is 
bilateral.

Viruses represent the most common infectious disorders 
affecting cranial nerves and causing viral neuritis [33–35].

The most common viruses causing neuritis and conse-
quently CNE belong to the Herpesviridae family, includ-
ing, among others, Herpes simplex type 1 virus (HSV1), 
varicella-zoster virus (VZV), and Epstein–Barr virus (EBV). 
HSV1 and VZV often remain latent in the geniculate gan-
glion (CN VII) thanks to their neurotropism. If an event 
causes their reactivation, facial nerve inflammation occurs 
with blood-nerve barrier breakdown, resulting in a typical 
monolateral linear CNE [36, 37]; sometimes trans-neural 
infection of adjacent nerves may be associated [26]. HSV-1 
is considered the main etiological cause of Bell’s palsy 
[38–40] (Fig. 9), while Ramsay Hunt syndrome is caused 
by VZV reactivation [37]. A slightly different mechanism, 
probably related to a para-infectious condition rather than 
a direct viral infection, characterized EBV CN changes that 
may affect the CN III nerve with the peculiar "shooting star" 
sign due to the involvement of its root exit zone with adja-
cent pial enhancement and associated edematous changes in 
the ventral mesencephalon [41].

Bacterial infection is much less frequent, and CN involve-
ment is often the consequence of other infectious diseases 
left untreated, generally in the middle ear cavity or paranasal 
sinuses, or disseminated systemic infection [42–44].

The mechanisms leading to CNE are different. In tuber-
culosis, the pathological nerve enhancement appears to be 
related to ischemia secondary to vasculitis or nerve entrap-
ment by the exudates from the basal cisterns [15, 45], and 
therefore, it usually appears as bilateral and thickened, involv-
ing CN in their cisternal segments. In Lyme disease, cranial 

nerve involvement may be related to different processes, 
such as direct spirochetal invasion [46], vasculitis [16], or an 
immune-mediated condition [47] usually involving multiple 
cranial nerves with a bilateral thickening pattern (Fig. 10).

Also, in neurosyphilis infection, multiple cranial nerves 
are involved, and inflammation could represent the cause of 
the loss of BNB structural integrity [48–50] (Fig. 11). The 
central nervous system infection in Gradenigo's syndrome, 
also known as petrous apicitis and frequently caused by 
Pseudomonas and Enterococcus, is caused by contiguous 

Fig. 8  Axial T1 FS post-contrast images showing bilateral thickened enhancement of the intracisternal segment of the III (a., arrows), V (b., 
arrows), I and VII–VIII (c., arrows) pair of cranial nerves in a patient affected by neurolymphomatosis

Fig. 9  Patient presented with Bell’s Palsy. Axial T1 3D post-contras-
tographic images showing linear enhancement of the left VII cranial 
nerve in its geniculate ganglion region (a, arrow), intratympanic (b, 
arrow), and intramastoid segments (c, arrow)
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infective dural invasion, which results in unilateral and thick-
ened enhanced CN V and VI. The classic triad of symptoms 
is represented by suppurative otitis media, pain in the distri-
bution territory of the trigeminal nerve, and abducens nerve 
palsy [51].

Finally, fungal infections, such as aspergillosis and 
mucor mycosis, are particularly prone to perineural 
involvement; in particular, mucor mycosis presents with a 
thin and unilateral pattern of cranial nerve enhancement; 
however, its pathogenesis is not well understood [52]; it 
could be possibly related to meningeal enhancement or to 
the presence of phlegmonous soft tissue along the cranial 
nerve [40]. Infection commonly begins in the paranasal 
sinuses and then spreads in the intracranial compartment 
along nerves and adjacent structures, being the CN II and 

the CNs, into the cavernous sinus [53]. If signal alterations 
extend posteriorly in the area of the maxillary sinuses, they 
may mimic the appearance of perineural spread along 
the V2 segment, and if the infra-temporal fossa is also 
involved, it could be mistaken for perineural spread along 
the V3 distribution.

Inflammatory and immune‑mediated related 
enhancement

Inflammatory and immune-mediated diseases can be related 
to different patterns of CNE due to different pathogenic 
mechanisms, which are most of the time still not clear. Usu-
ally, the pattern is thickened when inflammatory and granu-
lomatous infiltrates are present, whereas it is linear if related 

Fig. 10  Axial T1 3D post-con-
trastographic weighted images 
show a thickened and asym-
metrical but bilateral pathologi-
cal enhancement of the III (a, 
arrows), V (b, arrows), VI (c, 
circles), VII–VIII (c, arrows), 
IX–X (d, arrows) and of the XII 
(f, arrows) pair of cranial nerves 
in a patient affected by Lyme 
disease

Fig. 11  Axial T1 3D post-contrastographic weighted images showing bilateral linear enhancement of the III (a, arrows), and V (b, arrows) pair 
of cranial nerves and of the left VI CN (c, circle) and the right VII–VIII CN (c, arrow) in a patient with neurosyphilis
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to a demyelinating process in the acute phase. It is difficult 
to label them by location, as, with some exceptions, they can 
present with both a unilateral and bilateral pattern.

Demyelinating disorders

CNE is often related to an immune-mediated disorder. In this 
group, the cranial nerve most frequently involved is the II pair 
with the typical optic neuritis (Fig. 12). Radiologically, optic 
neuritis is characterized by an acute swelling and enhancement 
of the optic nerve, usually monolateral, in a short segment if 
related to multiple sclerosis (MS) or bilateral and longitudi-
nally extensive if related to neuromyelitis optica (NMO) or anti-
MOG encephalomyelitis. The involvement and consequently 
enhancement of the optic nerve in demyelinating spectrum 
disorders is easily explained by its diencephalic origin and oli-
godendrocyte myelination, which make it an extension of the 
central nervous system. In contrast, it is more difficult to explain 
the enhancement of other cranial nerves in MS that, even if rare, 
may occur (Fig. 13). It has been hypothesized that anterograde 
trans-synaptic neurodegeneration or inflammatory extension is 
a pathogenic mechanism, supported by the fact that, for exam-
ple, the V cranial nerve enhancement is usually next to a lesion 
in the pontine entry zone of the trigeminal root [13, 54, 55].

Guillain–Barré syndrome

Guillain–Barré syndrome and its variant, the Miller-
Fisher syndrome, can show cranial nerve involvement, 
which is clinically associated with ophthalmoplegia, 
ataxia, and areflexia [56]. The CNE, characterized by a 
prevalent bilateral thickened pattern, is the result of an 
immuno-inflammatory process caused by complement 
activation that leads to an anti-ganglioside antibody-
mediated neuropathy [57].

Tolosa–Hunt syndrome

Tolosa–Hunt syndrome is a granulomatous inflammatory 
disorder of the cavernous sinus that also affects the orbit 
and superior orbital fissure. Retro-orbital pain and ophthal-
moplegia, which may clinically resemble migrating ophthal-
moplegia, define this syndrome.

The involvement of the cranial nerves is thus related to 
the presence of inflammatory tissue that invades the orbital 
apex with subsequent thickening and ipsilateral enhance-
ment of the optic, oculomotor, and ophthalmic branches of 
the trigeminal nerve. On MRI, it is possible to observe an 
abnormal increase in soft tissue in the ipsilateral cavernous 
sinus [23, 58] (Fig. 14).

Ophthalmoplegic migraine

Ophthalmoplegic migraine is a rare syndrome character-
ized by head pain and ophthalmoplegia. Nowadays, it seems 
that it not a migraine variant but rather a form of cranial 
neuropathy that triggers headaches secondarily. The third 
cranial nerve is most affected by thickening of its cisternal 
portion. A proposed pathogenetic hypothesis is related to 
a demyelinating neuropathy; however, the exact pathologic 
mechanism is still unclear [22].

Sarcoidosis

Sarcoidosis is a chronic systemic disease of still unknown 
etiology. It is characterized by the presence of non-caseous 
granulomas, which may infiltrate different organs, includ-
ing the CNS, with cranial nerves as the most involved site 
[59, 60]. All the cranial nerves can be involved; however, the 
most affected are the CN II and VII–VIII, often with unilateral 
enhancement, but in 30% of cases it can be bilateral [61, 62] 

Fig. 12  A case of a patient 
affected by multiple sclerosis 
with acute optic neuritis. A 
Axial FLAIR-weighted image 
showing multiple sclerosis-
related hyperintense lesions in 
the periventricular white matter. 
B Coronal STIR-weighted 
image showing oedematous 
appearance of the left optic 
nerve in its intraorbital retrob-
ulbar segment (arrow). That 
shows linear enhancement after 
contrast medium administration 
in c coronal T1 FS post-con-
trastographic weighted image 
(arrow)
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Fig. 13  A Axial T1 3D post-
contrast image showing a slight 
linear enhancement of the 
left VII–VIII cranial nerves 
in the internal acoustic canal 
(arrow), in a patient affected by 
multiple sclerosis with lesions 
in supratentorial (b. axial fat 
sat FLAIR) and subtentorial 
(c. axial Fat sat FLAIR) white 
matter

Fig. 14  Axial (a) and coronal 
(b, c) T1 Fat Sat 3D post-con-
trastographic weighted images, 
showing a pathological enhanc-
ing tissue occupying the right 
cavernous sinus (a, b arrow), 
the right superior orbital fissure 
(a, c circle) and the right orbital 
apex (a, arrowhead) in a patient 
with Tolosa–Hunt Syndrome



129La radiologia medica (2024) 129:118–132 

1 3

(Fig. 15). The underlying pathogenesis of nerve enhancement 
and thickening is not clear; nevertheless, several theories have 
been proposed, including epineural or perineural granuloma-
tous inflammation of the extra-cranial portion of the nerve or 
leptomeningeal granulomatous inflammation with consequent 
secondary compression and neural suffering [61, 63].

Wegner’s granulomatosis

Granulomatosis with polyangiitis, or Wegener's granulo-
matosis, is a systemic autoimmune disease characterized 
by the presence of non-caseous granulomatosis, which 
generally involves the kidneys and respiratory system [34, 
64]. CNS involvement is infrequent, manifesting mainly 
with pachymeningitis and cranial nerve palsies, which 
appear thickened on imaging unilaterally or, more often, 
bilaterally [65]. There are several explanations that justify 
CNS involvement: primarily, it may be linked to the spread 
of the inflammatory process from the paranasal sinuses 

to the fronto-nasal meninges or through the orbit, with 
consequent involvement of the CN; other alternative theo-
ries include CNS vasculitis and/or the formation of distant 
granulomatous lesions in the CNS [65, 66].

Systemic lupus erythematosus and Sjogren’s syndrome

Systemic lupus erythematosus is a chronic, systemic auto-
immune disease that rarely involves cranial nerves, mani-
festing mainly as unilateral third cranial nerve palsy, which 
shows linear enhancement [67, 68] and may be related to 
microvascular insults [67, 69, 70]. Sjogren's syndrome is a 
chronic, systemic, immune-mediated inflammatory disease 
as well [71]; when cranial nerve enhancement occurs, it 
may be unilateral or bilateral with multiple nerves affected 
and a thickened aspect in the acute phase [20]. Again, the 
pathogenetic mechanism is unclear, and a vasculitis cause or 
lymphocytic infiltrates-related changes have been proposed.

Fig. 15  Axial FLAIR images (a, 
b) show marked hyperintensity 
of the region of the optic chiasm 
(arrowhead), involving the optic 
tracts (arrows) and extending 
into the right temporal lobe 
(asterisk) in a patient with 
neurosarcoidosis. This finding 
is correlated with a pathological 
bilateral thickened enhancement 
of the intracranial segment of 
the optic nerves (c, arrows) and 
of the optic chiasm (d, arrow)
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Conclusions

We identified four patterns of CNE, provided flowcharts to 
navigate through the different disease and gave technical 
MRI notes to properly study CNE.

In conclusion, our approach to cranial nerve enhancement 
aimed to be an easy tool immediately applicable to clinical 
practice for converting challenging findings into specific 
pathological patterns.
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