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Abstract
Objectives The study aimed to develop a combined model that integrates deep learning (DL), radiomics, and clinical data 
to classify lung nodules into benign or malignant categories, and to further classify lung nodules into different pathological 
subtypes and Lung Imaging Reporting and Data System (Lung-RADS) scores.
Materials and methods The proposed model was trained, validated, and tested using three datasets: one public dataset, 
the Lung Nodule Analysis 2016 (LUNA16) Grand challenge dataset (n = 1004), and two private datasets, the Lung Nodule 
Received Operation (LNOP) dataset (n = 1027) and the Lung Nodule in Health Examination (LNHE) dataset (n = 1525). The 
proposed model used a stacked ensemble model by employing a machine learning (ML) approach with an AutoGluon-Tabular 
classifier. The input variables were modified 3D convolutional neural network (CNN) features, radiomics features, and clinical 
features. Three classification tasks were performed: Task 1: Classification of lung nodules into benign or malignant in the 
LUNA16 dataset; Task 2: Classification of lung nodules into different pathological subtypes; and Task 3: Classification of 
Lung-RADS score. Classification performance was determined based on accuracy, recall, precision, and F1-score. Ten-fold 
cross-validation was applied to each task.
Results The proposed model achieved high accuracy in classifying lung nodules into benign or malignant categories in LUNA 
16 with an accuracy of 92.8%, as well as in classifying lung nodules into different pathological subtypes with an F1-score 
of 75.5% and Lung-RADS scores with an F1-score of 80.4%.
Conclusion Our proposed model provides an accurate classification of lung nodules based on the benign/malignant, different 
pathological subtypes, and Lung-RADS system.
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CBAM  Convolutional block attention module
DRDB  Dilated residual dense block
GLCM  Gray Level Co-occurrence Matrix
GLRLM  Gray Level Run Length Matrix
GLSZM  Gray Level Size Zone Matrix
GLDM  Gray Level Dependence Matrix
LoG  Laplacian of Gaussian
SE  Squeeze-and-excitation
TB  Tuberculosis
GUI  Graphical user interface

Introduction

Non-contrast low-dose chest computed tomography (LDCT) 
is the standard imaging modality for lung cancer screening 
[1]. Based on the National Lung Screening Trial (NLST), 
screening LDCT can reduce mortality by 20% in the high-
risk group compared with screening chest radiography [2, 
3]. The use of screening chest CT is increasing, but false-
positive and overdiagnosis rate are not negligible [4, 5]. In 
the NLST, only 3.8% of positive results were diagnosed as 
lung cancer [3]. In a previous study conducted at a tertiary 
referral center in Taiwan, we showed that 45% of resected 
small lung nodules of < 6 mm were benign [6].

The management of indeterminate pulmonary nodules 
(IPNs) is difficult [7] because most IPNs are benign [8]. 
Clinicians must accurately assess the risk of malignancy 
in order to diagnose and treat cancerous lesions without 
performing unnecessary tests and procedures in patients 
with benign nodules in a timely manner [9]. Lung-RADS, 
introduced by the American College of Radiology (ACR), 
categorizes nodules into five groups based on their risk of 
malignancy. Categories 1 (negative) and 2 (benign appear-
ance) are considered negative and undergo annual screening. 
Categories 3 (probably benign) and 4A/4B/4X (suspicious) 
are considered positive and require additional evaluation 
before the next annual screening. Lung-RADS uses a 6 mm 
threshold, which reduces false positives without delaying 
lung cancer diagnosis compared to the 4 mm threshold 
used in the NLST [10, 11]. Although guidelines for nod-
ule management are available, accurate characterization of 
IPNs remains tedious and subject to inter- and intra-reader 
variability.

Adenocarcinoma is the most common histologic sub-
type of lung cancer [12]. Atypical adenomatous hyperpla-
sia (AAH) may be a precursor lesion of adenocarcinoma 
[13]. The invasiveness of lung adenocarcinoma is assessed 
by a multidisciplinary classification [10], categorizing it as 
adenocarcinoma in situ (AIS), minimally invasive adeno-
carcinoma (MIA), or invasive adenocarcinoma (IA). Given 
the central role of diagnosis in treatment and prognosis, 
invasiveness has a significant impact on survival [14, 15]. 

Improving the prediction of invasiveness by chest CT offers 
significant clinical benefit to patients with lung cancer.

Computer-aided detection (CAD) in chest CT has long 
been recognized for its ability to improve sensitivity in nod-
ule detection [16, 17]. Recent breakthroughs in deep learn-
ing (DL) for medical imaging have expanded its capabilities 
to include automatic nodule segmentation [18], classifica-
tion [19], nodule measurement, and malignancy risk assess-
ment [20]. However, most of the previous studies were con-
ducted under conditions that differ from real-world practice 
and often selected for disease prevalence and dichotomized 
distribution. In addition, current CAD cannot predict lung 
nodule pathology preoperatively. Therefore, there is a sig-
nificant need for studies that evaluate artificial intelligence 
(AI) models in real-world populations and provide preopera-
tive prediction of lung nodule pathology to guide clinical 
decision making.

Lung nodules can be classified using two basic 
approaches: (1) the radiomic feature extraction from chest 
CT scans, either 2D or 3D [21, 22], and (2) convolutional 
neural networks (CNN) [23, 24]. Many recent studies have 
used these tools to predict the invasiveness of lung nodules 
[23, 25–30]. The radiomics approach requires an appropriate 
lung segmentation and feature extraction algorithm to clas-
sify the tumor, while CNN does not need such an algorithm, 
but requires a huge dataset [20]. In this study, we aimed 
to investigate the diagnostic performance of our proposed 
AI model in open dataset, and private dataset (both surgery 
and health checkup participants). The purpose of our study 
was to investigate whether our proposed combined AI model 
(integrating DL, radiomics, and clinical data) could improve 
the classification of lung nodules into benign/malignant, his-
tological types and Lung-RADS categorization.

Materials and methods

This retrospective study was approved by the institutional 
review board of National Cheng Kung University Hospital 
(A-ER-108–359) and the requirement for written informed 
consent was waived because the data were analyzed retro-
spectively and anonymously.

Datasets

The following three datasets were used:

(1) Lung Nodule Analysis 2016 (LUNA16) Grand Chal-
lenge dataset [31]: This is a publicly available dataset 
containing1186 lung nodules from 888 patients.

(2) Lung Nodule Received Operation (LNOP) dataset: 
It includes 1027 lung nodules from 708 patients who 
underwent surgical resection with histopathological 
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diagnosis at the National Cheng Kung University Hos-
pital (NCKUH) between December 2018 and Decem-
ber 2021.

(3) Lung Nodule in Health Examination (LNHE) dataset: 
It includes 1525 lung nodules from 653 patients, which 
were found during a healthy examination between Janu-
ary 2019 and December 2021 at the NCKUH.

Figure 1 shows how the datasets were partitioned for each 
task. Ten-fold cross-validation was applied to each task. 
The LNOP dataset also includes clinical information that 
have been observed to be associated with lung cancer and 
tumor phenotype [32–36], such as age, sex, smoking history 
(defined as positive smoking history regardless of whether 
the patient is an active smoker or has quit smoking) and the 
presence of a family history of lung cancer in first-degree 
relatives.

Classification tasks

We performed three classification tasks in this study:

(1)  Task 1: Classification of lung nodules as benign or 
malignant in the LUNA16 dataset.

(2)  Task 2.1: Three-class classification of

 (i)  IA
 (ii)  MIA + AIS
 (iii)  AAH + other benign lesions.

  Task 2.2: Fourclass classification of AAH, AIS, 
MIA, an d IA.

(3)  Task 3: Four-class classification of Lung-RADS score: 
2, 3, 4A, 4B + 4X.

Task 2.1 was designed to resemble the real clinical sce-
nario based on treatment strategies: (i) IA has the worst 
prognosis, and lobectomy is often recommended [37], (ii) 
MIA + AIS have almost 100% survival probability, and 
limited resections are suggested [37, 38], (iii) AAH + other 
benign lesions required conservative treatment or follow-up. 
Task 2.2 provided four-class classification of adenocarci-
noma spectrum lesions from pre-invasive to invasive lesions 
into AAH, AIS, MIA, and IA. Only the LNOP dataset was 
used in Task 2, whereas the LNOP and LNHE datasets were 
used in Task 3. Squamous cell carcinoma (SqCC) and metas-
tasis were excluded in Task 2.1 and Task 2.2 due to their 
rarity in the lung screening program. To balance the data, 
only partial data were used in Tasks 2.2 and 3.

Image acquisition

In the LUNA16 dataset, the size of all the nodules was 
greater than 3 mm and slice thickness was less than 2.5 mm. 
In the LNOP and LNHE datasets, all CT images were 
acquired using the Siemens SOMATOM Definition Flash, 
Siemens SOMATOM Definition AS, SOMATOM Definition 
Edge, and GE Optima CT660. The CT protocols were as fol-
lows: 120 kVp; tube current, 150–200 mA with automatic 
tube current modulation in the LNOP dataset and 30 mA in 

Fig. 1  Flowchart of the analysis cohort
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the LNHE dataset. The slice thickness ranged from 0.625 to 
1.5 mm, and the image size was 512 × 512 pixels.

Image preprocessing

The image preprocessing module included (1) voxel resa-
mpling, (2) cropping, and (3) Hounsfield unit conversion. 
Because the voxel spacing of each CT image might be dif-
ferent, we resampled the voxel spacing of all CT images 
and masks to the smallest spacing value in the dataset 
(0.48 × 0.48 × 0.625 mm3). The 3D CT images were then 
cropped to the size of 32 × 32 × 32 as the input to the DL 
model. Finally, the Hounsfield unit in the range between 
-1024 and 400 was converted to a decimal between 0 and 1 
and stored in the single precision floating point format. This 
is a normalization of the input data for the neural network.

Radiomic feature extraction

Contours defining the 3D tumor region of interest were man-
ually drawn slice by slice on axial images after a consensus 
was reached between the thoracic radiologist (C.Y.L., with 
10 years of experience) and the thoracic surgeon (C.C.C., 
with 10  years of experience). The thoracic radiologist 
blinded to the clinicopathologic data performed tumor seg-
mentation by using graphical user interface (GUI) written in 
Python. Tumor delineation was performed in a lung window 
setting to highlight lung structures on the axial CT plane, 
including bronchi, blood vessels, and vacuoles within the 
nodules and excluding irrelevant normal lung tissue, medi-
astinal structures, and chest wall, as shown in Fig. 2.

A total of 1319 radiomic features were extracted by using 
Pyradiomics [39] with two image filters, the Laplacian of 
Gaussian (LoG) filter and the wavelet filter to highlight spe-
cific features [41], and six feature families, including shape 
features, first-order statistics, and texture features (gray level 
co-occurrence matrix (GLCM), gray level run length matrix 
(GLRLM), gray level size zone matrix (GLSZM), and gray 
level dependence matrix (GLDM)) [40–42].

DL model

The DL models were derived from a modified 3D CNN, 
NASLung [43]. To improve the model performance, we 
made two modifications. First, we replaced the convolutional 
block attention module (CBAM) with a coordinate atten-
tion (CA) block to ensure that the model efficiently captures 
long-range features with accurate location information [44, 
45]. Second, the residual block in NASLung was adapted to 
be applicable to lung nodule classification, inspiration by 
the dilated residual dense block (DRDB) [46]. The training 
environment and strategy were detailed in Appendix S1.

Development and combination of models for lesion 
classification

The global framework is shown in Fig. 3. To combine the 
DL and radiomics models, we applied a stacked ensemble 
model using a machine learning (ML) approach with the 
AutoGluon-Tabular classifier [42]. Autogluon is an open-
source automated ML library developed by the Amazon Web 
Services (AWS). It serves as a framework for automating ML 
tasks, allowing users to automatically select and train ML 
models. In AutoGluon-Tabular, it integrates several basic 
ML models, including neural networks, LightGBM boosted 
trees, CatBoost boosted trees, Random Forests, Extremely 
Randomized Trees, and K-Nearest Neighbors algorithm. For 
each ML model selected, Autogluon optimizes the train-
ing process by automating hyperparameter tuning, achiev-
ing superior performance by eliminating manual iteration 
through hyperparameter configurations. Additionally, it 
uses multi-layer stacking strategies to enhance prediction 
performance. The ensemble model provided a probability 
of malignancy (Task 1), a histopathology result (Task 2.1 
and 2.2), and a Lung-RADS score (Task 3). To test whether 
the clinical features had any additional predictive value for 
histopathologic subtype classification, the ensemble model 
was retrained after the addition of clinical features for Task 
2.1 and 2.2.

Radiologist reading

Target lesions were independently identified and classified 
according to Lung-RADS version 1.1 by a thoracic radiolo-
gist (C.Y.L., with 10 years of experience) who was blinded 
to all patient clinical and demographic information. In addi-
tion, the imaging and histopathologic results of each patient 
in the LNOP dataset were reviewed by a multidisciplinary 
thoracic tumor board as a standard of care.

Statistics

Continuous variables were reported as the mean ± standard 
deviation, and categorical variables were reported as n (%). 
In the ten-fold cross-validation, the results were presented as 
mean accuracies. To verify the performance of the different 
classification models, we calculated the accuracy, macro-
recall, macro-precision, and macro-F1 scores. Accuracy is 
the ratio of the correctly classified samples to the total sam-
ples. The precision is the ratio of the true positive results to 
all positive results, and the average of the precision of each 
sample label is the macro-precision. The recall is defined as 
true-positive results divided by the sum of true-positive and 
false-negative results, and the mean value of the recall of 
each sample label is the macro-recall. The macro-F1 score is 
the harmonic mean of the macro-precision and macro-recall.
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Results

Dataset characteristics

Figure 4 shows the 3D diameter distribution and percentage 
of solid components in lung nodules from the LUNA16, 
LNOP, and LNHE datasets. Clinical and pathologic char-
acteristics are detailed in Table 1. Females comprised the 
majority of patients in both the LNOP (64.5%) and LNHE 
(53.4%) groups. The mean age of the patients was 59.6 years 
in the LNOP group and 54.7 years in the LNHE group. 
Among the patients in the LNOP group, 27.8% had a smok-
ing history, while 16.0% had a family history of lung cancer 
in first-degree relatives. IA was the most common pathology 
among patients in the LNOP group, accounting for 25.1% of 

all malignancies. According to Lung-RADS, 36.5% of the 
patients in the LNOP group were classified as 4A + 4B + 4X. 
In contrast, because the patients in the LNHE group were all 
asymptomatic individuals undergoing health screening, only 
9.1% were classified as 4A + 4B + 4X.

In terms of 3D diameter, the majority of nodules in the 
LUNA16 and LNHE datasets were smaller than 30 mm, 
while LNOP had a wider distribution with a maximum of 
53 mm. The wider distribution of nodule sizes in the LNOP 
dataset may be attributed to the fact that nodules deemed 
suitable for surgical removal were more likely to be malig-
nant based on the subjective judgment of the clinicians. 
Regarding the solid component, the LUNA16 dataset had 
a higher proportion of solid components compared to the 
LNOP and LNHE datasets. This discrepancy may be due 

Fig. 2  Graphical user interface for the lung nodule segmentation. A 
Lung nodule segmentation is manually performed by a thoracic radi-
ologist. B A bounding box created from a segmentation mask auto-

matically. C A segmentation mask is provided automatically. D The 
original non-enhanced axial CT images in lung window setting shows 
an irregular left upper lobe (LUL) mass
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to the fact that the LNOP and LNHE datasets consisted pri-
marily of individuals of Asian descent, who had a higher 
prevalence of ground-glass opacities.

Classification of lesions as benign or malignant

Our classification model had an accuracy of 92.80% in ten-
fold cross-validation and an F1-score of 92.16% (Table 2). 
The confusion matrix of the LUNA16 classification is shown 
in Fig. 5A. The accuracy of the benign lesion was 96.17% 
and the accuracy of the malignant lesion was 89.43%.

In the ablation study for Task 1, we evaluated the effec-
tiveness of modified NASLung and the incorporation of 
radiomics features. In the DL model, we incrementally 
added image preprocessing, replaced the CBAM and 
residual block in the original NASLung with CA and 
DRDB, and used the AutoGluon-Tabular classifier. This 
ultimately increased the accuracy from 88.78% to 92.21% 
and increased the F1-score from 87.92% to 91.61%. In the 
radiomics model, after image preprocessing and applying 
the AutoGluon-Tabular classifier, using all radiomics fea-
tures showed the best result with an accuracy of 90.75%, 

F1-score 89.86. However, the result was inferior to the 
DL model. The combination of DL model and radiomics 
model showed the best result, with an accuracy of 92.80%, 
F1-score 92.16% (Table 3).

Three‑class classification of IA, MIA + AIS, 
AAH + other benign lesions

The F1-score and the overall accuracy of Task 2.1 were 
75.45% and 74.76%, respectively (Table 2). The confusion 
matrix of Task 2.1 is shown in Fig. 5B. The accuracy of 
IA, AIS/MIA, and AAH/others was 84.70%, 74.45% and 
67.82%, respectively.

In the ablation study for Task 2.1, we investigated the 
effect of clinical features on the prediction of malignancy 
in lung nodules. After incorporating four clinical features, 
namely smoking history, family history, age, and sex, we 
observed an increase in the accuracy from 72.87% to 
74.76% and in the macro F1-score from 73.57% to 75.45% 
(Table S1).

Fig. 3  Data processing pipeline. The parallel radiomics and DL 
model encodes the input images to features which be combine with 
clinical parameters. Then the combined features be classified by an 

ensemble classification model. The methods denoted as L, M, and 
N in modified NASLung architecture were determined based on the 
original NASLung framework
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Four‑class classification of AAH, AIS, MIA, and IA

The F1-score and the overall accuracy of Task 2.2 were 
68.70% and 68.52%, respectively (Table 2). The confusion 
matrix of Task 2.2 is shown in Fig. 5C. The accuracies of 
IA, MIA, AIS, and AAH were 87.33%, 61.88%, 57.06% 
and 68.27%, respectively. The model performed better in 
distinguishing AAH from IA, but showed poorer perfor-
mance in distinguishing AIS from MIA.

Four‑class classification of lung‑RADS score 2, 3, 4A, 
4B + 4X

The F1-score and the overall accuracy of Task 3 were 
80.38% and 80.48%, respectively (Table 2). The confusion 
matrix of Task 3 is shown in Fig. 5D. The accuracies of 
Lung-RADS 4B + 4X, 4A, 3, and 2 were 93.34%, 77.56%, 
64.76% and 86.19%, respectively. In addition, the relation-
ship between final pathology and Lung-RADS score in the 

Fig. 4  Dataset component analysis. A Nodule diameters: Diameters of lung nodules in LUNA16, LNOP, and LNHE datasets. B Solid compo-
nents: Proportions of solid components in lung nodules from LUNA16, LNOP, and LNHE datasets
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LNOP dataset was presented in Table S2. The LNOP dataset 
showed a higher risk of malignancy when using Lung-RADS 
categorization as a reference (Lung-RADS score 2: 39.8%, 
score 3: 70.9%, score 4A: 77.3%, score 4B + 4X: 80%).

Discussion

We proposed a combined model to classify lung nodules 
using radiomics and DL. In addition, we evaluated the 
added value of clinical features to classify different patho-
logic subtypes of lung nodule. Our fusion model achieved 
high predictive accuracy and outperformed all other single 
method-based models in the LUNA16 dataset after module 
modification. We achieved F1-scores of 75.45% and 68.7% 
in three- and four-class classifications, respectively, when 
predicting pathological subtypes using private datasets. 
Classification of the Lung-RADS score gave an accuracy of 
80.38%. Our proposed model demonstrated high accuracy in 
classifying lung nodules as benign or malignant, as well as 
in classifying lung nodules into different pathological sub-
types and Lung-RADS scores.

The result of the ablation study of Task 2.1 shows that 
clinical data play an important role in the classification of 
pathological subtypes of lung nodules, increasing the clas-
sification accuracy by 1.89%. Smoking has the greatest 
impact on classification, increasing the accuracy by 0.94% 
(Table S1). In our study, the LNOP dataset showed a higher 
risk of malignancy when the Lung-RADS categorization 

Table 1  The clinical and 
pathological characteristics of 
LNOP and LNHE datasets

Note.—Unless otherwise indicated, data are numbers of patients, and data in parentheses are percentages
* Data are mean ± standard deviation

LNOP LNHE

Patient (n = 708) Nodule (n = 1027) Patient (n = 653) Nodule (n = 1525)

Sex (male) 251 (35.5%) 339 (33.0%) 304 (46.6%) 632 (41.4%)
Age* 59.6 ± 10.7 59.1 ± 11.2 54.7 ± 12.6 55.5 ± 9.7
Smoking 197 (27.8%) 256 (24.9%) – –
Family history 113 (16.0%) 125 (12.2%) – –
Pathology
AAH – 160 (15.6%) – –
AIS – 194 (18.9%) – –
MIA – 157 (15.3%) – –
IA – 258 (25.1%) – –
SqCC – 10 (1.0%) – –
Metastasis – 54 (5.3%) – –
Others – 194 (18.9%) – –
Lung-RADS
2 – 295 (28.7%) – 1020 (66.9%)
3 – 357 (34.8%) – 366 (24.0%)
4A – 120 (11.7%) – 88 (5.8%)
4B + 4X – 255 (24.8%) – 51 (3.3%)

Table 2  Model performances for different tasks

*  Fivefold cross-validation accuracy. # Tenfold cross-validation accu-
racy

Task Accuracy (%) F1-score (%)

Task 1
 Our method 92.80# 92.16
 Zhang et al. (2022) 92.75#

 Jiang et al. (2021) 90.77*
 Xia et al. (2021) 91.90#

 Zhu et al. (2018) 90.44*
Task 2.1 74.76 75.45
 Others/AAH 71.52
 AIS/MIA 72.76
 IA 81.49

Task 2.2 68.52 68.70
 AAH 68.67
 AIS 59.97
 MIA 59.89
 IA 84.53

Task 3 80.48 80.38
 Lung-RADS 2 83.91
 Lung-RADS 3 68.63
 Lung-RADS 4A 76.81
 Lung-RADS 4B + 4X 91.39



64 La radiologia medica (2024) 129:56–69

1 3

was used as a reference. This may be explained by differ-
ences in ethnicity, as Asian populations with adenocarci-
noma often presented with ground-glass opacities. This 
highlights the inadequacy of relying on Lung-RADS alone 
for follow-up and management decisions. Our AI models 
could lead to more personalized treatment plans by better 
predicting the pathological nature of nodules. In cases with 
incorrect pathological subtype classification but correct 
Lung-RADS categorization, we found that the inconsistency 
of solid parts and pathological report is the cause of the sub-
optimal result of pathological subtype classification (Fig. 6). 
The spectrum of early-stage lung cancer shows progressive 
size and density changes on chest CT, making it difficult to 
accurately differentiate IA, MIA, AIS, and AAH. In Task 
2.1, the classification of the AAH/other group has the low-
est accuracy because this group also includes other benign 
lesions, such as tuberculosis (TB), cryptococcal infection, 
and organizing pneumonia. TB presents with various imag-
ing features, including cavitation, pleural tethering, and 
spiculation, which can mimic malignancy. As a result, it 
not only poses a clinical diagnostic problem but also affects 
the learning effect of the model. Infection and inflammation 
may appear as ground-glass opacities in the early stages of 
CT imaging. This can only be confirmed after serial follow-
ups and clinical correlations. However, even with these con-
founding cases in our dataset, the accuracy of predicting 
IA was 84.70%. After eliminating these confusing benign 
lesions, the accuracy of IA prediction can increase to 87.33% 
in Task 2.2 (Fig. 5).

Recent medical literature has demonstrated an emerg-
ing trend in the use of DL models for the diagnosis of 
lung cancer. A literature review of previous studies is 
summarized in Table 4. Qi et al. achieved an accuracy of 

76.9% and a F1 score of 60.9% in a dataset of 448 pure 
ground glass nodules (GGN), categorizing them as IA 
or other types [47]. Zhang et al. excelled with an 89.8% 
accuracy in distinguishing malignant from benign nodules 
in a dataset of 972 patients after excluding nodules that 
were difficult to segment [48]. Notably, GGNs are inher-
ently challenging due to their blurred borders, potentially 
containing malignancies such as AIS. Liu et al. achieved 
an 81.6% accuracy in a binary malignant versus benign 
classification in 204 patients [49], while Marappan et al. 
achieved a 76.67% accuracy in distinguishing MIA from 
IA in a dataset of 105 patients [50]. Qi et al. extended 
their study to 417 patients and classified nodules as small 
cell lung cancer (SCLC), IA, and SqCC. They reported 
individual accuracies of 0.83, 0.75, and 0.67 for SCLC, 
IA, and SqCC, respectively, with an average accuracy of 
0.75. The weighted F1-average was also 0.75 [51]. Nota-
bly, SCLC and SqCC were predominantly observed as pure 
solid tumors, whereas IA showed a broader distribution 
from pure GGN to pure solid patterns. Kao et al. focused 
on pure GGNs in a dataset of 338 patients and achieved 
an accuracy of 70.6% in differentiating AIS + MIA from 
IA [52]. These studies used private datasets with specific 
limitations, including nodule size, solid or ground-glass 
opacity components, which may impact the applicabil-
ity of the models. It is well known that the performance 
of a model can vary across different datasets, making 
it difficult to generalize results from private datasets to 
broader clinical scenarios. In this context, we present a 
quantitative comparison between our private and publicly 
available datasets, focusing on nodule size and solid com-
ponent distributions (Fig. 4). This analysis aims to pro-
vide a clearer understanding of the differences between 

Fig. 5  The confusion matrices 
of predictive performance of 
combined model. A The distin-
guishing ability of combined 
model in classifying benign 
and malignancy with LUNA 16 
dataset. B, C Combined model’s 
prediction of pathology. D 
Combined model’s prediction of 
Lung-RADS
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our private dataset and public datasets, allowing for an 
informed assessment of the suitability of the model for 
clinical practice or research in specific medical domains.

CAD has been used for Lung-RADS categorization. Park 
et al. used CAD to improve the inter-reader agreement of 
Lung-RADS category, from moderate to substantial with 
CAD [53]. Nowadays, DL-based CAD can perform auto-
matic nodule detection and automatic Lung-RADS classifi-
cation. However, it requires radiologists to confirm nodule 

size, solid part size, and categorization into pure GGN, 
part-solid nodule, or pure solid nodule step by step before 
determining the Lung-RADS score. Theoretically, it does 
not perform Lung-RADS categorization using DL but gen-
erates classification results using conditional constructs in 
its code, without identifying features. For example, in the 
case of 4X, which refers to category 3 or 4 nodules with 
additional features or imaging findings that increase the sus-
picion of malignancy, this classification result relies on the 

Fig. 6  Representations examples of pathology misclassification fol-
lowed by accurate Lung-RADS categorization using a chest CT AI 
classification model. A Initial misclassification as MIA, later con-
firmed as AAH upon pathology examination. Correctly classified 
as Lung-RADS category 3. B Initial misclassification as AAH, later 
confirmed as AIS upon pathology examination. Correctly classified 

as Lung-RADS category 2. C Initial misclassification as IA, later 
confirmed as TB upon pathology examination. Correctly classified as 
Lung-RADS category 4B + 4X. D Initial misclassification as IA, later 
confirmed as organizing pneumonia upon pathology examination. 
Correctly classified as Lung-RADS category 4B + 4X

Table 4  Comparison with previous studies of model’s performance on private datasets

Inclusion Exclusion Nodule number Classification Accuracy F1-score

Marappan et al. (2022) Mixed GGN with pathol-
ogy IA or MIA

105 2-class: IA vs MIA 76.67% –

Qi et al. (2022) Pathology: adenocarci-
noma, SqCC, SCLC

417 3-class: IA vs SqCC vs 
SCLC

75.00% 75%

Kao et al. (2022) Pure GGN with pathol-
ogy AIS, MIA, or IA

Nodule with solid com-
ponent; nodule that are 
not lung cancer

338 2-class: IA vs MIA + AIS 70.60% –

Qi et al. (2023) Pure GGN Nodule with solid 
component; nodule 
size < 5 mm or > 30 mm

448 2-class: IA vs 
MIA + AIS + AAH

76.90% 60.90%

Zhang et al. (2023) Patient with only one 
nodule

Hard to segmentation 972 2-class: malignancy vs 
benign

89.80% –

Liu et al. (2023) Patient with only one 
nodule

COPD, interstitial lung 
disease, or other diffuse 
lesion

204 2-class: malignancy vs 
benign

81.60% –

Our study (2023) Nodules with pathology 
IA, MIA, AIS, AAH, or 
other benign lesion

963 3-class: IA vs AIS + MIA 
vs AAH + others

74.76% 75.45%

Nodules with pathology 
IA, MIA, AIS, AAH

631 4-class: IA vs MIA vs 
AIS vs AAH

68.52% 68.70%

Nodules without pathol-
ogy

838 4-class: Lung-RADS 
2/3/4A/4B + 4X

80.48% 80.38%
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judgment of malignant features. Our model performed bet-
ter for Lung-RADS scores 2 and 4B + 4X, but is less effec-
tive for Lung-RADS scores 3 and 4A. Our model achieved 
an accuracy of 93.3% in the most severe categorization, 
4B + 4X, showing a high degree of consistency with human 
classification results. The four-class classification had an 
ordinal severity. This makes it easier to predict the extremes 
of severity, while the intermediate, ambiguous range is more 
challenging. Using DL to address the Lung-RADS score 
classification problem presents several challenges, including 
the lack of Lung-RADS labeled datasets and the need for 
a larger dataset for multi-class classification tasks. Ensur-
ing a balanced number of samples for each classification 
is challenging. As a result, there is relatively little research 
in this area. In addition, almost all commercial CAD soft-
ware currently imposes restrictions on nodule sizes, such as 
3 mm to 30 mm. However, in our research, we did not limit 
the nodule size. Therefore, we believe that our model has a 
broader applicability.

There were some limitations to our study. First, the seg-
mentation of nodules was required for radiomics analysis. 
Our results showed that radiomics provided additional infor-
mation apart from that obtained by CNN, indicating that 
there is potential for improvement in CNN feature extrac-
tion. However, with the advent of new tools for automatic 
or semiautomatic image segmentation, our model could be 
incorporated into clinical practice in the near future. Second, 
nodule growth assessment, crucial for Lung-RADS catego-
rization, was not feasible in this study. Our future research 
will focus on employing AI for the analysis of CT scans 
obtained at different times to address this issue. Nonetheless, 
our study provides a promising basis for the development 
of more accurate and efficient lung nodule classification 
models.

Conclusion

In conclusion, our proposed model provides a promising 
approach for accurately classifying pulmonary nodules 
based on the benign/malignancy, different pathological 
subtypes, and Lung-RADS system, which could aid in the 
diagnosis of lung cancer.
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