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Abstract
Objective To investigate the value of Computed Tomography (CT) radiomics derived from different peritumoral volumes 
of interest (VOIs) in predicting epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma patients.
Materials and methods A retrospective cohort of 779 patients who had pathologically confirmed lung adenocarcinoma were 
enrolled. 640 patients were randomly divided into a training set, a validation set, and an internal testing set (3:1:1), and the 
remaining 139 patients were defined as an external testing set. The intratumoral VOI (VOI_I) was manually delineated on the 
thin-slice CT images, and seven peritumoral VOIs (VOI_P) were automatically generated with 1, 2, 3, 4, 5, 10, and 15 mm 
expansion along the VOI_I. 1454 radiomic features were extracted from each VOI. The t-test, the least absolute shrinkage 
and selection operator (LASSO), and the minimum redundancy maximum relevance (mRMR) algorithm were used for fea-
ture selection, followed by the construction of radiomics models (VOI_I model, VOI_P model and combined model). The 
performance of the models were evaluated by the area under the curve (AUC).
Results 399 patients were classified as EGFR mutant (EGFR+), while 380 were wild-type (EGFR−). In the training and 
validation sets, internal and external testing sets, VOI4 (intratumoral and peritumoral 4 mm) model achieved the best pre-
dictive performance, with AUCs of 0.877, 0.727, and 0.701, respectively, outperforming the VOI_I model (AUCs of 0.728, 
0.698, and 0.653, respectively).
Conclusions Radiomics extracted from peritumoral region can add extra value in predicting EGFR mutation status of lung 
adenocarcinoma patients, with the optimal peritumoral range of 4 mm.
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Introduction

With the advancement of precision medicine, molecular 
targeted therapy has been widely used in the treatment of 
lung cancer. Several studies have shown that the epidermal Youlan Shang and Weidao Chen have equally contributed to this 
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growth factor receptor (EGFR) mutation status provides 
the conditions for individualized therapy in lung adenocar-
cinoma patients [1–4]. EGFR-mutant patients treated with 
the EGFR-tyrosine kinase inhibitor (EGFR-TKI) achieve 
longer progression-free survival and better response rates 
than conventional chemotherapy [5, 6]. Therefore, the 
National Comprehensive Cancer Network guidelines rec-
ommend routine detection of EGFR mutations to guide 
molecularly targeted therapy for lung adenocarcinoma 
patients [7].

Conventional identification of EGFR mutations requires 
biopsy and genetic testing which has several limitations in 
clinical practice: (1) the potential risk of tumor metastasis 
during biopsy; (2) the difficulty in obtaining representative 
tumor tissue due to tumor genetic heterogeneity; (3) not all 
tumors of all sizes and locations are suitable for biopsy; (4) a 
lack of adequate material and high-quality DNA may lead to 
testing failure; (5) genetic mutations may change throughout 
treatment, while repeated biopsies are impractical. In 
addition, the economic and time costs of biopsy should also 
be considered [8–11]. Therefore, there is an urgent need for 
a reliable, safe, convenient, and cost-effective method for 
the non-invasive prediction of EGFR mutation status in lung 
adenocarcinoma patients, to assist clinicians in selecting 
appropriate patients for EGFR-TKI treatment, support 
individualized decision-making, maximize the prognosis of 
the patient, and also avoid waste of medical resources.

As an emerging data mining technique, radiomics has 
attracted increasing attention for its advantages in providing 
objective and quantifiable imaging information, which can 
be used for differential diagnosis, genetic analysis, clinical 
staging, therapeutic evaluation, and prognosis prediction. 
The main steps of radiomics analysis are as follows: (1) 
acquisition and pre-processing of medical images (CT, 
MR, X-ray, ultrasound, PET, and so on); (2) segmentation 
of volumes of interest (VOI), which can be done manually 
by radiologists or automatically or semi-automatically by 
software; (3) feature extraction, extracting high-throughput 
features from VOIs, including shape features, first-order 
statistical features, texture features, and higher-order 
statistical features; (4) feature selection, excluding the 
non-repeatable, redundant, and irrelevant features from a 
large number of extracted features; (5) model construction, 
constructing the prediction model based on machine 
learning methods for a specific clinical problem, and training 
it [12–14].

Recent studies have demonstrated that radiomic 
features extracted from lung CT images can predict EGFR 
mutation status [10, 15–18]. However, most studies focus 
on intratumoral lesions and give little attention to subtle 
changes in the peritumoral region. Recent cancer studies 
have shown that as cancer infiltrates and metastasizes, 
the lung parenchyma surrounding the tumor may also be 

affected, and changes in the microenvironment, such as 
tumor angiogenesis, lymphangiogenesis, microvascular 
and lymphatic infiltration can provide valuable clinical 
information, which may reflect the biological behavior 
of the tumor, thus helping the characterization of tumor 
aggressiveness and the predicted prognosis of tumors 
[19, 20]. Therefore, mining peritumoral radiomic features 
may identify new biological markers for the non-invasive 
prediction of EGFR mutation in lung adenocarcinoma. We 
hope to develop a radiomics model combining intratumoral 
and peritumoral features to predict EGFR mutation status 
in lung adenocarcinoma patients non-invasively. We will 
explore the optimal peritumoral range corresponding to 
the highest AUC of the prediction model, which may be 
helpful for targeted therapy of lung adenocarcinoma.

Materials and methods

This retrospective study was approved by The Second 
Xiangya Hospital, Institutional Review Board (No. 
2022K012), which waived the requirement for patients’ 
informed consent referring to the Council for International 
Organizations of Medical Sciences (CIOMS) guidelines.

Patients

We finally collected three datasets for analysis. Figure 1 
shows the patients’ inclusion flowchart and datasets parti-
tion. Dataset 1 and dataset 2 were collected from two hos-
pitals with the following inclusion criteria: (1) available 
non-contrast enhanced thin-slice chest CT (0.75–1.5 mm) 
scan before biopsy or surgical treatment; (2) available patho-
logical reports of lung adenocarcinoma; (3) available EGFR 
mutation testing reports; and (4) no any prior treatment 
before EGFR mutation analysis. Dataset 3 was collected 
from the Cancer Imaging Archive (TCIA) public database 
with the following inclusion criteria: (1) available non-con-
trast enhanced CT images with slice thickness ≤ 1.5 mm (to 
avoid data inconsistency); (2) available pathological reports 
of lung adenocarcinoma; (3) available EGFR mutations test-
ing reports; and (4) the lesions that could be certainly iden-
tified as the resected or biopsied lesions. Patients with CT 
images slice thickness > 1.5 mm, pathologically confirmed 
non-lung adenocarcinoma, and without EGFR mutations 
testing reports were excluded. CT acquisition and scanning 
parameters for dataset 1 and dataset 2 were presented in 
Supplementary Material 1.

A total of 779 patients were included in this study which 
were divided into EGFR + or EGFR– groups. Dataset 1, 
including 640 patients collected from the Huadong Hospital 
from January 2013 to December 2018, was randomly 
divided into a training set (384 patients, 60.0%), a validation 
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set (128 patients, 20.0%), and an internal testing set (128 
patients, 20.0%). Dataset 2, including 103 patients collected 
from the Second Xiangya Hospital from January 2020 to 
March 2021. Dataset 3, including 36 patients from TCIA. 
Dataset 2 and Dataset 3 were combined as an independent 
external testing set.

Tumor segmentation and radiomic feature 
extraction

Firstly, intratumoral VOIs (VOI_I) were delineated manu-
ally along the lesion on every slice until the entire lesion 
was covered by a radiologist with 5-year experience in 
chest radiology and then confirmed or modified by a radi-
ologist with 10-year experience in chest radiology using 
3Dslicer software (version 4.10.1, Brigham and Women’s 
Hospital). In patients with multiple lesions, only one 
lesion was delineated due to the limited availability of 
EGFR testing reports. Secondly, to augment the spatial 
dimensions of tumor regions in our dataset, we employed 
a dilation technique facilitated by the “SimpleITK” library 
in Python to automatically expand VOI_I by 1 mm, 2 mm, 
3 mm, 4 mm, 5 mm, 10 mm, and 15 mm. In essence, this 

approach involves enlarging the tumor mask by a specified 
distance in millimeters. The tumor region was represented 
as a binary mask, where the tumor cells were marked as 1 
and the background regions were denoted as 0. The dila-
tion of the tumor mask was then achieved using a spherical 
structuring element, corresponding to the desired exten-
sion distance. These peritumoral regions included air in 
the lungs, pulmonary vessels, and bronchi and did not 
include the chest wall and mediastinum. Figure 2 shows 
the process of tumor segmentation and its expansion into 
the peritumoral region. Finally, three kinds of regions were 
created: (1) intratumoral regions only (VOI_I); (2) peritu-
moral regions only (VOI_P), VOI_P1, VOI_P2, VOI_P3, 
VOI_P4, VOI_P5, VOI_P10, and VOI_P15; (3) intratu-
moral and peritumoral regions (combined), VOI1, VOI2, 
VOI3, VOI4, VOI5, VOI10, and VOI15. Images with VOI 
information were exported with NII format for the next 
step of analysis.

The original images were resampled at the same voxel 
size of 1*1*1  mm3 by cubic interpolation to achieve spatial 
resolution. Hounsfield Units (HU) were standardized by 
setting consistent window levels across all images, typically 
ranging from -1000 HU (air) to 1000 HU (bone). Bias in 

Fig. 1  Patients’ inclusion flowchart and datasets partition. EGFR+— EGFR mutant; EGFR-—EGFR wild-type
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intensity non-uniformities was corrected to account for 
variations in scanner characteristics. Then, the Wavelet filter, 
Laplacian of Gaussian filter, Square filter, SquareRoot filter, 
Logarithm filter, and Exponential filter were used to pre-
process the original images.

International Biomarker Standardization Initiative 
compliant radiomic features were extracted from these VOIs 
using Pyradiomics package (version 3.0.1) in Python. From 
original images and filtered images, a total of 1454 radiomic 
features were extracted from each VOI, including 288 first-
order features, 14 shape features, and 1152 texture features. 
Texture features included Gray Level Co-occurrence 
Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), 
Gray Level Run Length Matrix (GLRLM), Neighboring 
Gray Tone Difference Matrix (NGTDM), and Gray Level 
Dependence Matrix (GLDM) features. The details of these 
features were presented in Supplementary Table S6.

Feature selection and model construction

A three-step method was used to select radiomic features. 
First, the student’s t-test initially selected significantly 
different features between the EGFR + and EGFR- groups 
(p < 0.05). Next, the features with p < 0.05 were further 
selected by the least absolute shrinkage and selection 
operator (LASSO), tenfold cross-validation was applied to 
determine the optimal tuning parameter λ value, and then 

features with nonzero coefficients were selected. After 
removing the irrelevant or redundant features, we used 
the minimum redundancy maximum relevance (mRMR) 
algorithm to identify the most important features based on 
a heuristic scoring criterion and retained only the top-ranked 
features.

The optimal selected features were used to construct 
three kinds of radiomics models: (1) VOI_I model, a model 
with intratumoral radiomics alone; (2) VOI_P model, a 
model with peritumoral radiomics alone; (3) combined 
model, a model combining intratumoral and peritumoral 
radiomics. Multiple machine learning classifier algorithms, 
including Random Forest (RF), K-nearest neighbors 
(KNN), Logistic Regression (LR), Extremely Randomized 
Trees (ExtraTrees), CatBoost, eXtreme Gradient Boosting 
(XGBoost), NeuralNetFastAI, NeuralNetTorch, and Light 
Gradient Boosting Machine (LightGBM) were analyzed 
to determine the optimal classifier algorithm. Descriptions 
of these classifier algorithms and the optimal classifier 
algorithm corresponding to each VOI were shown in 
Supplementary Material 2 and Supplementary Table S1. 
For each VOI, the respective optimal classifier algorithm 
was selected to construct the radiomics models, respectively. 
The predictive performance of each model was evaluated 
using the area under the receiver operating characteristic 
curve (AUC), accuracy, sensitivity, specificity, and F1 score.

Fig. 2  The workflow of the study. VOI—volume of interest; 
EGFR—Epidermal growth factor receptor; EGFR+—EGFR mutant; 
EGFR−—EGFR wild-type; LASSO—the least absolute shrinkage 

and selection operator; mRMR—the minimum redundancy maximum 
relevance algorithm
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Statistical analysis and model evaluation

The mean and standard deviations were expressed for 
continuous variables and frequency (percentage) for 
categorical variables. ANOVA and the chi-square test (or 
Fisher’s exact test) were used to assess statistical differences 
in continuous and categorical variables across three datasets, 
respectively. Statistical analyses were performed using 
the SPSS 27.0 software (IBM Corp, Armonk, USA). The 
predictive performance of the models was evaluated using 
AUC, accuracy, sensitivity, specificity, and F1 score. The 
DeLong test was used to assess the differences in AUC 
between different models. p < 0.05 indicated a significant 
difference.

Results

Clinical characteristics of patients

The clinical characteristics of patients are shown in Table 1. 
A total of 779 patients (345 males, 434 females) were 
included in this study. 399 patients (51.2%) were classified as 
EGFR mutant (EGFR+), while 380 (48.8%) were classified 

as wild-type (EGFR−). There were significant differences in 
smoking status, tumor subtype, and EGFR mutation status 
among patients in the three datasets.

Feature selection

After performing t-test, LASSO (Figs. 3, 4), and mRMR 
(Supplementary Fig. S1), a total of 262 highly predictive 
radiomic features were selected from 15 VOIs, including 
10 first-order features, 17 shape features, and 235 texture 
features. The details of finally selected features and their 
importance for each VOI are presented in Table 2 and Sup-
plementary Fig. S2, and features selected for VOI4 and their 
importance are presented in Fig. 5. Noting that each selected 
feature group of 15 VOIs included texture features and one 
shape feature (shape_Flatness feature), while only VOI_P1, 
VOI_P2, VOI_I, VOI1, VOI10, and VOI15 included first-
order features.

Predictive performance of VOI_I model 
and combined models

In the training and validation sets, the VOI_I model per-
formed well with an AUC of 0.728, and the AUCs of VOI2, 

Table 1  Clinical characteristics 
of patients

*EGFR—Epidermal growth factor receptor
# GGN—ground-glass nodule

Variable Dataset 1 (n = 640) Dataset 2 (n = 103) Dataset 3 (n = 36) p value

Age (years) 59.8 ± 12.0 60.1 ± 12.4 66.8 ± 11.5 0.196
Gender 0.090
 Male 272 (42.5%) 53 (51.5%) 20 (55.6%)
 Female 368 (57.5%) 50 (48.5%) 16 (44.4%)

Smoking status  < 0.001
 Current or former 49 (7.6%) 26 (25.2%) 26 (72.2%)
 Never 588 (91.9%) 52 (50.5%) 10 (27.8%)
 Missing 3 (0.5%) 25 (24.3%) –

Location 0.383
 Right lobe 379 (59.2%) 58 (56.3%) 25 (69.4%)
 Left lobe 261 (40.8%) 45 (43.7%) 11 (30.6%)

Tumor subtype 0.006
 #GGN 143 (22.3%) 8 (7.8%) 3 (8.3%)
 Part solid 245 (38.3%) 13 (12.6%) 10 (27.8%)
 Solid 192 (30.0%) 16 (15.5%) 22 (61.1%)
 Missing 60 (9.4%) 66 (64.1%) 1 (2.8%)

*EGFR mutation status 0.002
  + 343 (53.6%) 47 (45.6%) 9 (25.0%)
  − 297 (46.4%) 56 (54.4%) 27 (75.0%)

*EGFR mutation subtype –
 19 Del 120 (35.0%) – –
 L858R 185 (54.0%) – –
 Others 38 (11.0%) – –
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VOI3, VOI4, VOI5, VOI10, and VOI15 models were higher 
than that of VOI_I model, which were 0.763, 0.770, 0.877, 
0.734, 0.761, 0.790, respectively, with VOI4 model hav-
ing the highest AUC, accuracy, sensitivity, and F1 score 
(Table 3, Fig. 6a).

In the internal testing set, the AUCs of VOI3, VOI4, 
and VOI15 models were higher than that of VOI_I model 
(AUC = 0.698), which were 0.700, 0.727, and 0.707, 

respectively, with VOI4 model having the highest AUC, 
accuracy, sensitivity, and F1 score (Table 3, Fig. 6b).

In the external testing set, the AUCs of VOI2, 
and VOI4 models were higher than that of VOI_I 
model (AUC = 0.653), which were 0.673, and 0.701, 
respectively, with VOI4 model having the highest AUC, 
accuracy, and specificity (Table 3, Fig. 6c).

In addition, we used the DeLong test to evaluate 
the difference in AUC between models in the internal 

Fig. 3  Feature selection based on the least absolute shrinkage and selection operator (LASSO) method. Identification of the optimal parameter λ 
in the LASSO model using tenfold cross-validation, drawing vertical lines at the optimal values via minimum criteria
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and external testing sets, respectively (Supplementary 
Table S2, Supplementary Table S3). For VOI4 model, 
the AUC was significantly different from that of VOI_I 
in the external test set (p = 0.0006) (Fig. 6d).

Predictive performance of VOI_P models

Compared to other VOI_P models, the model based on the 
peritumoral 15 mm (VOI_P15) features alone achieved 
the best performance in the training and validation sets, 
internal testing set, and external testing set, with AUCs 
of 0.861, 0.716, and 0.704, respectively (Table 4, Fig. 7). 

The results of DeLong test are presented in Supplementary 
Table S4 and Supplementary Table S5.

Discussion

In this study, we constructed three kinds of radiomics mod-
els: (1) intratumoral model (VOI_I model); (2) peritumoral 
model (VOI_P model); (3) intratumoral and peritumoral 
model (combined model). We found that combined mod-
els showed great promise in predicting the EGFR mutation 
status of lung adenocarcinoma patients. The best prediction 

Fig. 4  LASSO coefficient distributions of radiomic features for each VOI. Drawing vertical lines at the values selected using tenfold cross-vali-
dation, and features with nonzero coefficients in the LASSO regression model were the most predictive features
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performance was obtained by VOI4 model, with the highest 
AUCs of 0.877, 0.727, and 0.701 in the training and valida-
tion sets, the internal testing set, and the external testing set, 
respectively.

To our knowledge, few studies have revealed the added 
value of peritumoral radiomics in predicting EGFR muta-
tion status in lung cancer. Choe et al. demonstrated that the 
predictive model combining intratumoral and peritumoral 
radiomic features performed slightly better in the training 
set than the intratumoral model, but the difference was not 
statistically significant (AUC = 0.66 vs. 0.64, p = 0.504), 
whereas, in the validation set, the AUC was lower than 
that of the intratumoral model (AUC = 0.56 vs. 0.62) [21]. 
Another study showed that compared to intratumoral radi-
omics alone, combining intratumoral and peritumoral 3 mm 
radiomic features significantly improved the predictive per-
formance of EGFR mutation status in primary lung can-
cer (AUC = 0.730 vs. 0.774, p < 0.001), and in lung adeno-
carcinoma only (AUC = 0.687 vs. 0.630, p < 0.001) [22]. 
However, this study did not determine whether the 3 mm 
peritumoral region was optimal for evaluating peritumoral 
features. Ideally, to determine the best peritumoral range, we 
should extract features from different peritumoral ranges to 
construct models separately and compare their predictive 
performance. A recent study compared radiomic features 
of multiple peritumoral regions (3 mm, 5 mm, 7 mm) and 
constructed three machine learning models to predict EGFR 
mutation status in NSCLC. The results showed that combin-
ing intratumoral and peritumoral 3 mm radiomic features 
could better distinguish EGFR+ from EGFR− groups than 
5 mm and 7 mm (training, p = 0.0000, test, p = 0.0025), but 
this study included only 164 patients and did not validate 
models with an external dataset [23]. Based on this, we 
expanded VOI_I outwards by 1 mm, 2 mm, 3 mm, 4 mm, 

Table 2  The details of finally selected features for each VOI

*VOI—volume of interest
# The final selected shape features for each VOI had “shape_Flatness 
feature”

*VOI Number of features

First-order 
features

#Shape 
features

Texture features Total

VOI_P1 2 1 17 20
VOI_P2 1 1 18 20
VOI_P3 0 1 19 20
VOI_P4 0 1 19 20
VOI_P5 0 1 19 20
VOI_P10 0 1 19 20
VOI_P15 0 2 18 20
VOI_I 2 1 8 11
VOI1 2 1 12 15
VOI2 0 1 9 10
VOI3 0 1 19 20
VOI4 0 1 11 12
VOI5 0 1 13 14
VOI10 2 1 17 20
VOI15 1 2 17 20
Total 10 17 235 262

Fig. 5  Radiomic features 
selected for VOI4 and their 
importance
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5 mm, 10 mm, and 15 mm to identify seven peritumoral 
regions and combined them with intratumoral regions to 
generate seven intratumoral and peritumoral regions, respec-
tively, to compare the complementary value of different 
peritumoral regions to the predictive performance of radi-
omic models. In addition, compared to the previous studies, 
our study used a larger training cohort and was tested in an 
independent internal testing set and an external testing set. 
As a result, our model may be more effective in illustrating 
the differences in radiomic features between EGFR+ and 
EGFR− groups.

According to the results, the peritumoral region of lung 
adenocarcinoma may also provide important predictive 
information about EGFR mutations, with the best predictive 

performance achieved by combining intratumoral and 
peritumoral 4 mm radiomic features. Tumor cells are usually 
highly invasive and tend to migrate from the primary tumor 
to the surrounding parenchyma, disrupting the normal 
structure and causing morphological and textural changes 
in the peritumoral region. These changes are difficult 
to detect on medical images, whereas radiomic features 
extracted from CT images can quantitatively reflect subtle 
changes in the microenvironment surrounding the tumor 
that cannot be recognized by the naked eye, this may be 
the pathophysiological basis for the improved predictive 
performance of the combined models over the VOI_I model. 
Lung adenocarcinomas have obvious cellular and mutational 
heterogeneity. The concept of tumor heterogeneity applies 
not only to tumor epithelial cells but also to the various 
microenvironments with which the tumor cells interact, 
such as vasculature, cancer-associated fibroblasts, 
extracellular matrix, and infiltrating immune cells. Tumor 
cells can influence their microenvironment by releasing cell 
signaling molecules that promote tumor angiogenesis and 
induce immunological tolerance. Meanwhile, immunocytes 
infiltrated in the tumor microenvironment can secrete a 
large number of cytokines and chemokines to promote the 
epithelial-mesenchymal transition of tumor cells, which 
allows tumor cells to invade and metastasis [24].

The tumor margin is an important meeting place in 
the tumor microenvironment where immune and stromal 
cells are highly active and interact with the tumor. The 
microenvironment at tumor invasion edges differs from that 
of the tumor core. Hypoxia tends to be associated with the 
center of the tumor, whereas oxygen is primarily present at 
the tumor periphery. Monocytes in the blood are recruited 
around tumor cells by various chemokines and cytokines, 
thus becoming tumor-associated macrophages, which can 
promote the invasion of tumor cells by supplying pro-
migratory factors such as epidermal growth factor, or by 
promoting extracellular matrix proteolytic remodeling, 
and play an important role in the invasion process of the 
tumor margin. Furthermore, under hypoxic conditions, 
tumor-associated macrophages promote tumor cell release 
of vascular endothelial growth factor and platelet-derived 
growth factor via the activation of the hypoxia-inducible 
factor-1 pathway, thus promoting tumor angiogenesis, 
providing oxygen and nutrients for tumor growth, and 
contributing to tumor cell invasion and metastasis. In 
addition, tumor-associated fibroblasts are also abundant 
at the tumor margin, promoting tumor proliferation, 
angiogenesis, invasion, and metastasis by secreting various 

Table 3  Predictive performance of VOI_I model and combined mod-
els

* VOI—volume of interest
# AUC—area under the curve

*VOI #AUC Accuracy Sensitivity Specificity F1

Training and validation sets
VOI_I 0.728 68.0% 71.0% 64.4% 70.5%
VOI1 0.720 64.1% 62.3% 66.1% 65.2%
VOI2 0.763 68.0% 71.0% 64.4% 70.5%
VOI3 0.770 68.8% 72.5% 64.4% 71.4%
VOI4 0.877 81.3% 82.6% 79.7% 82.6%
VOI5 0.734 65.6% 68.1% 62.7% 68.1%
VOI10 0.761 71.9% 72.5% 71.2% 73.5%
VOI15 0.790 71.9% 72.5% 71.2% 73.5%
Internal testing set
VOI_I 0.698 64.1% 73.9% 52.5% 68.9%
VOI1 0.692 60.9% 66.7% 54.2% 64.8%
VOI2 0.692 62.5% 68.1% 55.9% 66.2%
VOI3 0.700 66.4% 78.3% 52.5% 71.5%
VOI4 0.727 68.0% 79.7% 54.2% 72.8%
VOI5 0.687 64.8% 76.8% 50.8% 70.2%
VOI10 0.679 63.3% 71.0% 54.2% 67.6%
VOI15 0.707 64.1% 71.0% 55.9% 68.1%
External testing set
VOI_I 0.653 59.0% 78.6% 45.8% 60.7%
VOI1 0.651 50.4% 82.1% 28.9% 57.1%
VOI2 0.673 59.0% 80.4% 44.6% 61.2%
VOI3 0.605 58.3% 78.7% 41.1% 63.2%
VOI4 0.701 62.1% 66.0% 58.9% 61.4%
VOI5 0.623 57.6% 75.0% 45.8% 58.7%
VOI10 0.572 50.5% 57.4% 44.6% 51.4%
VOI15 0.647 56.3% 74.5% 41.1% 60.9%
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growth factors, cytokines, and inflammatory chemokines 
[25, 26].

As in several previous studies, the most predictive 
radiomic features finally selected in our study included a 
significant number of texture features (235 in total), which 
reflect the pattern and spatial distribution of voxel intensities 
within the VOI, indicating its biological heterogeneity 
[15]. Therefore, our results may suggest that tumor 
heterogeneity is associated with EGFR mutation status in 
lung adenocarcinoma. Regarding the shape features, the 
shape_Flatness feature was found in all of the final selected 
features of 15 VOIs, which shows the relationship between 

the largest and smallest principal components in the VOI 
shape, suggesting that this feature plays an important role 
in predicting EGFR mutation status. However, unlike 
most other studies [16, 22, 27, 28] there were no first-
order features in our best predictive model (VOI4). The 
first-order features describe the distribution of voxel 
intensities within the target region through commonly used 
and basic metrics, but it is difficult to measure the spatial 
distribution characteristics of voxels without considering the 
neighborhood relationship between voxels [29]. In our best 
predictive model, they are not critical predictive features.

Fig. 6  ROC curves of VOI_I model and combined models in the 
training and validation sets (a), internal (b) and external (c) testing 
sets, and the difference in AUC between VOI_I model and VOI4 
model in the internal and external testing sets, respectively. Blue rep-

resents VOI_I model and green represents VOI4 model. VOI—vol-
ume of interest; AUC—area under the curve; ROC—Receiver operat-
ing characteristic; CI—confidence interval
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In addition, we found that features from independent peri-
tumoral regions also had predictive value for the prediction 
of EGFR mutations. Compared to other peritumoral radi-
omics models, the model based on the peritumoral 15 mm 
(VOI_P15) features achieved the best performance in the 
training and validation sets, the internal testing set, and the 
external testing set, with AUCs of 0.861, 0.716, and 0.704, 
respectively. However, this was inconsistent with findings 
that as peritumoral distance increased, the VOI comprised 
more normal lung tissue and relatively less tumor tissue, 
making the predictive performance of the model decreased 
[30]. The probable explanation was that radiomic features 
were more stable as peritumoral distance increased [31]. 
Tunali et al. also demonstrated that some radiomic features, 
including statistical features, histograms, and some texture 
features (GLCM, GLRLM, GLSZM, and NGTDM), had 
good stability and reproducibility regardless of peritumoral 
distance, indicating that these features were less influenced 
by changes in the size or shape of peritumoral regions caused 
by different segmentation and image acquisition [31]. It was 
generally consistent with the features eventually selected in 

our study, and these stable and reproducible features were 
more likely to construct robust radiomics models, allowing 
multicenter studies to maximize the clinical utility of radi-
omics models [32].

To achieve more generalizable and impactful results 
in radiomics, researchers need to obtain large patient 
cohorts by combining images from multiple institutions. 
However, most current radiomics studies collect imaging 
data retrospectively, and image acquisition protocols, 
processing or reconstruction settings, and imaging 
scanners may be different from different institutions, 
resulting in poor reproducibility and repeatability of 
radiomic features [33–35]. Therefore, in order to discover 
more reliable and stable radiomic features and apply them 
in multicenter clinical practice, image consistency must 
be improved by controlling imaging protocols in order to 
build a public database with a large amount of high-quality 
data [36]. In addition, several studies have demonstrated 
that the use of harmonization methods in the image 
domain (prior to feature extraction) or spatial domain 
(within or after feature extraction) would be beneficial 
in the design of multicenter studies. According to recent 
studies, ComBat harmonization is a fast and easy-to-use 
feature harmonization method in the feature domain that 
allows the correction of radiomic features to reduce the 
variation caused by different imaging protocols [37–39]. 
It was first proposed by Johnsond et al. [40] for genetic 
studies and was later used by Fortin et al. for medical 
imaging applications [41], and by Orlhac et al. [42] for 
PET radiomics studies, and had produced great results 
in several subsequent studies [39, 43, 44]. Among them, 
Shiri et al. demonstrated that ComBat harmonization could 
significantly improve the prediction performance when 
radiomics to predict EGFR mutation status in NSCLC, 
and the range of mean AUC increased from 0.87–0.90 
to 0.92–0.94, which proved the effectiveness of ComBat 
harmonization [43]. Therefore, we can try to apply 
ComBat harmonization to further improve the prediction 
performance of the model in future.

Despite the encouraging results, there are still some 
limitations. First, we included some lung adenocarcinoma 
patients as an external testing set to validate the reliability 
and stability of the model, however, due to the small 
sample size, its predictive efficiency may be limited, 
and multi-institutional image data are needed to assess 
the generalizability of our findings in future; second, the 
incidence of EGFR mutation varies greatly across different 
races, with a significantly higher incidence in Asian 
populations [45]. The patients used for model training 
in our study were all Asians, making the results lacking 
in generalizability and requiring further validation in 
patients of other races; furthermore, some other potentially 
valuable factors such as smoking status and gender were 

Table 4  Predictive performance of VOI_P models

* VOI—volume of interest
# AUC—area under the curve

*VOI #AUC Accuracy Sensitivity Specificity F1

Training and validation sets
VOI_P1 0.821 77.3% 78.3% 76.3% 78.8%
VOI_P2 0.849 78.9% 82.6% 74.6% 80.9%
VOI_P3 0.735 59.4% 27.5% 96.6% 42.2%
VOI_P4 0.835 75.0% 81.2% 67.8% 77.8%
VOI_P5 0.747 57.0% 27.5% 91.5% 40.9%
VOI_P10 0.778 68.8% 62.3% 76.3% 68.3%
VOI_P15 0.861 76.6% 81.2% 71.2% 78.9%
Internal testing set
VOI_P1 0.700 67.2% 79.7% 52.5% 72.4%
VOI_P2 0.687 61.7% 72.5% 49.2% 67.1%
VOI_P3 0.689 52.3% 21.7% 88.1% 33.0%
VOI_P4 0.676 68.0% 79.7% 54.2% 72.8%
VOI_P5 0.664 50.0% 17.4% 88.1% 27.3%
VOI_P10 0.703 60.9% 55.1% 67.8% 60.3%
VOI_P15 0.716 66.4% 75.4% 55.9% 70.7%
External testing set
VOI_P1 0.655 59.0% 73.2% 49.4% 59.0%
VOI_P2 0.686 56.8% 78.6% 42.2% 59.5%
VOI_P3 0.606 59.7% 7.1% 95.2% 12.5%
VOI_P4 0.635 59.0% 75.0% 48.2% 59.6%
VOI_P5 0.609 59.0% 1.8% 97.6% 3.4%
VOI_P10 0.601 63.3% 48.2% 73.5% 51.4%
VOI_P15 0.704 61.9% 78.6% 50.6% 62.4%
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not included in this study, and we will combine radiomic 
features with these clinical features for further research to 
improve the predictive performance of the model in future.

In conclusion, radiomic features extracted from the 
peritumoral region can add extra value in predicting 
the EGFR mutation status of lung adenocarcinoma 
patients, with the optimal peritumoral range of 4 mm. 
This may partially prove the clinical value of peritumoral 
microenvironment in cancer diagnosis.
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