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Abstract
Objective Microvascular invasion (MVI) is a significant adverse prognostic indicator of intrahepatic cholangiocarcinoma 
(ICC) and affects the selection of individualized treatment regimens. This study sought to establish a radiomics nomogram 
based on the optimal VOI of multi-sequence MRI for predicting MVI in ICC tumors.
Methods 160 single ICC lesions with MRI scanning confirmed by postoperative pathology were randomly separated into 
training and validation cohorts (TC and VC). Multivariate analysis identified independent clinical and imaging MVI predic-
tors. Radiomics features were obtained from images of 6 MRI sequences at 4 different VOIs. The least absolute shrinkage 
and selection operator algorithm was performed to enable the derivation of robust and effective radiomics features. Then, 
the best three sequences and the optimal VOI were obtained through comparison. The MVI prediction nomogram combined 
the independent predictors and optimal radiomics features, and its performance was evaluated via the receiver operating 
characteristics, calibration, and decision curves.
Results Tumor size and intrahepatic ductal dilatation are independent MVI predictors. Radiomics features extracted from 
the best three sequences (T1WI-D, T1WI, DWI) with  VOI10mm (including tumor and 10 mm peritumoral region) showed 
the best predictive performance, with AUC TC = 0.987 and AUC VC = 0.859. The MVI prediction nomogram obtained excel-
lent prediction efficacy in both TC (AUC = 0.995, 95%CI 0.987–1.000) and VC (AUC = 0.867, 95%CI 0.798–0.921) and its 
clinical significance was further confirmed by the decision curves.
Conclusion A nomogram combining tumor size, intrahepatic ductal dilatation, and the radiomics model of MRI multi-
sequence fusion at  VOI10mm may be a predictor of preoperative MVI status in ICC patients.
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Introduction

Intrahepatic cholangiocarcinoma (ICC) is the second leading 
primary liver cancer with increasing worldwide incidence in 
recent years [1–4]. ICC classification is based on its macro-
scopic growth pattern and can be divided into mass-form-
ing (MF), periductal invading, intraductal developing, and 
mixed-type. Among these, the MF-ICC is the most prevalent 
and accounts for 60% [5, 6]. ICC patient prognosis is rela-
tively poor, and surgery remains the most effective interven-
tion [7–9].

MVI is characterized by cancer cell nests within vessels 
of surrounding liver parenchyma [10–12], and it is an inde-
pendent indicator of overall survival (OS) of ICC patients, 
particularly, early recurrence and poor prognosis [13, 14]. 
Tang et al. [15] suggested that MVI is inversely related to 
OS and disease-free survival of ICC patients. Moreover, 
MVI can influence individualized treatment options, for 
instance, ICC patients without MVI do not require adjuvant 
chemotherapy following R0 resection [11]. Currently, MVI 
is only identified via postoperative pathology [11, 14, 16]. 
Although certain laboratory blood evaluations and radio-
logical characteristics (e.g., ADC value and tumor size) can 
predict MVI status in ICC, the optimal preoperative imaging 
criteria for MVI detection remains inconclusive owing to 
controversial results [15–17].

Xijuan Ma and Xianling Qian have contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11547-023-01704-8&domain=pdf
http://orcid.org/0000-0003-4954-313X


1297La radiologia medica (2023) 128:1296–1309 

1 3

Radiomics has been a research hotspot in recent years, 
which can enhance diagnostic proficiency via high-through-
put medical imaging profile selection [18], and can also be 
applied to preoperative MVI prediction. In terms of the 
MVI-based prediction of ICC, Zhou et al. [19] reported the 
potential of seven wavelet profiles obtained from presurgi-
cal MRI images, with an area under the curve (AUC) of 
0.873. Qian et al. [20] established a prediction nomogram 
that incorporates two imaging features and the final radiom-
ics model and achieves excellent MVI prediction with an 
AUC of 0.953. Pathologically, MVI occurs in peritumoral 
regions, whereas, in past studies, radiomics features were 
only retrieved from inside the ICC tumor. To predict MVI 
or treatment response, some studies extracted the radiomics 
features from the surrounding liver tissue of hepatocellu-
lar carcinoma (HCC) [21–23]. Chong et al. [21] suggested 
that radiomics models incorporating both intratumoral and 
10 mm peritumoral regions can effectively predict the MVI 
status of HCC. Currently, there is no literature to systemati-
cally evaluate the radiomics features of the multiple peritu-
moral ranges of ICC. Therefore, we attempt to investigate 
the impact of different regions on MVI predictive outcome 
by radially expanding the distances at 8, 10, and 12 mm from 
the tumor boundary. In this study, we delineated different 
volumes of interest (VOIs) from four different regions of 
intratumoral and peritumoral tissue on six MR sequences 
and extracted radiomics features. Then, the optimal VOI and 
sequence were determined through comparison to select the 
best combination for constructing the radiomics model for 
predicting MVI. In summary, our research aimed to develop 
a radiomics nomogram for the prediction of MVI status in 
MF-ICC, which integrates the radiomics model and the 
independent MVI predictors of clinical and MR imaging 
characteristics.

Materials and methods

This retrospective diagnostic study received ethical approval 
from two institutions. And written informed consent require-
ment was waived.

Patients

Between July 2016 to October 2020, 160 patients with post-
operatively and pathologically confirmed ICC and preop-
erative enhanced MRI scanning were enrolled in this study. 
The inclusion criteria (Fig. 1) were as follows: (1) no his-
tory of liver cancer therapy; (2) single lesion; (3) pathol-
ogy confirmed MF-ICC; (4) MRI scanning was performed 
within 30 days before surgery; (5) satisfactory imaging qual-
ity without obvious artifacts; (6) the largest lesion diam-
eter was ≥ 10 mm; (7) the lesions can be identified in MRI 

images, and can be expanded the peritumoral range success-
fully. Three lesions cannot be expanded by software, because 
the spatial resolution of some sequence images was lower 
than the external expansion value. According to the ratio 
in the previous studies focused on radiomics and primary 
liver cancer [21, 22], all enrolled patients were randomly 
separated into training cohort (TC, n = 111) and validation 
cohort (VC, n = 49) at a ratio of 7:3.

Clinicopathological characteristics

Presurgical laboratory indexes and demographic data 
(Table 1) were obtained from the medical documentation 
system, including age, sex, history of hepatitis B virus 
(HBV), alpha-fetoprotein (AFP), carcinoembryonic antigen 
(CEA), and carbohydrate antigen 19-9 (CA199). All sur-
gical tumor specimens were obtained by hepatectomy and 
sampled via a 7-point baseline sampling protocol [12]. The 
recorded pathological characteristics included the number 
of lesions, Edmondson-Steiner grade, and MVI status. MVI 
was defined as the evidence of a tumor cell nest (over 50 
suspended tumor cells) in the portal and hepatic veins, or 
large capsular vessels in the peritumoral regions on micros-
copy [12, 24]. Tumor histological grades included well 
(G1), moderately (G2), and poorly (G3) differentiated [25]. 
Pathological characteristics were evaluated unanimously by 
two independent pathologists in each hospital, and a con-
sensus would be reached if there were any disagreements. 

Fig. 1  Study flowchart of the enrolled patients
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Table 1  Comparison of MVI status and clinical and imaging characteristics in patients of training and validation cohorts

Characteristics Training cohort (n = 111) Validation cohort (n = 49) p-Inter

MVI (−), (n = 79) MVI (+), (n = 32) p-Intra MVI (−), (n = 35) MVI (+), (n = 14) p-Intra

Clinical features
 Age, years* 59.77 (12.05) 59.94 (11.37) 0.947 60.97 (11.09) 62.29 (9.42) 0.698 0.438
 Gender 1 0.878 1.000
  Female 21 (26.6) 9 (28.1) 10 (28.6) 3 (21.4)
  Male 58 (73.4) 23 (71.9) 25 (71.4) 11 (78.6)

 HBV 0.919 0.211 0.033
  Negative 47 (59.5) 18 (56.2) 16 (45.7) 3 (21.4)
  Positive 32 (40.5) 14 (43.8) 19 (54.3) 11 (78.6)

 AFP 1 0.787 0.091
  < 20 ng/ml 70 (88.6) 29 (90.6) 28 (80.0) 10 (71.4)
  ≥ 20 ng/ml 9 (11.4) 3 (9.4) 7 (20.0) 4 (28.6)

 CEA 0.250 0.263 0.105
  < 5 ng/ml 64 (81.0) 22 (68.8) 33 (94.3) 11 (78.6)
  ≥ 5 ng/ml 15 (19.0) 10 (31.2) 2 (5.7) 3 (21.4)

 CA199 0.194 0.179 0.572
  < 34U/ml 47 (59.5) 14 (43.8) 24 (68.6) 6 (42.9)
  ≥ 34U/ml 32 (40.5) 18 (56.2) 11 (31.4) 8 (57.1)

 Edmondson-Steiner grade 0.051 0.117 0.746
  II 29 (36.7) 5 (15.6) 15 (42.9) 2 (14.3)
  III 50 (63.3) 27 (84.4) 20 (57.1) 12 (85.7)

MR imaging features
 Tumor size, mm* 40.28 (21.95) 59.49 (27.77) < 0.001 43.80 (21.15) 52.40 (21.78) 0.208 0.915
 Tumor morphology 0.048 0.203 0.855
  (Hemi-)spherical and oval 38 (48.1) 8 (25.0) 13 (37.1) 5 (35.7)
  Lobulated 26 (32.9) 18 (56.2) 17 (48.6) 4 (28.6)
  Irregular 15 (19.0) 6 (18.8) 5 (14.3) 5 (35.7)

 SI on T1WI 0.227 1 0.797
  Low 78 (98.7) 30 (93.8) 34 (97.1) 14 (100.0)
  Moderate 1 (1.3) 1 (3.1) 1 (2.9) 0 (0.0)
  High 0 (0.0) 1 (3.1) 0 (0.0) 0 (0.0)

 SI on T2WI-FS 1 0.659 0.282
  Low 0 (0.0) 0 (0.0) 1 (2.9) 0 (0.0)
  Moderate 3 (3.8) 1 (3.1) 1 (2.9) 0 (0.0)
  High 76 (96.2) 31 (96.9) 33 (94.3) 14 (100.0)

 Target sign on T2WI-FS 0.555 0.189 0.041
  Negative 58 (73.4) 21 (65.6) 16 (45.7) 10 (71.4)
  Positive 21 (26.6) 11 (34.4) 19 (54.3) 4 (28.6)

 Target sign on DWI 0.281 0.007 0.125
  Negative 50 (63.3) 16 (50.0) 11 (31.4) 11 (78.6)
  Positive 29 (36.7) 16 (50.0) 24 (68.6) 3 (21.4)

 Rim enhancement on T1WI-A 1 0.651 0.324
  Negative 18 (22.8) 7 (21.9) 4 (11.4) 3 (21.4)
  Positive 61 (77.2) 25 (78.1) 31 (88.6) 11 (78.6)

 Enhancement pattern 0.540 0.179 0.524
  Gradual and filling 57 (72.2) 26 (81.2) 26 (74.3) 10 (71.4)
  Persistent enhancement 10 (12.7) 2 (6.2) 7 (20.0) 1 (7.1)
  Wash-in and wash-out 12 (15.2) 4 (12.5) 2 (5.7) 3 (21.4)

 LI-RADS 0.287 0.063 0.642
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Quantitative data were obtained by averaging the results 
from the two pathologists independently reading.

MR imaging

All patients were examined with enhanced MRI scan-
ning. Gadopentetate dimeglumine (Haipu Pharmaceutical 
Co., Ltd.) was administered at 0.1 mmol/kg followed by a 
20 ml saline flush at 2 ml/s using a power injector. Patients 
were scanned using the following nine MRI scanners: a 
1.5T UIHMR560 scanner (United Imaging Healthcare, 
Shanghai, China) for 62 patients; a 3.0T UIHMR770 scan-
ner (United Imaging Healthcare, Shanghai, China) for 38 
patients; a Magnetom Avanto 1.5T imager (Siemens Health-
care, Erlangen, Germany) for 29 patients; a Magnetom Aera 
1.5T imager (Siemens Healthcare, Erlangen, Germany) for 
16 patients; a Magnetom Verio 3.0T MRI System (Sie-
mens Healthcare, Erlangen, Germany) for 3 patients; an 
Achieva 1.5T MRI System (Philips Medical Systems, Best, 
Netherlands) for 3 patients; and three 3.0T Discovery750 
MRI Systems (GE Healthcare, Milwaukee, WI, USA) for 9 
patients. The typical scanning sequences used in our study 
were completed as follows: axial T2-weighted breath-hold 
fat-suppressed fast spin echo sequence (T2WI-FS), and dif-
fusion-weighted imaging (DWI) conducted via free-breath 
single-shot spin-echo-planar sequence (b = 0, 800  mm2/s). 
Breath-hold fat-suppressed 3D T1-weighted quick spoiled 

gradient echo sequences (T1WI-FS), including mask phase 
(T1WI), axial arterial phase (T1WI-A), axial portal venous 
phase (T1WI-V), and axial delayed phase (T1WI-D), were 
taken at the 20–30 s [26], 60–90 s, and 160–180 s, respec-
tively, following contrast agent administration. The param-
eters are shown in detail in Supplemental Table S1.

Qualitative and quantitative MRI analyses

The following imaging characteristics of the tumor were 
assessed: (a) Tumor size, described as the largest axial diam-
eter on T1WI-D (T1WI-V was selected when the edge of the 
T1WI-D was not clear and could not be measured); (b) Tumor 
morphology (spherical/hemispherical/oval, lobulated, and 
irregular); (c) Signal intensity (SI) of tumor (relative to the 
surrounding liver) on T1WI-FS, T2WI-FS and DWI, such as, 
hypo-, iso-, and hyperintensity; (d) Target sign on T2WI-FS 
and DWI, representing peripheral hyperintense with central 
isointense/hypointense [27]; I Intrahepatic duct dilatation; (f) 
Capsular retraction; (g) Rim enhancement on T1WI-A, rep-
resenting lesion with peripheral enhancement, (h) Enhance-
ment pattern (gradual and filling, persistent enhancement, and 
wash-in and -out pattern); (i) Visible vessel penetration within 
the lesion, including branches of the hepatic arteries, as well 
as the portal and hepatic veins; (j) Peripheral hepatic enhance-
ment, described as hepatic parenchyma enhancement around 
the lesion at any phase; (k) The liver imaging reporting and 

Table 1  (continued)

Characteristics Training cohort (n = 111) Validation cohort (n = 49) p-Inter

MVI (−), (n = 79) MVI (+), (n = 32) p-Intra MVI (−), (n = 35) MVI (+), (n = 14) p-Intra

  LR-3 1 (1.3) 0 (0.0) 0 (0.0) 0 (0.0)
  LR-4 4 (5.1) 0 (0.0) 1 (2.9) 0 (0.0)
  LR-5 8 (10.1) 2 (6.2) 0 (0.0) 2 (14.3)
  LR-M 66 (83.5) 29 (90.6) 34 (97.1) 12 (85.7)
  LR-TIV 0 (0.0) 1 (3.1) 0 (0.0) 0 (0.0)

 Intrahepatic duct dilatation 0.002 0.487 1.000
  Negative 56 (70.9) 12 (37.5) 23 (65.7) 7 (50.0)
  Positive 23 (29.1) 20 (62.5) 12 (34.3) 7 (50.0)

 Hepatic capsular retraction 0.515 1 0.920
  Negative 49 (62.0) 17 (53.1) 20 (57.1) 8 (57.1)
  Positive 30 (38.0) 15 (46.9) 15 (42.9) 6 (42.9)

 Visible vessel penetration 0.700 1 0.011
  Negative 37 (46.8) 13 (40.6) 8 (22.9) 3 (21.4)
  Positive 42 (53.2) 19 (59.4) 27 (77.1) 11 (78.6)

 Peripherally hepatic enhancement 0.316 0.613 0.827
  Negative 32 (40.5) 17 (53.1) 13 (37.1) 7 (50.0)
  Positive 47 (59.5) 15 (46.9) 22 (62.9) 7 (50.0)

Data are shown as the number of patients and percentage in parentheses unless otherwise stated
*Data are means and standard deviations in parentheses
The bold values are statistically significant with p < 0.05
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data system (LI-RADS), dependent on LI-RADSv2018 [28]. 
All MR images were independently analyzed by three MVI 
status-blinded abdominal radiologists (X.L.Q., X.J.M., and 
C.Y. with 6, 11, and 16 years of experience, respectively). 
Qualitative data were judged and recorded by three radiolo-
gists separately, and different results were decided by the most 
experienced radiologist (C.Y.). Quantitative data were aver-
aged after three independent measurements by X.J.M.

Radiomics analysis

Workflow

The workflow of radiomics analysis included tumor segmen-
tation and expansion, feature extraction and selection, model 
construction and analysis, and model assessment (Fig. 2).

Tumor segmentation and VOI expansion

VOIs were drawn on six sequences: DWI, T2WI-FS, T1WI, 
T1WI-A, T1WI-V, and T1WI-D. First, the  VOItumor was the 
tumor volume segmentation obtained by manually delin-
eating in the ITK-SNAP software (http:// www. itksn ap. org/ 
pmwiki/ pmwiki. php) [29] by two abdominal radiologists 
(X.L.Q. and J.Z., both with 6 years of MRI experience), 
thus avoiding the inclusion of non-neoplastic components 
such as peripheral hepatic enhancement. The  VOItumor 
on T1WI was manually delineated, while the  VOItumor on 
T1WI-A, T1WI-V, or T1WI-D was obtained by replicating 
VOI on T1WI after registering their images with the T1WI 
sequence respectively because their field of view (FOV) and 
image layers were matched. The same method was used in 
the images on T2WI and DWI. If FOVs or image layers mis-
match, VOIs of other sequences were manually delineated 

according to the  VOItumor on T1WI. Then, the peritumoral 
region of 8, 10, and 12 mm was automatically expanded by 
using the “Margin” module of the 3D-Slicer 4.11.20210226 
software (https:// www. slicer. org/), and the volume outside 
the hepatic contour was manually removed by two radiolo-
gists (Q.W. and R.L.Z. with 5 and 8 years of MRI experi-
ence, respectively). The obtained expansion VOIs, which 
included tumor and peritumoral region, were denoted as 
 VOI8mm,  VOI10mm, and  VOI12mm, respectively. If the two 
radiologists had input on the VOI definition, the third radi-
ologist (X.J.M.) was invited to resolve differences together, 
and differences were resolved by majority, consensus, or 
averaging. The process of the VOI delineation, expansion, 
and replication is shown in Supplemental Fig. S1.

Feature extraction and selection

Radiomics features were extracted from VOIs by using 
“Radiomics” of 3D-Slicer software (https:// www. radio mics. 
io/ pyrad iomics. html). This package automatically developed 
a pool of radiomics features from each VOI.

To evaluate the repeatability of VOI delineation and 
enlargement, 30 cases were randomly selected from the 
collected data, and the images were delineated by reader 1 
(X.L.Q.) and reader 2 (X.J.M.), respectively. The interclass 
correlation coefficient was calculated to assess the inter-
observer agreement. Reader 1 delineated the VOI of the 
same 30 cases after a month, and the intraclass correlation 
coefficient was calculated to assess the intra-observer agree-
ment. Radiomics features with a threshold greater than 0.8 
were retained and used for dimensionality reduction analysis.

The dimensionality reduction process was divided into 
two steps (Supplemental Table  S2): First, the selected 

Fig. 2  Study flowchart of the radiomics analysis

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://www.slicer.org/
https://www.radiomics.io/pyradiomics.html
https://www.radiomics.io/pyradiomics.html
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features with p-value < 0.05 in the SelectKBest analysis 
were selected; next, the least absolute shrinkage and selec-
tion operator (LASSO) algorithm was employed to obtain 
the final radiomics features and feature coefficients. The 
lambda value (λ) determines which features make the model 
optimal, and tenfold cross-validation is used to find the best 
λ: the λ corresponding to the minimum mean square error 
(MSE) determines the useful features to be included in the 
model. Finally, Rad-score was calculated according to the 
following formula.

Model construction and analysis

The image model was constructed by independent imaging 
features selected via uni- and multivariate logistic regres-
sion (LR) analysis. 24 single-sequence models of 6 MRI 
sequences based on 4 VOI-subgroups (including  VOItumor, 
 VOI8mm,  VOI10mm, and  VOI12mm) were constructed by corre-
sponding optimal features. Meanwhile, based on the optimal 
VOI-subgroup, various combinations of the top three opti-
mal sequences were constructed and compared to select the 
best combination for constructing the final radiomics model. 
Finally, independent imaging characteristics and Rad-scores 
of the three optimal sequences were employed for nomogram 
construction. All models were constructed using LR and 
support vector machine (SVM) classifiers.

Model assessment

The predictive efficacy was evaluated by receiver operating 
characteristics curve (ROC) analysis. The AUC, sensitivity, 
and specificity were calculated. The Delong test was used 
to compare the predictive efficacy of different models. The 
Hosmer–Lemeshow test was used to compare the agreement 
between nomogram-estimated MVI status and the real MVI 
status. The calibration curves were constructed to evaluate 
the goodness-of-fit of the nomogram. The decision curve 
analysis (DCA) assessed the net benefits of models at a range 
of risk thresholds.

Statistical analysis

The baseline between TC and VC was evaluated using the 
Student’s t-test, Mann–Whitney U test, Wilcoxon test, Chi-
square, or Fisher’s exact test, as appropriate. Univariate and 
multivariate analysis identified independent clinical and 
imaging MVI predictors. SPSS version 25.0 (SPSS Inc) 
was employed for all data analyses. The Python version 
3.6 Sklearn package was used to dimensionally reduce the 

Rad score = Intercept +

n
∑

i=1

coefficients [i] × Feature [i]

radiomics features, prior to plotting the ROC curve. The 
AUC, accuracy, sensitivity, and specificity were assessed. A 
two-tailed p-value < 0.05 was set as the significance thresh-
old. Lastly, several plots were generated using the R software 
(version 4.1.2).

Results

Demographic and clinicoradiologic profiles 
of patients

The inter- and intra-class correlation coefficients of the 
tumor imaging profiles were both significant (> 0.8). Table 1 
summarizes the comparisons of the MVI status, demo-
graphic, clinical, and imaging characteristics in TC and VC. 
160 patients (117 males and 43 females, 60.29 ± 11.43 years 
old, age range: 29–86 years old) were enrolled in this study. 
There were 79 MVI- and 32 MVI+ patients in the TC 
(n = 111), and 35 MVI- and 14 MVI+ patients in the VC 
(n = 49). No obvious differences existed in the MVI status 
between TC and VC (p = 1.000). Based on multivariate anal-
ysis, tumor size (p = 0.01; OR = 1.03, 95% CI 1.01–1.05) and 
intrahepatic ductal dilatation (p = 0.02; OR = 3.04, 95% CI 
1.21–7.63) were independent indicators of MVI (Table 2). 
The Image model was constructed with these two independ-
ent predictors. Examples of the representative image charac-
teristics are shown in Supplemental Fig. S2.

Radiomics features

The radiomics features extracted were stratified into the First 
Order, Shape, Gray-Level Co-occurrence Matrix (GLCM), 
Gray-Level Size Zone Matrix (GLSZM), Gray-Level Run 
Length Matrix (GLRLM), Neighboring Gray Tone Differ-
ence Matrix (NGTDM), and Gray-Level Dependence Matrix 
(GLDM) features. The radiomics features on each three-
dimensional segmentation were grouped as follows: (1) 
shape (n = 14), first-order (n = 18), textural profile (n = 75), 
and wavelet profile (n = 744). Ultimately, 851 features were 
obtained from each VOI per sequence per patient. The num-
bers of the selected features of each VOI of every single 
sequence during the procedure of feature selection are pro-
vided in Supplemental Table S2.

Performance of radiomics features from single MRI 
sequences

Table 3 summarizes the AUCs of four VOI-subgroups in six 
single-sequence models, and matched ROCs are provided 
in Supplemental Fig. S3. In the same sequence, the best 
predictive efficiencies are obtained from the  VOI10mm sub-
group. Next, three radiomics models based on  VOI10mm of 
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Table 2  Univariate and 
multivariate analysis of 
predictive characteristics related 
with MVI status

The bold values are statistically significant with p < 0.05

Characteristics Univariate Multivariate

OR 95% CI p-value OR 95% CI p-value

Age 1.00 0.97–1.04 0.95
Gender 0.93 0.37–2.32 0.87
HBV 1.14 0.50–2.62 0.75
AFP 0.80 0.20–3.19 0.76
CEA 1.94 0.76–4.94 0.17
CA199 1.89 0.82–4.33 0.13
Edmondson-Steiner grade 3.13 1.09–9.02 0.03 2.25 0.73–6.90 0.16
Tumor size 1.03 1.01–1.05 < 0.001 1.03 1.01–1.05 0.01
Tumor morphology 1.51 0.87–2.61 0.15
SI on T1WI 4.32 0.53–34.91 0.17
SI on T2WI-FS 1.22 0.12–12.22 0.86
Target sign on T2WI-FS 1.45 0.60–3.50 0.41
Target sign on DWI 1.72 0.75–3.96 0.20
Rim enhancement on T1WI-A 1.05 0.39–2.83 0.92
Enhancement pattern 0.86 0.38–1.96 0.72
LI-RADS 0.77 0.38–1.55 0.46
Intrahepatic duct dilatation 4.06 1.71–9.64 < 0.001 3.04 1.21–7.63 0.02
Hepatic capsular retraction 1.44 0.63–3.30 0.39
Visible vessel penetration 1.29 0.56–2.96 0.55
Peripherally hepatic enhancement 0.60 0.26–1.37 0.23

Table 3  The performance of 
single-sequence models based 
on multiple VOIs and multi-
sequence combination models 
based on  VOI10mm in predicting 
MVI status

The bold values exhibit ideal and stable predictive efficacy with AUCs > 0.8 of the top three optimal 
sequences and the best combination sequence based on the optimal VOI-subgroup
TC training cohort, VC validation cohort

Sequences Classifiers and Cohorts AUCs

VOItumor VOI8mm VOI10mm VOI12mm

T2WI SVM(TC/VC) 0.715/0.614 0.728/0.632 0.773/0.676 0.665/0.541
LR(TC/VC) 0.753/0.616 0.773/0.639 0.799/0.697 0.732/0.611

T1WI-V SVM(TC/VC) 0.725/0.649 0.743/0.663 0.773/0.690 0.716/0.606
LR(TC/VC) 0.743/0.667 0.767/0.701 0.788/0.739 0.721/0.663

T1WI-D SVM(TC/VC) 0.766/0.680 0.792/0.694 0.798/0.767 0.778/0.678
LR(TC/VC) 0.849/0.780 0.811/0.784 0.850/0.831 0.838/0.745

T1WI-A SVM(TC/VC) 0.726/0.632 0.744/0.639 0.779/0.690 0.705/0.611
LR(TC/VC) 0.729/0.645 0.773/0.691 0.784/0.722 0.714/0.618

T1WI SVM(TC/VC) 0.737/0.657 0.786/0.659 0.771/0.745 0.719/0.659
LR(TC/VC) 0.809/0.722 0.811/0.729 0.823/0.814 0.807/0.718

DWI SVM(TC/VC) 0.733/0.620 0.765/0.629 0.790/0.706 0.763/0.621
LR(TC/VC) 0.788/0.702 0.801/0.704 0.808/0.808 0.781/0.690

T1WI+DWI SVM(TC/VC) / / 0.890/0.808 /
LR(TC/VC) / / 0.963/0.831 /

T1WI-D+DWI SVM(TC/VC) / / 0.898/0.812 /
LR(TC/VC) / / 0.968/0.843 /

T1WI-D+T1WI SVM(TC/VC) / / 0.907/0.814 /
LR(TC/VC) / / 0.974/0.853 /

T1WI+T1WI-D+DWI SVM(TC/VC) / / 0.915/0.820 /
LR(TC/VC) / / 0.987/0.859 /
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T1WI-D, T1WI, and DWI sequences exhibited ideal and 
stable predictive efficacy with AUCs > 0.8. Delong test 
between SVM and LR of single-sequences based on mul-
tiple VOIs is provided in Supplemental Table S3. In terms 
of different VOIs and sequences, all of the LR results were 
better than SVM in the TC and VC, and most of them were 
statistically significant. To sum up, the top three optimal 
sequences (T1WI-D, T1WI, DWI) based on the  VOI10mm by 
LR were finally selected for further analysis. The selection 
procedure of robust features of each  VOI10mm of the three 
optimal sequences is provided in Supplemental Fig. S4. And 
the detail of robust features of each  VOI10mm of the three 
optimal sequences is listed in Supplemental Table S4. Lastly, 
the performance of every single sequence based on  VOI10mm 
in predicting MVI status by using LR is provided in Sup-
plemental Table S5.

Performance of radiomics features from multiple 
MRI sequences

In the  VOI10mm subgroup, one three-sequence combination 
model and three pairwise combination models based on the 
DWI, T1WI, and T1WI-D images were constructed. The three-
sequence combination model performed better than the three 
pairwise combination models in predicting MVI status in both 
TC and VC (AUC TC = 0.987, AUC VC = 0.859) (Tables 3, 4, 
and Fig. 3). Therefore, the three-sequence combination model 
based on  VOI10mm was regarded as the Radiomics model.

Performance and comparison of the combined MVI 
prediction model

The combined Image+adiomics model achieved excel-
lent predictive efficacy in the TC (AUC = 0.995, 95% CI 
0.987–1.000, sensitivity = 0.844, and specificity = 0.987) and 
VC (AUC = 0.867, 95% CI 0.798–0.921, sensitivity = 0.643, 
and specificity = 0.800) (Table 5, Fig. 3).

The Radiomics model and Image+Radiomics model were 
both superior to the Image model in the TC (AUCs: 0.987 and 
0.995 vs. 0.885, p < 0.05) and VC (AUCs: 0.859 and 0.867 
vs. 0.792, p < 0.05). The Image+Radiomics model was also 
superior to the Radiomics model in the TC (p = 0.037), while 
there was no statistically significant in the VC (p = 0.071). 
(Tables 4 and 5).

Development and verification of the nomogram

To visualize the Image+Radiomics model, we developed a 
nomogram as an assessment tool (Fig. 4A). The formula is 
as follows:

Y − score = − 0.7950 + 0.0198 ∗ Image_Tumor size

+ 0.9062 ∗ Image_Intrahepatic duct dilatation

+ 7.0557 ∗ Rad_score_T1W-D

+ 4.5624 ∗ Rad_score_T1W + 1.5527 ∗ Rad_score_DW

Table 4  The comparison of 
various models in training and 
validation cohorts

All sequences in the table are based on  VOI10mm subgroup
The bold values are statistically significant with p < 0.05

Models for comparison Classifier PTraining cohort PValidation cohort

T1WI+DWI VS T1WI-D+DWI SVM 0.546 0.425
LR 0.453 0.426

T1WI-D+T1WI VS T1WI-D+DWI SVM 0.517 0.336
LR 0.213 0.465

T1WI-D+DWI VS T1WI-D+T1WI SVM 0.417 0.313
LR 0.362 0.497

Radiomics model VS T1WI+DWI SVM 0.083 0.252
LR 0.046 0.278

Radiomics model VS T1WI-D+DWI SVM 0.136 0.294
LR 0.057 0.351

Radiomics model VS T1WI-D+T1WI SVM 0.023 0.318
LR 0.044 0.033

Radiomics model VS Image model SVM < 0.001 0.015
LR < 0.001 0.023

Image+Radiomics model VS Image model SVM 0.019 0.032
LR 0.024 0.040

Image+Radiomics model VS Radiomics model SVM 0.043 0.011
LR 0.037 0.071
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The nomogram calibration curves demonstrated the 
goodness-of-fit between the predicted MVI status and 
the actual MVI status in the TC and VC (Fig. 4B, C). 
The nomogram decision curves exhibited that the Image 

model, Radiomics model, and nomogram could obtain 
net benefits with a risk threshold over 0.3 in the TC and 
0.5 in the VC (Fig. 4D, E), and the nomogram showed the 
highest net benefit.

Fig. 3  ROCs of various models that predict MVI status in training cohort (TC) and validation cohort (VC) by support vector machine (SVM) 
and logistic regression (LR) classifiers

Table 5  The performance of MVI prediction models in training cohort and validation cohort

The bold values are the superior AUC between every model constructed by LR and SVM

Models Classifiers Training cohort (n = 111) Validation cohort (n = 49)

Sen Spe AUC (95% CI) Sen Spe AUC (95% CI)

Image model SVM 0.469 1.000 0.869 (0.797–0.932) 0.643 0.743 0.786 (0.591–0.843)
LR 0.781 0.772 0.885 (0.836–0.947) 0.857 0.686 0.792 (0.709–0.882)

Radiomics model SVM 0.812 0.848 0.915 (0.883–0.965) 0.714 0.800 0.820 (0.670–0.889)
LR 0.625 1.000 0.987 (0.973–0.997) 1.00 0.743 0.859 (0.809–0.929)

Image+Radiomics model SVM 0.844 0.861 0.929 (0.880–0.968) 0.857 0.657 0.824 (0.631–0.853)
LR 0.844 0.987 0.995 (0.987–1.000) 0.643 0.800 0.867 (0.798–0.921)
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Fig. 4  Nomogram of the 
microvascular invasion (MVI) 
prediction model, nomogram 
calibration curves in the training 
(TC) and validation cohorts 
(VC), and decision curve 
analysis (DCA). A A nomogram 
combines two independent 
imaging predictors (tumor size 
and intrahepatic duct dilatation), 
and radiomics features based 
on  VOI10mm of DWI, T1WI, 
and T1WI-D sequences. B, C 
Nomogram calibration curves in 
the TC and VC. The x-axis rep-
resents a nomogram-estimated 
MVI risk, the y-axis represents 
the actual MVI risk, and the 
diagonal dashed line indicates 
the ideal prediction by an ideal 
model. D, E Nomogram DCA 
curves in the TC and VC. The 
gray curve is the total benefit of 
assuming that all intrahepatic 
cholangiocarcinoma (ICC) 
patients with MVI; the gray line 
is the total benefit of assuming 
no ICC patients with MVI; and 
the black line is the expected 
total benefit per patient, accord-
ing to the nomogram
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Discussion

Our study sought to establish a radiomics nomogram based 
on the optimal VOI of multi-sequence MRI for preopera-
tive prediction of MVI in ICC tumors. Firstly, multivariate 
analysis showed that tumor size and intrahepatic ductal dil-
atation were independent indicators, and the Image model 
incorporated the two independent indicators. Secondly, we 
found that the best scale VOI was  VOI10mm, which included 
the entire volume of the tumor plus the peritumoral area 
within a region of 10 mm from the tumor margin, and the 
best three radiomics models of T1WI-D, T1WI, and DWI 
sequences based on  VOI10mm exhibited ideal and stable 
predictive efficacy with AUCs > 0.8 by using LR classifier. 
Therefore, the three-sequence combination model based on 
 VOI10mm is regarded as the final radiomics model. Finally, 
the final combined Image+Radiomics model achieved 
excellent predictive efficiency with AUC = 0.995 in the 
TC and AUC = 0.867 in the VC, and it performed better 
than the Image model and Radiomics model. To visualize 
the excellent Image+Radiomics model, the nomogram was 
developed as an assessment tool, and its clinical signifi-
cance was further confirmed by the decision curve.

Some studies have reported that MRI-based radiom-
ics models could be useful for predicting MVI in ICC, 
but the delineated VOIs were based on the lesion itself 
[19, 20], while in fact, MVI occurs in the peritumoral 
region of the lesion. Innovatively, we extracted radiom-
ics features from the ICC tumor and multiple peritumoral 
regions. The best three sequences we selected were con-
sistent with Qian et al. [20] importantly, the nomogram 
in our study performed better in both TC and VC (AUCs: 
0.995 vs. 0.953 in TC, 0.867 vs. 0.861 in VC), which 
indicated that radiomics features of peritumoral regions 
may improve the predictive efficacy. The procedure of 
feature selection in our study (Table S2) also indicates 
that most of the independent radiomics features occurred 
in the 10 mm peritumoral region, which fits the patho-
logical definition of MVI. That is to say, our study further 
confirmed that the MRI radiomics features of the tumoral 
and the 10 mm peritumoral region can reflect the micro-
environment of the ICC tumor to some extent. Based on 
the principle of MR imaging, the reasons for the optimal 
three sequences (T1WI-D, T1WI, and DWI) may be as 
follows: (1) DWI can effectively reflect the molecular 
movement of tissues and provide valuable imaging infor-
mation regarding the diffusion and infiltration of cancer 
cells. (2) T1WI-D, obtained through contrast agent injec-
tion, can reflect the perfusion of blood flow and provide 
certain advantages in evaluating tumor invasion. (3) T1WI 
can effectively display anatomical structures and tumor 
morphology, providing various important dimensional 

and morphological parameters, which are very useful in 
assessing subtle tumor invasions. Therefore, combining 
these three sequences can maximize the diagnostic accu-
racy and precision of MVI in ICC.

Radiomics is well regarded as an essential imaging strat-
egy in oncology [30–33], however, there are still various 
technical challenges. MVI typically presents in the tumor 
edge, making the peritumoral tissue the first susceptible 
tissue, and its vessels become the primary hematogenous 
path for portal vein tumor thrombosis and metastasis [34, 
35], so the radiomics features of the peritumoral tissue 
must be effectively evaluated. To predict MVI or treatment 
response, numerous studies examined liver tissue from vari-
ous areas around the HCC lesions [21–23]. In Chong et al. 
[21] study involving MRI-based multi-scale radiomics to 
predict the MVI status of HCC, the final Radiomics model 
was derived from the optimal multi-sequence fusion in the 
 VOItumor+10mm+liver subgroup. Chen et al. [23] compared the 
tumoral and peritumoral radiomics features in different ROI 
ranges and revealed that the radiomics features extracted 
from tumoral and 10 mm peritumoral regions, obtained the 
best predictive efficacy in predicting the response of HCCs 
to the first trans-arterial chemoembolization treatment. In 
our study, the multi-VOI models that explored the peritu-
moral region revealed that the  VOI10mm subgroup outper-
formed the tumor-only and other subgroups, which was 
similar to the findings in HCC in Chong et al. and Chen 
et al. studies [21, 23]. It is worth mentioning that the simple 
radiomics model is usually unstable with abnormally high 
or low sensitivity or specificity, like our and Zhang’s studies 
[36]. However, the final combined model includes clinical, 
image, and radiomics factors and usually performs stable. 
This is why we extracted independent clinical and image 
predictors.

Eighteen independent radiomics features were extracted 
and selected from the best three sequences based on 
 VOI10mm (Supplemental Table S4), some features have been 
proved to be associated with tumor size (e.g., Maximum 
2D Diameter Row), shape (e.g., Flatness), and texture het-
erogeneity (e.g., Gray-Level Non-Uniformity Normalized), 
which are essential for predicting MVI. Higher values of the 
Maximum 2D diameter Row represent larger tumor sizes. 
This corroborates with prior investigation that reported an 
association between tumor sizes and MVI risk [24]. Long 
Run Low Gray-Level Emphasis, Short Run Low Gray-Level 
Emphasis, and Gray-Level Non-Uniformity Normalized 
from GLRLM reflect the tumor heterogeneity in gray scales. 
Tumor heterogeneity may be caused by tumor cellularity, 
micronecrosis, and inflammation, which further facilitates 
the MVI process [37, 38]. In addition, wavelet features are 
strongly associated with survival, which can also quantify 
intratumoral heterogeneity [39]. In our study, most of the 
final independent radiomics features were wavelet features, 
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which corroborated with Zhou’s study [19]. Wavelet features 
may be correlated with tumor morphology, pathophysiology, 
and proteomics [40].

Previous studies have shown that MVI is one of the fac-
tors associated with poor postoperative survival in ICC 
patients [10], and has been used as one of the reference fac-
tors for adjuvant chemotherapy after ICC resection [11]. Our 
research shows that: (1) MVI can be predicted before sur-
gery with high accuracy, to shunt ICC patients and roughly 
predict the prognosis; (2) More importantly, if the propor-
tion of independent radiomics features extracted in a certain 
perifocal region is high, it suggests that there may really 
exist MVI here, and the region can be extensively resected 
during surgery, of course, this needs further comparative 
study with pathology. Totally, preoperative prediction of 
MVI may help physicians to formulate an overall treatment 
plan in advance.

Limitations

Firstly, there was selection bias in this retrospective study. 
The rate of ICC patients with MVI in this study was 28.75% 
(46/160), which may be less than the actual positive rate. 
Secondly, although preoperative imaging for MVI predic-
tion was assessed, the long-term follow-up to observe the 
association between imaging features, radiomics features, 
outcome, and survival was needed. Thirdly, to predict MVI 
status in ICC patients via radiomics, there is currently no 
unified standard of tumoral and the range of peritumoral 
tissue VOIs delineation for extracting radiomics features. 
Fourthly, 8, 10, and 12 mm peritumoral regions were auto-
matically expanded by the “Margin” module, thus the peritu-
moral regions are basically the same in all sequences. But it 
is relatively similar actually because the respiratory motion 
artifact is inevitable. Finally, nine 1.5T and 3.0T MRI scan-
ners from four manufacturers with different parameters were 
used in our research, which may introduce bias.

Conclusion

We developed and validated a nomogram combining tumor 
size, intrahepatic ductal dilatation, and Radiomics models 
of T1WI, T1WI-D, and DWI sequences based on  VOI10mm 
(including tumoral and 10 mm peritumoral region), which 
may be an indicator to predict presurgical MVI status in 
MF-ICC.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11547- 023- 01704-8.
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