Skip to main content

Advertisement

Log in

A CT-based radiomics nomogram for predicting the progression-free survival in small cell lung cancer: a multicenter cohort study

  • Chest Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

To develop a radiomics nomogram based on computed tomography (CT) to estimate progression-free survival (PFS) in patients with small cell lung cancer (SCLC) and assess its incremental value to the clinical risk factors for individual PFS estimation.

Methods

558 patients with pathologically confirmed SCLC were retrospectively recruited from three medical centers. A radiomics signature was generated by using the Pearson correlation analysis, univariate Cox analysis, and multivariate Cox analysis. Association of the radiomics signature with PFS was evaluated. A radiomics nomogram was developed based on the radiomics signature, then its calibration, discrimination, reclassification, and clinical usefulness were evaluated.

Results

In total, 6 CT radiomics features were finally selected. The radiomics signature was significantly associated with PFS (hazard ratio [HR] 4.531, 95% confidence interval [CI] 3.524–5.825, p < 0.001). Incorporating the radiomics signature into the radiomics nomogram resulted in better performance for the estimation of PFS (concordance index [C-index] 0.799) than with the clinical nomogram (C-index 0.629), as well as high 6 months and 12 months area under the curves of 0.885 and 0.846, respectively. Furthermore, the radiomics nomogram also significantly improved the classification accuracy for PFS outcomes, based on the net reclassification improvement (33.7%, 95% CI 0.216–0.609, p < 0.05) and integrated discrimination improvement (22.7%, 95% CI 0.168–0.278, p < 0.05). Decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics nomogram outperformed the clinical nomogram.

Conclusion

A CT-based radiomics nomogram exhibited a promising performance for predicting PFS in patients with SCLC, which could provide valuable information for individualized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Abbreviations

SCLC:

Small cell lung cancer

EP:

Etoposide-cisplatin

EC:

Etoposide-carboplatin

CT:

Computed tomography

PFS:

Progression-free survival

PCI:

Prophylactic cranial irradiation

CEA:

Carcinoma embryonic antigen

NSE:

Neuron specific enolase

ROI:

Region of interest

ICC:

Inter-/intraclass correlation coefficient

IBSI:

Imaging biomarker standardization initiative

GLCM:

Gray-level co-occurrence matrix

GLDM:

Gray-level dependence matrix

GLRLM:

Gray-level run length matrix

GLSZM:

Gray-level size zone matrix

NGTDM:

Neighboring gray tone difference matrix

Rad-score:

Radiomics score

ROC:

Receiver operating characteristic

AUC:

Area under the curve

C-index:

Concordance index

NRI:

Net reclassification improvement

IDI:

Integrated discrimination improvement

HR:

Hazard ratio

CI:

Confidence interval

References

  1. Siegel RL, Miller KD, Fuchs HE et al (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  2. Gazdar AF, Bunn PA, Minna JD (2017) Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer 17:725–737. https://doi.org/10.1038/nrc.2017.87

    Article  CAS  PubMed  Google Scholar 

  3. Bernhardt EB, Jalal SI (2016) Small cell lung cancer. Cancer Treat Res 170:301–322. https://doi.org/10.1007/978-3-319-40389-2_14

    Article  PubMed  Google Scholar 

  4. Zimmerman S, Das A, Wang S et al (2019) 2017–2018 scientific advances in thoracic oncology: small cell lung cancer. J Thorac Oncol 14:768–783. https://doi.org/10.1016/j.jtho.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  5. Bogart JA, Waqar SN, Mix MD (2022) Radiation and systemic therapy for limited-stage small-cell lung cancer. J Clin Oncol 40:661–670. https://doi.org/10.1200/jco.21.01639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dingemans AC, Früh M, Ardizzoni A et al (2021) Small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up(☆). Ann Oncol 32:839–853. https://doi.org/10.1016/j.annonc.2021.03.207

    Article  PubMed  Google Scholar 

  7. Horn L, Mansfield AS, Szczęsna A et al (2018) First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 379:2220–2229. https://doi.org/10.1056/NEJMoa1809064

    Article  CAS  PubMed  Google Scholar 

  8. Mathieu L, Shah S, Pai-Scherf L et al (2021) FDA approval summary: atezolizumab and durvalumab in combination with platinum-based chemotherapy in extensive stage small cell lung cancer. Oncologist 26:433–438. https://doi.org/10.1002/onco.13752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herzog BH, Devarakonda S, Govindan R (2021) Overcoming chemotherapy resistance in SCLC. J Thorac Oncol 16:2002–2015. https://doi.org/10.1016/j.jtho.2021.07.018

    Article  CAS  PubMed  Google Scholar 

  10. Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248. https://doi.org/10.1016/j.mri.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  12. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  13. Liu Z, Wang S, Dong D et al (2019) The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics 9:1303–1322. https://doi.org/10.7150/thno.30309

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang Y, Liu Z, He L et al (2016) Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology 281:947–957. https://doi.org/10.1148/radiol.2016152234

    Article  PubMed  Google Scholar 

  15. Wang T, She Y, Yang Y et al (2022) Radiomics for survival risk stratification of clinical and pathologic stage IA pure-solid non-small cell lung cancer. Radiology 302:425–434. https://doi.org/10.1148/radiol.2021210109

    Article  PubMed  Google Scholar 

  16. Ganti AKP, Loo BW, Bassetti M et al (2021) Small cell lung cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 19:1441–1464. https://doi.org/10.6004/jnccn.2021.0058

    Article  CAS  Google Scholar 

  17. Ganeshan B, Goh V, Mandeville HC et al (2013) Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266:326–336. https://doi.org/10.1148/radiol.12112428

    Article  PubMed  Google Scholar 

  18. Pencina MJ, D’Agostino RB, D’Agostino RB et al (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172. https://doi.org/10.1002/sim.2929

    Article  PubMed  Google Scholar 

  19. Cook NR, Paynter NP (2012) Comments on ‘Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers’ by M. J. Pencina, R. B. D’Agostino, Sr. and E. W. Steyerberg. Stat Med 31:93–95. https://doi.org/10.1002/sim.4209

    Article  PubMed  Google Scholar 

  20. Wu G, Jochems A, Refaee T et al (2021) Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging 48:3961–3974. https://doi.org/10.1007/s00259-021-05242-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bera K, Braman N, Gupta A et al (2022) Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol 19:132–146. https://doi.org/10.1038/s41571-021-00560-7

    Article  CAS  PubMed  Google Scholar 

  22. Jain P, Khorrami M, Gupta A et al (2021) Novel non-invasive radiomic signature on CT scans predicts response to platinum-based chemotherapy and is prognostic of overall survival in small cell lung cancer. Front Oncol 11:744724. https://doi.org/10.3389/fonc.2021.744724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gkika E, Benndorf M, Oerther B et al (2020) Immunohistochemistry and radiomic features for survival prediction in small cell lung cancer. Front Oncol 10:1161. https://doi.org/10.3389/fonc.2020.01161

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu Z, Meng X, Zhang H et al (2020) Predicting distant metastasis and chemotherapy benefit in locally advanced rectal cancer. Nat Commun 11:4308. https://doi.org/10.1038/s41467-020-18162-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang R, Dai W, Gong J et al (2022) Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients. J Hematol Oncol 15:11. https://doi.org/10.1186/s13045-022-01225-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang S, Yang L, Ci B et al (2018) Development and validation of a nomogram prognostic model for SCLC patients. J Thorac Oncol 13:1338–1348. https://doi.org/10.1016/j.jtho.2018.05.037

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: A review. JAMA Oncol 2:1636–1642. https://doi.org/10.1001/jamaoncol.2016.2631

    Article  PubMed  Google Scholar 

  28. Chen N, Li R, Jiang M et al (2022) Progression-free survival prediction in small cell lung cancer based on radiomics analysis of contrast-enhanced CT. Front Med (Lausanne) 9:833283. https://doi.org/10.3389/fmed.2022.833283

    Article  PubMed  Google Scholar 

  29. Bansal A, Heagerty PJ (2019) A comparison of landmark methods and time-dependent ROC methods to evaluate the time-varying performance of prognostic markers for survival outcomes. Diagn Progn Res 3:14. https://doi.org/10.1186/s41512-019-0057-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhu C, Hu J, Wang X et al (2022) A novel clinical radiomics nomogram at baseline to predict mucosal healing in Crohn’s disease patients treated with infliximab. Eur Radiol 32:6628–6636. https://doi.org/10.1007/s00330-022-08989-9

    Article  CAS  PubMed  Google Scholar 

  31. Dong D, Tang L, Li ZY et al (2019) Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann Oncol 30:431–438. https://doi.org/10.1093/annonc/mdz001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang S, Li C, Wang R et al (2021) Annotation-efficient deep learning for automatic medical image segmentation. Nat Commun 12:5915. https://doi.org/10.1038/s41467-021-26216-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nardone V, Reginelli A, Grassi R et al (2021) Delta radiomics: a systematic review. Radiol Med 126:1571–1583. https://doi.org/10.1007/s11547-021-01436-7

    Article  PubMed  Google Scholar 

  34. Marcu DC, Grava C, Marcu LG (2023) Current role of delta radiomics in head and neck oncology. Int J Mol Sci 24:2214. https://doi.org/10.3390/ijms24032214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by the Research Funds for Academic and Technological Leaders in Anhui Province of China (2021D299).

Author information

Authors and Affiliations

Authors

Contributions

Each author has contributed to conception and design, literature search, drafting of the article, critical revision, and final approval.

Corresponding author

Correspondence to Xingwang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This retrospective study received ethical approval from the Institutional Review Committee of the First Affiliated Hospital of Anhui Medical University and the requirement for informed consent for patients was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6615 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Liu, K., Li, C. et al. A CT-based radiomics nomogram for predicting the progression-free survival in small cell lung cancer: a multicenter cohort study. Radiol med 128, 1386–1397 (2023). https://doi.org/10.1007/s11547-023-01702-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-023-01702-w

Keywords

Navigation