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Abstract
Purpose  To determine diagnostic performance of MRI radiomics-based machine learning for classification of deep-seated 
lipoma and atypical lipomatous tumor (ALT) of the extremities.
Material and methods  This retrospective study was performed at three tertiary sarcoma centers and included 150 patients 
with surgically treated and histology-proven lesions. The training-validation cohort consisted of 114 patients from cent-
ers 1 and 2 (n = 64 lipoma, n = 50 ALT). The external test cohort consisted of 36 patients from center 3 (n = 24 lipoma, 
n = 12 ALT). 3D segmentation was manually performed on T1- and T2-weighted MRI. After extraction and selection of 
radiomic features, three machine learning classifiers were trained and validated using nested fivefold cross-validation. The 
best-performing classifier according to previous analysis was evaluated and compared to an experienced musculoskeletal 
radiologist in the external test cohort.
Results  Eight features passed feature selection and were incorporated into the machine learning models. After training and 
validation (74% ROC-AUC), the best-performing classifier (Random Forest) showed 92% sensitivity and 33% specificity in 
the external test cohort with no statistical difference compared to the radiologist (p = 0.474).
Conclusion  MRI radiomics-based machine learning may classify deep-seated lipoma and ALT of the extremities with high 
sensitivity and negative predictive value, thus potentially serving as a non-invasive screening tool to reduce unnecessary 
referral to tertiary tumor centers.
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Introduction

Lipoma and atypical lipomatous tumor (ALT) are the most 
common soft-tissue neoplasms [1]. Lipomas are benign 
adipocytic lesions [2]. In the 2020 edition of the World 
Health Organization classification, the term ALT is reserved 
for well-differentiated lipomatous lesions located in the 
extremities, trunk and abdominal wall, where surgery is 
generally curative. ALTs are categorized as intermediate 
(locally aggressive) tumors [2]. Lipomatous lesions with 
the same histology, but located in the retroperitoneum or 

mediastinum, are defined as well-differentiated liposarcoma 
(WDLS) and classified within malignant adipocytic tumors 
based on lower chance of achieving negative surgical mar-
gins and higher risk of recurrence and dedifferentiation [2]. 
The incidence of lipoma and ALT/WDLS is 2/1,000/year 
and 0.35/100,000/year, respectively [1]. However, in the 
retroperitoneum, lipomas are very rare and any lipomatous 
lesion should be considered at least WDLS unless proven 
otherwise [3]. Conversely, in the extremities, trunk and 
abdominal wall, lipomas are common [1] and, consequently, 
the distinction between lipoma and ALT becomes clinically 
more relevant. Particularly, surgery is the treatment of choice 
and marginal excision is now the advised option for ALT, 
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whereas lipoma does not require any treatment unless it is 
symptomatic or there is reason for cosmetic concerns [4].

Because of the different therapeutic options, clinical man-
agement depends on our ability to differentiate lipoma from 
ALT. Biopsy suffers from sampling errors in large ALT and 
WDLS [5]. Advanced techniques, such as immunohisto-
chemistry and fluorescence in situ hybridization, increase 
accuracy by identifying MDM2 amplification, which is seen 
in most ALTs and absent in lipomas [6]. However, although 
useful in histologically equivocal cases [7], these techniques 
are time-consuming and expensive [6]. MRI is the imaging 
method of choice for diagnosis and differentiating lipoma 
from ALT [8]. However, qualitative MRI evaluation suffers 
from high interobserver variability [8] and limited accuracy 
[9]. New imaging-based tools like radiomics have been pro-
posed to characterize lipomatous soft-tissue tumors [10]. 
Radiomics includes the extraction and analysis of quanti-
tative features from medical images, known as radiomic 
features, which can be combined with machine learning 
to create classification models for the diagnosis of interest 
[11–16].

Lipomatous lesions are categorized as superficial or 
deep based on their location relative to the fascia overlying 
the muscles [17]. Deep location is an independent predic-
tor of ALT [8]. In particular, experienced observers with 
subspecialty training in musculoskeletal radiology or ortho-
pedic oncology have shown to correctly differentiate deep-
seated lipoma from ALT/WDLS in 69% of cases based on 
qualitative MRI assessment [9]. The aim of this study is to 
determine diagnostic performance of MRI radiomics-based 
machine learning for classification of deep-seated lipoma 
and ALT of the extremities.

Materials and methods

Ethics

Institutional Review Board approved this multi-center ret-
rospective study and waived the need for informed consent 
(*protocol name blinded for review*). Patients included in 
this study granted written permission for anonymized data 
use for research purposes at the time of the MRI. After 
matching imaging, pathological, and surgical data, our data-
base was completely anonymized to delete any connection 
between data and patients’ identity according to the General 
Data Protection Regulation for Research Hospitals.

Design and inclusion/exclusion criteria

This retrospective study was conducted at three tertiary 
sarcoma centers (*center 1, blinded for review; center 2, 
blinded for review; center 3, blinded for review*). At each 

center, information was retrieved through medical records 
from the orthopedic surgery and pathology departments. 
Patients with ALT or lipoma of the extremities and MRI 
available at one of the participating centers were consid-
ered for inclusion. Inclusion criteria were: (i) deep-seated 
lipoma or ALT (both intra- and intermuscular lesions, which 
were located deep to the deep peripheral fascia surrounding 
muscles [18]) of the extremities that was surgically treated; 
(ii) definitive pathological diagnosis achieved post-opera-
tively based on both microscopic findings and fluorescence 
in situ hybridization; (iii) MRI including at least T1- and 
T2-weighted sequences without fat suppression and fat-sup-
pressed fluid-sensitive sequence in two or more directions 
performed within 3 months before surgery. Exclusion crite-
ria were: (i) ALT local recurrence; (ii) poor image quality or 
image artifacts affecting segmentation and machine learning 
analysis. Overall, 5 patients were excluded at the three cent-
ers (n = 1 recurrence; n = 4 poor image quality or artifacts) 
and 150 patients were finally included in the study.

Study cohorts

Based on geographical criteria, the training-validation 
cohort consisted of 114 patients (n = 64 lipoma; n = 50 ALT) 
from centers 1 and 2 (located in the same city). The external 
test cohort consisted of 36 patients (n = 24 lipoma; n = 12 
ALT) from center 3. Patients’ demographics and data regard-
ing lesion location are detailed in Table 1. In center 1, exam-
inations were performed on one of three 1.5-T MRI systems 
(Magnetom Espree, Siemens Healthineers, Erlangen, Ger-
many; or Eclipse, Marconi Medical Systems, Cleveland, OH, 
USA; or Optima MR450w, GE Medical Systems, Milwau-
kee, WI, USA). In center 2, examinations were performed on 
one of two 1.5-T MRI systems (Magnetom Avanto, Siemens 
Healthineers, Erlangen, Germany; or Magnetom Espree, 
Siemens Healthineers, Erlangen, Germany). In center 3, 
examinations were performed on a 1.5-T (Optima MR450w, 
GE Medical Systems, Milwaukee, WI, USA) or 3.0-T (Dis-
covery MR750w, GE Medical Systems, Milwaukee, WI, 
USA) MRI system. Also, externally obtained MRI scans of 
patients referred to center 3 were included if the minimal 
MRI protocol was available. Slice thickness and matrix size 
ranged from 3 to 6 mm and 256-640 × 220-640, respectively.

Radiomics‑based machine learning analysis

Radiomics-based machine learning analysis was performed 
according to the International Biomarker Standardization 
Initiative (IBSI) guidelines [19]. The open-source software 
ITK-SNAP (v3.8) [20] was used for image segmentation. 
The Trace4Research© radiomic/AI platform (DeepTrace 
Technologies, www.​deept​racet​ech.​com/​files/​Techn​icalS​
heet__​TRACE4.​pdf) was used for all subsequent steps of the 
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analysis. In detail, our IBSI-compliant radiomic workflow 
included several steps as follows.

1.	 Segmentation. A musculoskeletal radiologist performed 
contour-focused segmentation on T1- and T2-weighted 
MRI sequences without fat suppression. The axial, as 
first choice, coronal or sagittal sequences were used 
based on availability and tumor location. In detail, vol-
umes of interest (VOIs) were manually annotated slice 
by slice to include the whole tumor. The radiologist 
knew the study would deal with lipomatous soft-tissue 
tumors but was blinded to definitive pathological diag-
nosis.

2.	 Image preprocessing. Preprocessing of image intensi-
ties within the segmented VOI included resampling to 
isotropic voxel spacing (1.5 mm) and intensity discre-
tization using a fixed number of 64 bins.

3.	 Extraction of radiomic features. Features were extracted 
from the segmented VOI, subdivided into the follow-
ing families: Morphology, Intensity-based Statistics, 
Intensity Histogram, Gray-Level Co-occurrence Matrix, 
Gray-Level Run Length Matrix, Gray-Level Size Zone 
Matrix, Neighborhood Gray Tone Difference Matrix, 
Neighboring Gray Level Dependence Matrix. The same 
features were also extracted from segmented VOI after 
the application of the following filters: Wavelet, Square, 
Square-root, Logarithm, Exponential, Gradient, Lapla-
cian of Gaussian. Each filter was applied individually on 
the original segmented VOI.

4.	 Selection of radiomic features. Selection process pro-
vided stable, repeatable, informative, and not redun-
dant features. In detail, features were defined stable 
with respect to different segmentations and repeatable 
in test–retest study using ICC (ICC > 0.75) by statisti-
cally comparing features obtained by data augmentation 
strategies, namely randomly manipulating the manual 
segmentations and rotating the original images and seg-
mentations. Features with low variance (threshold = 0.1) 

were removed. Highly intercorrelated features were 
removed by a mutual-information analysis (removing 
features with mutual information > 0.23).

5.	 Training-validation. In the training-validation cohort, 
three different models of machine learning classifiers 
were trained, validated, and internally tested using 
nested fivefold cross validation. The first model con-
sisted of 10 ensembles of 25 random forest (each ran-
dom forest composed of 200 decision trees) classifiers 
combined with Gini index with majority vote rule. The 
second model consisted of 10 ensembles of 25 support 
vector machines with linear kernel, combined with 
principal components analysis and Fisher Discriminant 
Ratio with majority vote rule. The third model consisted 
of 10 ensembles of 25 k-nearest neighbor classifiers (5 
nearest neighbors for classification) combined with 
principal components analysis and Fisher Discriminant 
Ratio with majority vote rule. Oversampling technique 
for the minority class (ALT) was applied by adaptive 
synthetic sampling method during model training [21]. 
The training, validation, and internal testing perfor-
mances of each model were measured across the folds 
of cross validation in terms of majority vote and mean 
ROC-AUC, accuracy, sensitivity, specificity, positive 
predictive value (PPV) and negative predictive value 
(NPV) with 95% confidence intervals. For analysis pur-
poses, correctly classified ALT and lipoma were con-
sidered as true positive and true negative, respectively. 
Similarly, incorrectly classified ALT and lipoma were 
considered as false negative and false positive, respec-
tively. The model showing the best performance in terms 
of ROC-AUC was chosen as the best classifier.

6.	 External testing. In the external test cohort, the perfor-
mance of the best classifier (based on step 5 analysis) 
was finally evaluated using independent data.

Table 1   Patients’ age and tumor 
location in each participating 
center. Age is presented as 
median and interquartile 
(1st–3rd) range

ALT LIPOMA p-Value

Center 1
 Age 59 (51–71) years 58 (50–65) years 0.238
 Tumor location Upper extremity: n = 10

Lower extremity: n = 24
Upper extremity: n = 16
Lower extremity: n = 18

0.212

Center 2
 Age 57 (51–70) years 57 (49–65) years 0.772
 Tumor location Upper extremity: n = 2

Lower extremity: n = 14
Upper extremity: n = 15
Lower extremity: n = 15

0.029

Center 3
 Age 60 (53–66) years 55 (48–61) years 0.174
 Tumor location Upper extremity: n = 0

Lower extremity: n = 12
Upper extremity: n = 3
Lower extremity: n = 21

0.522
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Qualitative image assessment

A musculoskeletal radiologist with 7 years of work expe-
rience in a tertiary sarcoma center (*blinded for review*) 
read all MRI studies from the external test cohort blinded to 
any information regarding pathology and radiomics-based 
machine learning analysis. All available MRI sequences 
were used for qualitative assessment. The following param-
eters were evaluated to differentiate ALT from lipoma and 
give the final impression: size, morphology, thick septations 
and non-fatty components showing incomplete fat suppres-
sion [8].

Statistical analysis

Statistical analysis was performed using the Trace4Research 
platform. The medians and 95% confidence intervals of the 
selected radiomic predictors were calculated in the two 
classes “ALT” and “lipoma”. Mann–Whitney U test was per-
formed to explore statistical differences between these two 
classes. To account for multiple comparisons, p-values were 
adjusted using the Bonferroni-Holm method. Mann–Whit-
ney U and Chi-square tests were used to evaluate differ-
ences in age and tumor location between ALT and lipoma, 
respectively. In the external test cohort, machine learning 
performance was compared to qualitative MRI assessment 
using McNemar’s test. A two-sided p-value < 0.05 indicated 
statistical significance. A radiologist with experience in 

radiomics (blinded for review) assessed Radiomics Quality 
Score in the attempt to estimate the methodological rigor of 
our study, as suggested by Lambin et al. [22].

Results

No age difference was found between ALT and lipoma in 
any of the participating centers (p > 0.174). Tumor location 
was not different between the two classes in centers 1 and 
3 (p > 0.212), whereas lower extremity location was signifi-
cantly associated (p = 0.029) with ALT in center 2 (Table 1). 
After extraction of 3,380 IBSI-compliant radiomic features 
belonging to the families previously described, 2052 resulted 
stable and repeatable; of these, 1724 resulted having vari-
ance above 0.10. Finally, eight features resulted poorly inter-
correlated (mutual information below 0.23), passing feature 
selection, and were incorporated into the machine learning 
models. The selected features are detailed in Table 2, along 
with their median values and confidence intervals in the two 
classes “ALT” and “lipoma”. Their distribution is shown in 
violin and box plots in Fig. 1.

Table 3 details the performance of each model assessed 
in the training-validation cohort. The ROC curves for 
each model consisting of 10 ensembles of Random For-
est, Support Vector Machine and k nearest neighbors 
classifiers (from internal testing) are plotted in Fig. 2a–c, 
respectively. Specifically, the best classifier (Random 

Table 2   Selected radiomic features reported in descending order according to their statistical significance and relevance in the ensemble of ran-
dom forest classifiers

# Feature family Feature nomenclature Median in the ALT class 
[95% CI]

Median in the lipoma 
class [95% CI]

Uncor-
rected 
p-value

Corrected p-value

1 Intensity Histogram MR-T1W_wavelet_HLL_
coefficient Of Variation

0.12 [0.11–0.14] 0.17 [0.16–0.19]  < 0.005  < 0.005

2 Grey-Level Size Zone 
Matrix

MR-T2W_wavelet_
HLL_grey Level Non 
Uniformity Glszm

322.39 [180.42–464.36] 98.49 [55.31–141.68]  < 0.005  < 0.005

3 Grey-Level Size Zone 
Matrix

MR-T2W_wavelet_
HLH_zone Size Non 
Uniformity

2947.81 [1849.57–
4046.05]

1052.93 [685.96–
1419.91]

 < 0.005  < 0.005

4 Grey-Level Run Length 
Matrix

MR-T2W_wavelet_
HLH_Run Length Non 
Uniformity

2.18e + 05 
[1.31e + 05–3.04e + 05]

7.51e + 04 
[4.35e + 04–1.07e + 05]

 < 0.005  < 0.005

5 Neighbouring Grey Level 
Dependence Matrix

MR-T1W_gradient_
dependence Count Non 
Uniformity

3113.94 [1612.15–
4615.74]

1440.7 [948.13–1933.27]  < 0.005  < 0.005

6 Neighbourhood Grey 
Tone Difference Matrix

MR-T1W_wavelet_
HHH_coarseness

2.19e-04 [7.40e-05–
3.64e-04]

7.95e-04 [4.67e-04–
1.12e-03]

 < 0.005  < 0.005

7 Neighbourhood Grey 
Tone Difference Matrix

MR-T1W_wavelet_LLH_
busyness

0.99 [9.07e-02–1.89] 0.34 [0.1–0.58]  < 0.005  < 0.05

8 Intensity-Based Statistics MR-T2W_exponential_
median

39.79 [24.71–54.86] 79.08 [62.1–96.06]  < 0.005  < 0.05
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Forest—majority vote with 38.9% threshold) showed 74% 
ROC-AUC and was chosen for further analysis.

Table 4 details the performance of the best model (Ran-
dom Forest—majority vote with 38.9% threshold) in the 
external test cohort. In particular, the model showed 92% 
sensitivity and 33% specificity in differentiating ALT 
from lipoma. The radiologist had 88% sensitivity and 
54% specificity with no statistical difference compared 
to machine learning (p = 0.474), as reported in Table 4. 
Figure 3 shows examples of true negative (correctly classi-
fied lipoma), false positive (lipoma misdiagnosed as ALT) 
and true positive (correctly classified ALT) according to 
both radiomics-based machine learning and qualitative 

assessment performed by the radiologist. Our Radiomics 
Quality Score was 39% (Supplementary material).

Discussion

Our study addressed the issue of differentiating deep-seated 
lipoma from ALT of the extremities using MRI radiomics-
based machine learning models, which were trained, vali-
dated, and tested against independent data from an external 
dataset. Our main finding is that our best model (10 ensem-
bles of Random Forest classifiers) showed very high sensi-
tivity and NPV in the external test cohort, which respectively 

Fig. 1   Violin and box plots of the radiomic predictors ranked from 1 to 8. Violin and box plots of “ALT” and “lipoma” classes are reported in 
red and green, respectively
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amounted to 92% and 89%, with no difference compared to 
a dedicated musculoskeletal radiologist (p = 0.474). Thus, 
if lesions were classified as lipoma (negative group) using 
machine learning, further work-up could be spared and 
related costs could be saved. This could be especially use-
ful in peripheral hospitals where personnel have no expe-
rience and expertise in soft-tissue tumors, thus avoiding 
patients’ worry and referral to tertiary sarcoma centers when 

unneeded. Our model’s performance including higher sensi-
tivity and NPV than specificity and PPV is also in line with 
visual MRI reading performed by experts [9] and highlights 
the difficulty of differentiating deep-seated lipoma from ALT 
based on both qualitative imaging assessment and radiom-
ics-based machine learning analysis.

Previous studies focused on MRI radiomics of lipoma-
tous soft-tissue tumors, either alone [23] or combined with 

Table 3   Models of 10 ensembles of random forest, support vec-
tor machine and k nearest neighbors classifiers. Classification per-
formance is reported for training, validation, and internal testing in 

terms of ROC-AUC, accuracy, sensitivity, specificity, PPV, NPV, 
including 95% confidence intervals (CI), and statistical significance 
with respect to chance/random classification

*p-value < 0.05/**p-value < 0.005

Training Validation Internal testing (mean) Internal testing (major-
ity vote—38.9% 
threshold)

Random forest
 ROC-AUC (%) [95% CI] 100* [99–100] 73** [72–74] 74** [72–75] 74
 Accuracy (%) [95% CI] 100* [99–100] 67** [67–68] 69** [68–70] 68
 Sensitivity (%) [95% CI] 100* [99–100] 62** [60–63] 64** [62–66] 78
 Specificity (%) [95% CI] 100* [99–100] 72** [71–73] 73** [71–74] 61
 PPV (%) [95% CI] 100* [99–100] 64** [63–65] 65** [63–66] 61
 NPV (%) [95% CI] 100* [99–100] 71** [71–72] 72** [71–73] 78

Support vector machine
 ROC-AUC (%) [95% CI] 75** [74–76] 74** [73–74] 69** [68–71] 71
 Accuracy (%) [95% CI] 68** [67–69] 67** [66–68] 65** [64–66] 68
 Sensitivity (%) [95% CI] 47** [45–49] 46** [44–48] 42** [39–46] 68
 Specificity (%) [95% CI] 85** [84–85] 84** [83–84] 83** [81–84] 69
 PPV (%) [95% CI] 70** [69–71] 71** [70–73] 66** [63–68] 63
 NPV (%) [95% CI] 67** [66–68] 67** [66–68] 65** [63–66] 73

K nearest neighbors
ROC-AUC (%) [95% CI] 83** [82–83] 69** [67–70] 68** [67–70] 70
 Accuracy (%) [95% CI] 76** [75–76] 65** [64–67] 65** [63–67] 67
 Sensitivity (%) [95% CI] 70** [68–71] 57** [55–59] 55** [51–59] 80
 Specificity (%) [95% CI] 80** [79–81] 72** [70–73] 73** [71–74] 56
 PPV (%) [95% CI] 74** [73–74] 62** [61–64] 61** [59–63] 59

NPV (%) [95% CI] 78** [77–78] 69** [67–70] 67** [65–69] 78

Fig. 2   ROC curves for the models consisting of 10 ensembles of Random Forest (a), Support Vector Machine (b) and k nearest neighbors (c) 
classifiers from internal testing
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machine learning [10]. In particular, Thornhill et al. [24] 
and Malinauskaite et al. [25] performed radiomic analyses in 
relatively small groups of patients (n = 44 and n = 38, respec-
tively) to distinguish between lipoma and liposarcoma. How-
ever, in addition to ALT/WDLS, the latter group included 
dedifferentiated and myxoid liposarcomas, which are more 
easily differentiated from lipoma on qualitative MRI analysis 
performed by radiologists [17]. Other authors only included 
lipoma and ALT/WDLS, which are the most challenging 
lipomatous soft-tissue lesions to discriminate between, 
as we did in our current work. These studies performed 

radiomic analyses based on either non-enhanced T1- and 
T2-weighted [26–28] or contrast-enhanced T1-weighted 
[29] MRI sequences, including population ranging from 
65 to 122 subjects and achieving AUCs of 0.83 or higher. 
Nonetheless, model performance was not validated using 
independent data from different centers in all these studies.

In a single-center study, Cay et al. [26] showed better 
performance than previous works when a single type of 
MRI scanner and consistent presets were used for radiom-
ics-based machine learning analysis. Hence, the authors 
concluded that accuracy of radiomic approaches could be 
improved using standardized hardware and imaging proto-
cols [26]. However, a main challenge of radiomics is the 
absence of standardized image acquisition protocols between 
different centers [30], thus advocating the need for model 
validation. A clinical validation against independent datasets 
is essential to evaluate model generalizability and promote 
its application to real-world settings [31]. An independent 
clinical validation on an external dataset was recently pro-
vided in the study by Fradet et al. [32], which investigated 
contrast-enhanced MRI radiomics-based machine learning 
for lipoma/ALT differentiation. This study included a het-
erogenous group of 145 patients with images collected at 
many centers using non-uniform protocols and centralized 

Table 4   Model of 10 ensembles of random forest classifiers. Classi-
fication performance is reported for external testing in terms of accu-
racy, sensitivity, specificity, PPV and NPV

p-value = 0.474 (machine learning vs. radiologist)

External testing Random forest (majority 
vote—38.9% threshold)

Radiologist

Accuracy (%) 53 (19/36) 64 (23/36)
Sensitivity (%) 92 (11/12) 88 (10/12)
Specificity (%) 33 (8/24) 54 (13/24)
PPV (%) 41 (11/27) 48 (10/21)
NPV (%) 89 (8/9) 87 (13/15)

Fig. 3   True negative (a, cor-
rectly classified lipoma), false 
positive (b, lipoma misdiag-
nosed as ALT) and true positive 
(c, correctly classified ALT) 
according to both radiomics-
based machine learning 
and qualitative assessment 
performed by the radiologist. In 
(a), correctly classified lipoma 
shows homogeneous signal 
with complete fat suppression. 
Intralesional septations are seen 
in correctly classified ALT (c) 
but also lipoma misdiagnosed 
as ALT (b). Fat-suppressed 
T2-weighted sequences were 
used only for qualitative assess-
ment performed by the radiolo-
gist. Radiomics-based machine 
learning analysis included 
T1- and T2-weighted sequences 
without fat suppression
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at two institutions, which constituted the training and exter-
nal test cohorts, respectively. In the external test cohort, the 
authors reported a sharp decrease in model performance 
with AUCs ranging from 0.47 to 0.71, although some 
improvement was obtained through statistical harmoniza-
tion using batch effect correction [32]. High sensitivity and 
limited specificity were reported for the best classifier [32], 
as we also observed in our study. Based on their and our 
findings, we believe that high heterogeneity in the images 
of ALT and lipoma obtained from various body regions and 
different MRI scanners and protocols makes the task of gen-
eralization difficult. Fradet et al. also evaluated deep learning 
approaches, which were outperformed by radiomics-based 
classical machine learning [32]. However, the use of deep 
learning for lipoma/ALT differentiation is at early stages, 
with another study reporting its superior accuracy compared 
to classical machine learning [33] and thus warranting future 
investigation.

Some limitations of this study need to be addressed. First, 
the study design was retrospective. Although prospective 
studies provide the highest level of evidence supporting the 
clinical validity and usefulness of radiomics [22], a retro-
spective design allowed including relatively large numbers 
of patients with imaging data already available. Second, a 
selection bias existed in our study, as lipomas were included 
only if seen at tertiary sarcoma centers (any of the partici-
pating centers) and surgically treated. Lipomas are usually 
neither referred to sarcoma centers nor operated if they are 
small or show no suspicious imaging features. However, 
this probably made the dataset even more challenging and 
relevant, as only the most complex cases were included. 
Third, lipomas were over-represented compared to ALTs in 
our population of study. However, this reflects the incidence 
of lipoma and ALT [1], and class balancing was performed 
to artificially oversample the minority class in the training 
cohort [21]. Fourth, the retrospective design accounted for 
the exclusion of contrast-enhanced MRI, as contrast is not 
routinely administered for lipoma/ALT at two of the partici-
pating centers. This is in line with studies suggesting that 
the value of contrast administration may be limited in lipoma 
and ALT [8]. Additionally, other authors recently evaluated 
contrast-enhanced MRI radiomics for lipoma/ALT differ-
entiation and validated their machine learning model using 
an independent external dataset [32], with similar findings 
compared to our approach based on non-contrast MRI only. 
Finally, our radiomics quality score was 39%. This is in line 
with the mean values reported in a recent systematic review 
of the radiomics quality score applications [34], but high-
lights that methodological quality can still be improved in 
the future.

In conclusion, MRI radiomics-based machine learn-
ing may differentiate deep-seated lipoma from ALT of 
the extremities with high sensitivity and NPV. Although 

specificity is still limited, our model’s performance is in line 
with visual MRI reading performed by experts, as reported 
in literature [9] and also observed in our study. Hence, our 
approach may serve as a screening tool in hospitals where 
radiologists have no experience and expertise in soft-tissue 
tumors, thus avoiding unnecessary referral to tertiary sar-
coma centers and invasive procedures such as biopsy. Addi-
tionally, larger multi-center studies are needed to address 
the issue of MRI scanner/protocol variability and possibly 
highlight the need for machine learning model re-training/
validation in different institutions.
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