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Abstract
Objective  Identifying MRI texture parameters able to distinguish inflammation, fibrosis, and residual cancer in patients with 
naso-oropharynx carcinoma after radiochemotherapy (RT-CHT).
Material and methods  In this single-centre, observational, retrospective study, texture analysis was performed on ADC 
maps and post-gadolinium T1 images of patients with histological diagnosis of naso-oropharyngeal carcinoma treated 
with RT-CHT. An initial cohort of 99 patients was selected; 57 of them were later excluded. The final cohort of 42 patients 
was divided into 3 groups (inflammation, fibrosis, and residual cancer) according to MRI, 18F-FDG-PET/CT performed 
3–4 months after RT-CHT, and biopsy. Pre-RT-CHT lesions and the corresponding anatomic area post-RT-CHT were seg-
mented with 3D slicer software from which 107 textural features were derived. T-Student and Wilcoxon signed-rank tests 
were performed, and features with p-value < 0.01 were considered statistically significant. Cut-off values—obtained by 
ROC curves—to discriminate post-RT-CHT non-tumoural changes from residual cancer were calculated for the parameters 
statistically associated to the diseased status at follow-up.
Results  Two features—Energy and Grey Level Non-Uniformity—were statistically significant on T1 images in the com-
parison between ‘positive’ (residual cancer) and ‘negative’ patients (inflammation and fibrosis). Energy was also found to 
be statistically significant in both patients with fibrosis and residual cancer. Grey Level Non-Uniformity was significant in 
the differentiation between residual cancer and inflammation. Five features were statistically significant on ADC maps in 
the differentiation between ‘positive’ and ‘negative’ patients. The reduction in values of such features between pre- and 
post-RT-CHT was correlated with a good response to therapy.
Conclusions  Texture analysis on post-gadolinium T1 images and ADC maps can differentiate residual cancer from fibrosis 
and inflammation in early follow-up of naso-oropharyngeal carcinoma treated with RT-CHT.

Keywords  Naso-oropharyngeal carcinoma · Head and neck · Texture analysis · Magnetic resonance imaging · 
Radiochemotherapy

Introduction

Head and Neck neoplasms are the seventh most common 
type of cancer worldwide [1]. The most frequent histologi-
cal type is squamous cell carcinoma (SCC) including oro-
pharyngeal carcinoma (OPC) that is the most common neo-
plasm and nasopharyngeal carcinoma (NPC) [2]. Alcohol 
and smoking are the risk factors most associated with SCC 
[3]. Infection by oncogenic variants of human papilloma 

virus (HPV) is another very important risk factor [4] and 
HPV status has a deep impact on risk profiling [1]. HPV 
positive SCC is typical of young patients with high socio-
economic status and it usually has an earlier diagnosis with 
favourable prognosis [5–8]. As a testament to this difference, 
HPV positivity has become part of the TNM classification 
[5]. In case of NPC, non-keratinizing squamous cell carci-
noma (type II NPC) and undifferentiated carcinoma (type III 
NPC) are more common in geographical areas where NPC 
is endemic—mainly north Africa and east and south-east 
Asia—and often carry a favourable prognosis [2]. While 
the role of HPV in the pathogenesis of NPC is not clear, Extended author information available on the last page of the article
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Epstein-Barr virus infection appears to be strongly corre-
lated [2]. Magnetic Resonance Imaging (MRI) is the refer-
ence imaging technique for the evaluation of SCC due to its 
better soft tissue visualization than Computed Tomography 
(CT) [8, 9]. For this reason, MRI is also recommended for 
staging by the American Joint Committee on Cancer [2, 
10–12]. Chemoradiotherapy (RT-CHT) is one of the corner-
stones for treatment of both early and locally advanced forms 
of NPC, although outcome is very heterogeneous [6, 13–17]. 
Therefore, it is desirable to develop markers for the predic-
tion and early detection of failure or response to treatment 
[14]. To this end, other techniques have been used alongside 
traditional MRI, namely dynamic contrast-enhanced perfu-
sion imaging (DCE-PWI) and diffusion weighted imaging 
(DWI) [18]. Although they have been shown to aid in both 
prediction and evaluation of response to RT-CHT for head 
and neck SCC [19], the distinction between fibrosis, inflam-
mation, and residual cancer still proves challenging both at 
presentation and during post-treatment follow-up [20].

The “texture of an image” can be defined as the complex 
structural weave of pixels that are part of it [21]. The pro-
cess of “texture analysis” studies and breaks down recurring 
patterns and sub-patterns that can be identified and further 
elaborated into quantitative “textural features” [3]. The fea-
tures can then be individually studied and integrated with the 
results of traditional techniques of image analysis to further 
investigate the underlying pathology, thus helping infer more 
information on the patient status [3, 13, 22].

Texture analysis has been previously employed on both 
CT and MRI as an innovative tool to better stratify tumour 
phenotype in the head and neck district, mainly by non-
invasively evaluating HPV status of the lesion [14, 22–27] 
showing promising results. The present study represents an 
innovative and original application of texture analysis tech-
niques to MRI imaging, specifically ADC maps and CE-T1, 
of OPC and NPC to identify textural parameters that may 
differentiate fibrosis and inflammation from residual cancer 
after RT-CHT.

Materials and methods

Patients’ selection

This was a single-centre, observational, retrospective study. 
Between January 2014 and January 2022, all patients with 
histological diagnosis of OPC or NPC who underwent MRI 
both before and after RT-CHT in the radiology department 
of the Careggi Hospital of Florence (Italy) were selected by 
searching our Picture Archiving and Communication System 
(PACS).

This study was approved by the research ethics commit-
tee (protocol n. 21800_oss) and informed written consent 

was obtained from all individual participants included in 
the study.

Inclusion criteria:

•	 Patients aged more than 18 years,
•	 Histological diagnosis of OPC or NPC confirmed by 

biopsy,
•	 Patients underwent RT-CHT,
•	 MRI examinations performed at 3–4 months follow-up 

after ending RT-CHT, with the same MRI scanner to 
make the sample as homogeneous as possible.

Exclusion criteria:

•	 No pre-treatment MRI,
•	 No apparent diffusion coefficient (ADC) maps and post-

contrast T1 MRI sequences,
•	 No 18F-FDG-PET/CT in the follow-up carried out 

3–4 months after RT-CHT,
•	 Clinical and cross-sectional imaging follow-up including 

18F-FDG-PET/CT and MRI shorter than 12 months,
•	 Previous head and neck radiotherapy treatment,
•	 Previous head and neck surgery,

The workflow of patients’ selection is shown in Fig. 1. 
The initial population included 99 patients of whom 42 had 
no pre-treatment MRI performed in our hospital or were not 
studied with ADC and/or post-contrast T1 MRI sequences. 
Seven patients had no 18F-FDG-PET/CT after RT-CHT, 
five patients continued their follow-up with CT examina-
tions instead of MRI and three patients had a follow-up less 
than 12 months.

Images acquisitions and analysis

MRI examinations were performed with 1.5 T Magnetom 
Aera (Siemens Healthcare, Erlangen, Germany). The study 
protocol involved unenhanced scans including sagittal fat 
saturated T1- and T2- weighted sampling sequences with 
axial, coronal, and sagittal multiplanar reconstructions; axial 
T2-weighted turbo spin echo; axial fat saturated echo-planar 
DWI spectral attenuated inversion recovery (SPAIR) and 
ADC maps. Enhanced scans performed after intravenous 
gadolinium chelates contrast agent injection (gadobutrol, 
1 mL/10 kg, flow 3 mL/sec followed by 20 mL saline flush) 
consisted of an axial T1-weighted turbo spin echo and axial 
T1-weighted volumetric interpolated breath-hold examina-
tion (VIBE) Dixon. Further information about acquisition 
protocol is detailed in Table 6 in Appendix 1.

A radiologist with 5 years’ experience in head and neck 
imaging (E.B.) visually segmented the entire volume of both 
the primary tumour and the corresponding anatomic area on 
post-therapy images. Such segmentations were performed 
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on ADC maps and VIBE CE-T1 sequences by the volumet-
ric ROI (region of interest) function within the open-source 
software 3DSlicer (software version 4.10.2, https://​www.​
slicer.​org/). ROIs were delineated slice-by-slice for each 
patient by the radiologists. Textural features extraction was 
carried out by means of SlicerRadiomics tool. A total of 107 
features from the PyRadiomics lists—an open-source python 
package for the extraction of radiomics data from medical 
images—were selected, belonging to First Order, 3D Shape 
Based, Gray Level Co-occurrence Matrix, Gray Level Size 
Zone Matrix, Gray Level Run Length Matrix, Neighbouring 
Gray Tone Difference Matrix, and Gray Level Dependence 
Matrix classes.

Division into groups based on imaging 
and histological examination

We first divided the patients into two groups based on MRI, 
18F-FDG-PET/CT and/or biopsy results. ‘Positive’ group 
(group 1) included patients with persistence or recurrence 
of disease, whereas ‘negative’ group included patients with 
no residual cancer, but with tissue signal alterations on MRI 
compatible with post-treatment changes such as fibrosis 
and inflammation (groups 2 and 3, respectively). Exem-
plary post-RT-CHT findings from each group are shown in 

Fig. 2. More specifically, ‘negative’ patients were subdivided 
in patients with fibrosis and inflammatory edema according 
to MRI morphologic parameters, 18F-FDG-PET/CT results 
and/or biopsy performed in those cases suspicious for recur-
rence/persistence of disease after RT-CHT. Therefore, the 
groups of patients were assessed separately.

Group 1: persistence/recurrence of disease–residual can-
cer—7 patients.

Masslike lesions with moderately high (intermediate) 
signal intensity on T2 images; restricted diffusion due to 
high tumoural cells density with a subsequent decrease in 
ADC values (1.09 ± 0.29 × 10−3 mm2/s); non-homogeneous 
enhancement after gadolinium with intensity signal similar 
to primary tumour; positivity of 18F-FDG-PET/CT; posi-
tive biopsy.

Group 2: fibrosis, 19 patients.
Linear or triangular alterations with very low signal inten-

sity on T2 images—similar to or lower than muscle—for 
late fibrosis (post-radiotherapy scar); low ADC values in 
late fibrosis (0.98 ± 0.26 × 10−3 mm2/s) since the tissue is 
mainly composed of densely packed collagen but normally 
in combination with lack of diffusion restriction (hypoin-
tense signal on DWIb800 images); low enhancement after 
gadolinium; negative biopsy.

Group 3: inflammatory edema, 16 patients.

Fig. 1   Workflow of patients’ 
selection

https://www.slicer.org/
https://www.slicer.org/
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Wide ill-defined alterations with high signal intensity on 
T2 images for post-radiotherapy tissue reaction; hypointense 
signal intensity on DWIb800 images; high ADC values 
(1.75 ± 0.34 × 10−3 mm2/s); vivid homogeneous enhance-
ment after gadolinium due to inflammation; positivity of 
18F-FDG-PET/CT; negative biopsy.

The aforementioned tissue features and especially ADC 
values used in differentiating patients within the three groups 
were referred to a study by Ailianou et. al on the detection of 
post-treatment head and neck SCC [28].

Statistical analysis

Firstly, a Shapiro–Wilk test was performed to determine the 
nature of the distribution of data. Parameters that showed 
a normal distribution were analysed using the parametric 
t-Student test. All parameters that did not show a normal 

distribution were studied with the Wilcoxon signed-rank 
test. These tests identified the p-value for each parameter 
investigated. Once the p-values were obtained, they were 
compared with the level of significance, thus determining if 
the null hypothesis—the mean difference between the cou-
pled samples is zero—should be accepted (equals to 0) or 
rejected (equals to 1).

Once the most significative features (p-value < 0.01) were 
obtained, we compared both the values between the positive 
(persistence/recurrence of disease) and negative (fibrosis and 
inflammatory edema) groups and the values among the three 
groups separately to analyse significative changes of param-
eters related to the presence of residual cancer, fibrosis, or 
inflammation.

In order to compare the negative dataset with the positive 
dataset since they had a number of different patients, we 
randomly took small subgroups of the negatives consisting 

Fig. 2   Post-RT-CHT changes in 
patients belonging to different 
groups
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of a larger number of patients and compared them with the 
positive values. In this way we could evaluate the results 
a greater number of times in addition to studying the 
variations.

For the parameters that showed statistically significant 
association with the diseased status at follow-up, a cut-off 
value to discriminate post-RT-CHT non-tumoural changes 
with respect to residual cancer was calculated using Receiver 
Operating Characteristic (ROC) curve analysis. In particu-
lar, sensitivity and specificity were calculated for the entire 
spectrum of values and cut-off were chosen as the values 
with the highest sensitivity and specificity at the same time. 
The area under the ROC curve was considered as a measure 
of the overall performance of each parameter—diagnostic 
accuracy—to discriminate the diseased status at follow-up. 
Finally, we created box plots to assess whether there were 
significant changes in the values of the selected features 
between pre- and post-RT-CHT.

Results

The final sample included 42 patients (24 women and 18 
men; mean age 59 years, median age 58.5 years, range 
36–81 years); 29 patients were affected by OPC (16 HPV 

positive, 4 HPV negative, and 9 unknowns for HPV status) 
and the remaining 13 patients by NPC.

On T1 images after gadolinium, two features were statisti-
cally significant in the comparison between ‘positive’ and 
‘negative’ groups. These were Energy (p-value = 0.003), a 
first order feature that represents a measure of magnitude of 
voxel values in an image and Grey Level Non- Uniformity 
(p-value = 0.007)—belonging to Grey Level Dependence 
Matrix—(Table 1).

Post-gadolinium T1 texture parameter Energy appeared 
to be helpful in the characterization of the 'positive’ group 
(group 1) versus both the ‘negative group’ (groups 2 and 
3 together) (AUC = 0.6; Cut-off = 1*109; SEN = 75%; 
SPEC = 90%) and patients with fibrosis alone (group 2) 
(AUC = 0.75; Cut-off = 4*108; SEN = 75%; SPEC = 90%).

Energy was also found to be statistically significant in 
both groups of patients with fibrosis (group 2) and residual 
cancer (group 1) (p-value = 0.018) (Table 2).

Grey Level Non-Uniformity was significant in the differ-
entiation between residual cancer (group 1) and inflamma-
tory edema (group 3) (p-value = 0.019) (Table 3).

Grey Level non-Uniformity was therefore the other 
significant feature which we have found in the differ-
entiation between ‘negative’ and ‘positive’ patients on 

Table 1   Mean values and 
p-values for the most significant 
(p-value < 0.01) features in both 
contrast-enhanced T1 MRI (CE-
T1 MRI) and apparent diffusion 
coefficient maps (ADC) into the 
groups of patients with residual 
cancer (positives) and patients 
with inflammatory edema or 
fibrosis (negatives)

Statistically significant Textural Features (Positives vs. Negatives)

CE-T1-MRI

Feature name Mean value positive Mean value negative P-value

Energy 1.35*109 3.91*108 0.003
Grey level non uniformity 644.547 236.396 0.008
ADC map
Large dependence emphasis 5.554 3.004 0.001
Dependence variance 1.295 0.583 0.001
Run variance 0.047 0.002 0.001
Zone variance 3.643 0.612 0.001
Large area emphasis 6.742 2.395 0.001

Table 2   Mean values and 
p-values for the most significant 
(p-value < 0.01) features in both 
contrast-enhanced T1 MRI (CE-
T1 MRI) and Apparent diffusion 
coefficient maps (ADC) in the 
into the groups of patients with 
residual cancer (positives) and 
patients with fibrosis

Statistically significant textural features (Positives vs. Fibrosis)

CE-T1-MRI

Feature name Mean value positive Mean value Fibrosis P-value

Energy 1.35*109 6.43*108 0.009
ADC map
Large dependence emphasis 5.554 3.106 0.008
Dependence variance 1.295 0.612 0.001
Run variance 0.047 0.023 0.007
Zone variance 3.643 0.663 0.001
Large area emphasis 6.742 2.488 0.001
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post-gadolinium T1 images (AUC = 0.74; Cut-off = 511; 
SEN = 75%; SPEC = 96%) and especially between patients 
with inflammatory edema and residual cancer (AUC = 0.78; 
Cut-off = 510; SEN = 76%; SPEC = 92%).

On ADC maps, five features were statistically significant 
both in the differentiation between ‘positive’ and ‘negative’ 
groups (Table 1) and more specifically in the differentiation 
between residual cancer and fibrosis (Table 2) or inflam-
matory edema (Table 3). These were Large Dependence 
Emphasis, Dependence Variance, Run Variance, Zone Vari-
ance, and Large Area Emphasis.

In the characterization of the 'positive’ group (group 
1) versus the ‘negative group’ (groups 2 and 3 together), 
Dependence Variance (AUC = 0.76; Cut-off = 1.04; 
SEN = 75%; SPEC = 96%) and Large Dependence Empha-
sis (AUC = 0.77; Cut-off = 4.38; SEN = 75%; SPEC = 96%) 
were two significant features belonging to Grey Level 
Dependence Matrix.

Run Variance (AUC = 0.76; Cut-off = 0.04; SEN = 75%; 
SPEC = 96%) belonged to Grey Level Run Length Matrix 
and represented the variance in runs for the run lengths, 
therefore the number of pixels that had the same grey level 
value in an image.

Zone Variance (AUC = 0.76; Cut-off = 1.43; SEN = 75%; 
SPEC = 96%) and Large Area Emphasis (AUC = 0.76; Cut-
off = 3.90; SEN = 75%; SPEC = 96%) belonged to Grey 
Level Size Zone.

Area under the receiver operating characteristic (ROC) 
curve (AUC), cut-off values, sensitivity (SEN), specificity 
(SPE), and diagnostic accuracy for each statistically signifi-
cant texture parameter with AUC ≥ 0.5 are shown in Tables 4 

and 5, respectively. ROC curves are illustrated in Figs. 3 
and 4.

The comparison of the distribution of feature values 
between pre- and post-RT-CHT on T1 images after gadolin-
ium and ADC maps was significantly different in ‘positive’ 
and ‘negative’ groups and also in patients with fibrosis and 
inflammatory edema. The distribution of Grey Level Non-
Uniformity texture parameter on post-gadolinium T1 images 
both in pre and post RT-CHT (Fig. 5) showed how the ‘nega-
tive group’ and especially patients with inflammatory edema 
had a marked reduction in feature values between pre- and 
post-therapy.

In contrast, the same reduction in values in patients posi-
tive for persistence/recurrence of disease was not observed. 
The same distribution of values was found for Energy feature 
on post-gadolinium T1 images analysed pre and post RT-
CHT in fibrosis (group 2) and ‘negative’ groups (groups 
2 and 3 together), with only a limited reduction of Energy 
value in patients with residual cancer (group 1).

Furthermore, the distribution of texture parameters 
on ADC maps in the ‘negative’ group—both fibrosis and 
inflammation groups—showed a high reduction in values 
of all features analysed pre-RT-CHT compared to post RT-
CHT. In contrast, there was not the same trend of reduction 
in values between pre and post RT-CHT in patients with 
residual cancer (Fig. 6).

No significant feature was found capable of differentiat-
ing fibrosis from inflammation on VIBE CE-T1 sequences 
and ADC maps.

Discussion

The current study represented the first challenge to use tex-
ture analysis on MRI images to discriminate residual cancer 
from non-tumoral changes in patients with OPC and NPC 
who underwent exclusive RT-CHT. Two texture features on 
post-gadolinium T1 images (Energy and Grey Level Non-
Uniformity) and five texture features on ADC maps (Large 
Dependence Emphasis, Dependence Variance, Run Vari-
ance, Zone Variance, and Large Area Emphasis) resulted 
to be statistically significant in the detection of tumour per-
sistence/recurrence. The substantial reduction in values of 
such features between pre- and post-RT-CHT was correlated 
with a good response to therapy and the development of non-
tumoral radiotherapy-induced changes, whereas the stability 
of high values after RT-CHT was associated with the pres-
ence of residual cancer.

A previous study by Cozzi et al. [29] analysed how tex-
ture analysis features correlate with the local control after 
RT-CHT in Head and Neck tumours. They used CT as 
imaging technique and found maximum value, volume, and 

Table 3   Mean values and p-value for the most significant 
(p-value < 0.01) features in both contrast-enhanced T1 MRI (CE-T1 
MRI) and apparent diffusion coefficient maps (ADC) into the groups 
of patients with residual cancer (positives) and patients with inflam-
matory edema

Statistically significant Textural Features (Positives vs. Inflammation)

CE-T1-MRI

Feature name Mean value positive Mean value 
inflamma-
tion

P-value

Grey level non uni-
formity

644.547 143.398 0.002

ADC map
Large dependence 

emphasis
5.554 2.844 0.002

Dependence variance 1.295 0.536 0.002
Run variance 0.047 0.023 0.002
Zone variance 3.643 0.532 0.005
Large area emphasis 6.742 2.253 0.006
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small-zone high gray-level emphasis as statistically signifi-
cant predictors of response to therapy. The crucial goal of 
our study was the identification of features capable of dif-
ferentiating tumour persistence/recurrence from fibrosis and 
inflammatory edema both on post-gadolinium T1 images 
and ADC maps. We decided to analyse T1 images since 

cancers typically have different characteristics with respect 
to fibrosis and inflammation after gadolinium administra-
tion. Cancers usually show inhomogeneous and interme-
diate enhancement that represents a middle way between 
active inflammation and fibrous tissue. Generally, tumour 
tissue tends to be heavily enhanced and similar to that of 
the primary tumour because of its intrinsic hypervascular-
ity with intra-lesional inhomogeneity due to necrosis foci or 
irregularities, whereas inflammatory tissue and non-newly 
formed fibrotic tissue have a more homogeneous enhance-
ment and low contrast agent uptake, respectively [30]. Post-
gadolinium T1 texture parameter Energy appeared to be 
helpful in the characterization of the 'positive’ group (group 
1) versus both the ‘negative group’ (groups 2 and 3 together) 
and patients with fibrosis alone (group 2). Energy had much 
higher values on post-gadolinium T1 images (Tables 1 and 
2) in patients with persistent/recurrence of disease than 
patients with non-tumoural changes and especially in case 
of non-newly formed fibrosis (Table 2) since tumour tissue 
had greater enhancement. On the contrary, limited or lack-
ing gadolinium spread in fibrotic tissue resulting in lower 
image voxel values and lower Energy values accordingly. In 
two studies conducted by Park et al. [26] and Tomita et al. 
[31, 32], Energy was a substantial feature in the differentia-
tion between metastatic and benign lymph nodes, underlin-
ing how it may be useful in discriminating neoplastic tissue 
from non-pathological tissue. Grey Level non-Uniformity 

Table 4   Cut-off values, sensitivity, and specificity for the most sig-
nificant (p-value < 0,01) features among the three groups of patients 
(Positives vs. Negatives, Positives vs. Fibrosis, Positives vs. Inflam-

mation) in both contrast-enhanced T1 MRI (CE-T1 MRI) and Appar-
ent diffusion coefficient maps (ADC)

MRI sequence Group Feature AUC​ Cutoff Sensitivity Specificity

CE-T1 Positives versus Negatives Energy 0.63 1*109 0.75 0.90
CE-T1 Positives versus Fibrosis Energy 0.75 4*108 0.75 0.90
CE-T1 Positives versus Negatives Grey level non uniformity 0.74 511 0.75 0.96
CE-T1 Positives versus Inflammation Grey level non uniformity 0.78 510 0.76 0.92
ADC Positives versus Negatives Dependence variance 0.76 1.04 0.75 0.96
ADC Positives versus Negatives Large area emphasis 0.76 3.90 0.75 0.96
ADC Positives versus Negatives Large dependence emphasis 0.77 4.38 0.75 0.96
ADC Positives versus Negatives Run variance 0.76 0.04 0.75 0.96
ADC Positives versus Negatives Zone variance 0.76 1.43 0.75 0.96
ADC Positives versus Fibrosis Dependence variance 0.77 1.04 0.75 0.93
ADC Positives versus Fibrosis Large Area Emphasis 0.77 3.90 0.75 0.93
ADC Positives versus Fibrosis Large dependence emphasis 0.77 5.19 0.76 0.96
ADC Positives versus Fibrosis Run variance 0.77 0.04 0.73 0.94
ADC Positives versus Fibrosis Zone variance 0.77 2.81 0.76 0.98
ADC Positives versus Inflammation Dependence variance 0.75 5.86 0.75 1.00
ADC Positives versus Inflammation Large area emphasis 0.75 5.86 0.76 0.96
ADC Positives versus Inflammation Large dependence emphasis 0.75 5.86 0.74 0.89
ADC Positives versus Inflammation Run variance 0.75 5.86 0.70 0.85
ADC Positives versus Inflammation Zone variance 0.75 2.82 0.72 0.86

Table 5   Cut-off values and diagnostic accuracy for the most sig-
nificant (p-value < 0.01) features in both contrast-enhanced T1 MRI 
(CE-T1 MRI) and apparent diffusion coefficient maps (ADC) for the 
distinction between patients with residual cancer and patients with 
inflammatory edema or fibrosis. Values higher than the cut-off are 
indicative of residual cancer, whereas values lower than the cut-off 
are indicative of non-tumoral changes characterized by inflammatory 
edema or fibrosis

Diagnostic accuracy of significant textural features

CE-T1-MRI

Feature name Cut-off Accuracy

Energy 1*109 85%
Grey level non-uniformity 4*108 92%
ADC map
Dependence variance 1.03 92%
Large area emphasis 3.90 92%
Large dependence emphasis 4.38 92%
Run variance 0.03 92%
Zone variance 1.42 92%
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was the other significant feature which we have found in the 
differentiation between ‘negative’ and ‘positive’ patients on 
post-gadolinium T1 images and especially between patients 
with inflammatory edema and residual cancer. Low values of 
Grey Level non-Uniformity correlated with a greater similar-
ity in intensity values. But even in this case the values of this 
feature were much higher in patients with residual cancer 
(Tables 1 and 3) than post-RT-CHT non-tumoural changes. 
As mentioned for Energy, Grey Level non-Uniformity cor-
related with the presence of tumour tissue characterized by 
high cellularity and vivid uptake of contrast agent.

In recent years, DWI and ADC map values have been 
becoming crucial tools for enhancing diagnosis of both 
malignant and benign diseases [33]. Unfortunately, their 
use is not always conclusive since overlaps in values can 
be found. The human eye can only assess ADC maps quali-
tatively by comparing them with the surrounding tissue 
map values [34]. However, texture analysis can examine 
the nature of the grey level transitions and the spatial rela-
tions of the pixels included in the regions of interest [4]. We 
exploited texture analysis on ADC maps for their correla-
tion with intra-tumoural changes in cellularity, angiogen-
esis, extravascular extracellular matrix, and areas of necrosis 

[35]. We looked for a possible correlation between texture 
parameters and MRI, 18F-FDG-PET/CT, and histopathol-
ogy. More precisely, we investigated the role of texture 
analysis on post-gadolinium and DWI images related to the 
high structural heterogeneity within an area subject to treat-
ment for cancer—hypervascularisation, necrosis, and high 
cellularity—and its potential to discern between tumour and 
tissue changes such as inflammation or fibrosis. On ADC 
maps, in the comparison between ‘positive’ and ‘negative’ 
groups, five features resulted as statistically significant in 
the differentiation between persistence/recurrence of disease 
and post-RT-CHT non-tumoral changes (Table 4). In par-
ticular, all five selected features were found to have higher 
values in patients with residual cancer than ‘negative’ ones. 
Higher values were also found in patients with residual 
cancer (group 1) in comparison with the group of fibrosis 
(group 2) and inflammatory edema (group 3) each of them 
taken individually. In the characterization of the 'positive’ 
group (group 1) versus the ‘negative group’ (groups 2 and 
3 together), Dependence Variance and Large Dependence 
Emphasis were two significant features belonging to Grey 
Level Dependence Matrix. Dependence Variance measured 
the variance in dependence size in the image. The higher 

Fig. 3   Receiver Operating Char-
acteristic (ROC) curve analysis 
of post-gadolinium T1 images. 
Upper part of the image: 
correlation of Grey Level Non-
Uniformity feature between 
patients with residual cancer 
(positives) and inflammatory 
edema (inflammation) and 
between positives and negatives 
patients. Negative patients are 
patients with tissue alterations 
characterized by inflammatory 
edema or fibrosis. Lower part of 
the image: correlation of Energy 
feature between positive and 
negative patients and between 
patients with residual cancer 
(positives) and residual fibrosis 
(fibrosis). The features showed 
an Area under the curve (AUC) 
between 0.7 and 0.8, that is 
indicative of an acceptable level 
of discrimination between the 
two groups of patients
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the value, the more variation there was within the image. 
In the current study, higher values of these features meant 
greater textural non-homogeneity. They were mainly found 
in tumoral tissues compared to fibrotic or inflammatory 
alterations because of the presence of necrotic foci in resid-
ual cancer.

Run Variance belonged to Grey Level Run Length Matrix 
and represented the variance in runs for the run lengths, 
therefore the number of pixels that had the same grey level 
value in an image. By increasing the value, as in the case of 
residual cancer, there was more variation within the image, 
which supported what was already explained for the previous 

features and especially the necrotic tissue and intra-lesional 
non-homogeneity.

Zone Variance and Large Area Emphasis belonged to 
Grey Level Size Zone. Zone Variance represented the num-
ber of connected voxels that have the same grey level inten-
sity and measured the variance in zone size values for the 
zone, with higher values in a more inhomogeneous tissue as 
tumour is. Large Area Emphasis was a measure of the distri-
bution of large area size zones with greater values indicative 
of more large size zones and more coarse textures, demon-
strating the typical inhomogeneity of tumour tissues. Both 
features showed higher values in positive patients, being a 

Fig. 4   Receiver Operating 
Characteristic (ROC) curve 
analysis of Apparent Diffusion 
Coefficient (ADC) map images 
of the five features resulted 
to be statistically significant 
(Dependence variance, Large 
Area Emphasis, Large Depend-
ence Emphasis, Run Variance, 
Zone Variance). The features 
showed an Area under the curve 
(AUC) between 0.7 and 0.8, that 
is indicative of an acceptable 
level of discrimination between 
the’positive’ and ‘negative’ 
patients
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representation of the structural inhomogeneity typical of 
tumoral tissue.

All significant above-mentioned features showed good 
diagnostic accuracy ranging from 85 to 92% (Table 5). 
When compared to literature data relating to the diagnos-
tic accuracy of CE-T1-MRI and ADC maps in treated OPC 
and NPC [39, 40], cut-off values attained by texture analy-
sis for the differentiation between residual cancer (group 1) 
and non-tumoral changes (groups 2 and 3 together) yielded 
higher specificity (96% vs. 86% for ADC, 96% vs. 82% for 
CE-T1-MRI) and lower sensitivity (75% vs. 89% for ADC; 
75% vs. 84% for CE-T1-MRI). Our results suggested that the 

addition of texture analysis should lead to improved diag-
nostic performance and more accurate distinction between 
tumour persistence and fibrotic or inflammatory alterations 
in post-treatment patients.

In clinical practice, texture analysis should be integrated 
with other MR parameters such as T2, enhancement T1 and 
DWI to better characterize the tissue investigated.

In our opinion, the role of texture analysis on MRI with 
ADC maps and post-gadolinium T1 images will become 
clinically significant when full data processing is performed 
in the shortest possible time and implemented in software 
systems where radiologists are used to visualise images. It 
took us 15 extra minutes to examine the texture features of 
each patient. We decided to use an open-source software so 
that everyone could access it in clinical practice. This aspect 
should be underlined because the use of the same open and 
free datasets with defined parameters for extracted features 
will guarantee a greater reproducibility of studies. The most 
difficult challenge for a widespread implementation of tex-
ture analysis processes is the lack of a standardised method 
due to the large number of procedures for the texture feature 
extraction, resulting in a large amount of information that 
is hardly comparable [24]. Due to the large variability of 
many factors in the execution of examinations, such as MRI 
devices with their respective parameters, filters, acquisition 
sequences, post-processing algorithms, as well as the type of 
software used (free and non-free commercially available or 
custom-made in-house applications), attaining standardised 
and reproducible results is still rather difficult [17, 26, 36].

A first limitation of our study was the performance of exam-
inations carried out via an MRI-unit only. Although this was 
an advantage to make the sample as homogeneous as possible, 
it was currently a disadvantage for the lack of reproducibility 
of results. According to the literature, the study by Mackin 
et al. [37] underlined how variations in the acquisition param-
eters and reconstruction techniques may affect features extrac-
tions. As regards future developments, it would be interesting 
to repeat the current study on different datasets of patients, 
with more patients and MRI-units involved, to confirm or not 
the association of the features we have found with persistence/
recurrence of disease or post-RT-CHT non-tumoural changes. 
Another limitation was the relative low sample size. Never-
theless, most papers on texture analysis of OPC and NPC did 
not include both pre- and post-RT-CHT MRI examinations [8, 
13, 14, 29, 38–40]. In addition, the small number of patients 
with residual cancer (7 individuals) had to be related to the 
well-known excellent response to RT-CHT of OPC—espe-
cially when HPV positive—and NPC. Moreover, it is known 
that HPV + and HPV − SCC differ in radiological imaging 
and prognosis, thus representing a possible bias in the current 
study [27].

Then, our single-centre results cannot be generalized until 
more evidence is gathered. Future studies should collect a 

Fig. 5   Distribution of Grey Level Non Uniformity texture feature 
on pre and post radiochemotherapy post-gadolinium T1 images in 
patients with residual cancer (positives), inflammatory edema only 
and both inflammatory edema and fibrosis (negatives). Distribution 
of Energy feature on pre and post radiochemotherapy post-gadolin-
ium T1 images in positives, fibrosis only and negatives patients. A 
marked reduction in values between pre and post radiochemotherapy 
features was found in patients with fibrosis only, inflammatory edema 
only and no residual cancer (negatives including both inflammatory 
edema and fibrosis). In contrast, a smaller reduction in values can be 
observed in positive patients for persistence/recurrence of disease, 
especially for Grey level non Uniformity
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larger amount of persistence/recurrence of pharyngeal tumour 
to strengthen our findings. Further analyses should also be 
conducted to identify cut-off values that may differentiate 
residual cancer from non-tumoural tissue changes induced by 
RT-CHT to attain better clinical decision making and improve 
the diagnostic accuracy.

Conclusions

Texture analysis on post-gadolinium T1 images and ADC 
maps was a useful tool in the early follow-up of OPC and 
NPC treated with RT-CHT to differentiate residual cancer 
from fibrosis and inflammatory edema. The substantial 
reduction in values of some features—including Energy 
and Grey Level non-Uniformity on post-gadolinium T1 

images and Large Dependence Emphasis, Dependence 
Variance, Run Variance, Zone Variance, and Large Area 
Emphasis on ADC maps—between pre- and post-RT-CHT 
was correlated with a good response to therapy and the 
development of RT-CHT-induced changes, whereas no or 
little variation of values of such features after RT-CHT 
was associated with residual cancer. No feature enabled 
a clear differentiation between fibrosis and inflammation.

Appendix 1

See Table 6

Fig. 6   Distribution of textural 
parameters on pre and post 
radiochemotherapy Appar-
ent diffusion Coefficient map 
images in patients with residual 
cancer (positives), inflammatory 
edema only, fibrosis only and 
both inflammatory edema and 
fibrosis (negatives). A marked 
reduction in values between pre 
and post radiochemotherapy 
features in fibrosis only, inflam-
matory edema only and with 
no residual cancer patients 
(negative group including 
both inflammatory edema and 
fibrosis) can be observed. In 
contrast, no reduction in values 
in positive patients for persis-
tence/recurrence of disease can 
be observed
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